Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6481-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-6481-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations (PSUICE3D v2.1)
David Pollard
CORRESPONDING AUTHOR
Earth and Environmental Systems Institute, Pennsylvania State
University, University Park, PA 16802, USA
Robert M. DeConto
Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA
Related authors
Lev Tarasov, Benoit S. Lecavalier, Kevin Hank, and David Pollard
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-175, https://doi.org/10.5194/gmd-2024-175, 2025
Preprint under review for GMD
Short summary
Short summary
We document the glacial system model (GSM), a 3D glaciological ice sheet systems model specifically designed for large ensemble modelling in glacial cycle contexts. The model is distinguished by the breadth of relevant processes represented for this context. This ranges from meltwater surface drainage with proglacial lake formation to state-of-the-art subglacial sediment production/transport/deposition. The other key distinguishing design feature is attention to addressing process uncertainties.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Lev Tarasov, Benoit S. Lecavalier, Kevin Hank, and David Pollard
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-175, https://doi.org/10.5194/gmd-2024-175, 2025
Preprint under review for GMD
Short summary
Short summary
We document the glacial system model (GSM), a 3D glaciological ice sheet systems model specifically designed for large ensemble modelling in glacial cycle contexts. The model is distinguished by the breadth of relevant processes represented for this context. This ranges from meltwater surface drainage with proglacial lake formation to state-of-the-art subglacial sediment production/transport/deposition. The other key distinguishing design feature is attention to addressing process uncertainties.
Benjamin A. Keisling, Joerg M. Schaefer, Robert M. DeConto, Jason P. Briner, Nicolás E. Young, Caleb K. Walcott, Gisela Winckler, Allie Balter-Kennedy, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2427, https://doi.org/10.5194/egusphere-2024-2427, 2024
Short summary
Short summary
Understanding how much the Greenland ice sheet melted in response to past warmth helps better predicting future sea-level change. Here we present a framework for using numerical ice-sheet model simulations to provide constraints on how much mass the ice sheet loses before different areas become ice-free. As observations from subglacial archives become more abundant, this framework can guide subglacial sampling efforts to gain the most robust information about past ice-sheet geometries.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Cited articles
Arthern, R. J. and Williams, C. R.: The sensitivity of West Antarctica to the
submarine melting feedback, Geophys. Res. Lett., 44, 252–2359, 2017.
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A.,
Willis, M., Abbas Khan, S., Rovira-Navarro, M., Dalziel, I., Smalley Jr.,
R., Kendrick, E., Konfal, S., Caccamise II, D. J., Aster, R. C., Nyblade, A.,
and Wiens, D. A.: Observed rapid bedrock uplift in Amundsen Sea Embayment
promotes ice-sheet stability, Science, 360, 1335–1339, 2018.
Bassis, J. N. and Jacobs, S.: Diverse calving patterns linked to glacier
geometry, Nat. Geosci., 6, 833–836, 2013.
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of
calving glaciers from the yield strength envelope of ice, Proc. Roy. Soc. A,
468, 913–931, 2012.
Benn, D., Åström, J., Zwinger, T., Todd, J., and Crawford, A.:
Marine ice-cliff instability: How does it work, and what controls ice
retreat rates?, EGU General Assembly, Vienna, Austria, 7–12 April 2019, EGU2019-15396, 2019.
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law”
in a thermomechanically coupled ice sheet model, J. Geophys. Res., 114,
F03008, https://doi.org/10.1029/2008JF001179, 2009.
Burton, J. C., Amundson, J. M., Cassotto, R., Kuo, C.-C., and Dennin, M.:
Quantifying flow and stress in ice mélange, the world's largest granular
material, P. Natl. Acad. Sci. USA, 105, 5105–5110, 2018.
Clerc, F., Minchew, B. M., and Behn, M. D.: Marine ice cliff instability
mitigated by slow removal of ice shelves, Geophys. Res. Lett., 46,
12108–12116, 2019.
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M.,
Gladstone, R. M., Payne, A. J., Ng, E. G., and Lipscomb, W. H.: Adaptive mesh,
finite volume modeling of marine ice sheets, J. Comput. Phys., 232,
529–549, https://doi.org/10.1016/j.jcp.2012.08.037, 2013.
Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., van den Broeke, M. R., Hellmer, H. H., Krinner, G., Ligtenberg, S. R. M., Timmermann, R., and Vaughan, D. G.: Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate, The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, 2015.
Cornford, S. L., Martni, D. F., Lee, V., Payne, A. J., and Ng, E. G.: Adaptive
mesh refinement versus subgrid friction interpolation in simulations of
Antarctic ice dynamics, Ann. Glaciol., 57, 1–9, https://doi.org/10.1017/aog.2016.13,
2016.
Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., Christmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D., Hoffman, M. J., Humbert, A., Kleiner, T., Leguy, G., Lipscomb, W. H., Merino, N., Durand, G., Morlighem, M., Pollard, D., Rückamp, M., Williams, C. R., and Yu, H.: Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+), The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, 2020.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, 2016.
Docquier, D., Perichon, L., and Pattyn, F.: Representing grounding line
dynamics in numerical ice sheet models: recent advances and outlook, Surv.
Geophys., 32, 417–435, 2011.
Drouet, A. S., Docquier, D., Durand, G., Hindmarsh, R., Pattyn, F., Gagliardini, O., and Zwinger, T.: Grounding line transient response in marine ice sheet models, The Cryosphere, 7, 395–406, https://doi.org/10.5194/tc-7-395-2013, 2013.
Feldmann, J. and Levermann, A.: Collapse of the West Antarctic Ice Sheet
after local destabilization of the Amundsen Basin, P. Natl. Acad. Sci. USA, 112,
14191–14196, 2015.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M.,
Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves,
Nat. Clim. Change, 6, 479–482, 2016.
Gladstone, R. M., Lee, V., Vieli, A., and Payne, A. J.: Grounding line
migration in an adaptive mesh ice sheet model, J. Geophys. Res., 115,
F04014, https://doi.org/10.1029/2009JF001615, 2010.
Gladstone, R. M., Payne, A. J., and Cornford, S. L.: Resolution requirements
for grounding-line modelling: sensitivity to basal drag and ice-shelf
buttressing, Ann. Glaciol., 53, 97–105, 2012.
Goldberg,, D., Holland, D. M., and Schoof, C.: Grounding line
movement and ice shelf buttressing in marine ice sheets, J. Geophys. Res.,
114, F04026, https://doi.org/10.1029/2008JF001227, 2009.
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C. J.,
and Gasson, E. G. W.: The multi-millennial Antarctic commitment to future
sea-level rise, Nature, 526, 421–425, 2015.
Gomez, N., Pollard, D., and Holland, D.: Sea-level feedback lowers
projections of future Antarctic Ice-Sheet mass loss, Nat. Commun., 6,
9798, https://doi.org/10.1038/ncomms/9798, 2015.
Gomez, N., Latychev, K., and Pollard, D.: A coupled ice sheet-sea level
model incorporating 3D Earth structure: Variations in Antarctica during the
last deglacial retreat, J. Climate, 31, 4041–4054, 2018.
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013.
Haseloff, M. and Sergienko, O. V.: The effect of buttressing on grounding
line dynamics, J. Glaciol., 64, 417–431, 2018.
Heeszel, D. S., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Dalziel,
I. W. D., Huerta, A. D., Nyblade, A. A., Wilson, T. J., and Winberry, J. P.: Upper
mantle structure of the central and West Antarctica from array analysis of
Rayleigh wave phase velocities, J. Geophys. Res.-Sol. Ea., 121,
1758–1775, 2016.
Jezek, K. C.: A modified theory of bottom crevasses used as a means for
measuring the buttressing effect of ice shelves on inland ice sheets, J.
Geophys. Res., 89, 1925–1931, 1984.
Ma, Y., Tripathy, C. S., and Bassis, J. N.: Bounds on the calving cliff height
of marine terminating glaciers, Geophys. Res. Lett., 44, 1369–1375, 2017.
Nick, F. M., van der Veen, C. J., Vieli, A., and Benn, D. I.: A physically
based calving model applied to marine outlet glaciers and implications for
the glacier dynamics, J. Glaciol., 56, 781–794, 2010.
Nye, J. F.: The distribution of stress and velocity in glaciers and ice
sheets, Proc. Roy. Soc. A, 239, 113–133, 1957.
Parizek, B. R, Christianson, K., Alley, R. B., Voytenko, D., Vaňková,
I., Dixon, T. H., Walker, R. T., and Holland, D. M.: Ice-cliff failure via
retrogressive slumping, Geology, 47, 449–452, 2019.
Pattyn, F. and Durand, G.: Why marine ice sheet model predictions may
diverge in estimating future sea level rise, Geophys. Res. Lett., 40,
4316–4320, 2013.
Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573–588, https://doi.org/10.5194/tc-6-573-2012, 2012.
Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O.,
Hindmarsh, R. C. A., Zwinger, T., Albrecht, T., Cornford, S., Docquier, D.,
Fürst, J. J., Goldberg, D., Gudmundsson, G. H., Humbert, A., Hütten,
M., Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin, D.,
Morlighem, M., Payne, A. J., Pollard, D., Rückamp, M., Rybak, O.,
Seroussi, H., Thoma, M., and Wilkens, N.: Grounding-line migration in
plan-view marine ice-sheet models: Results of the ice2sea MISMIP3d
Intercomparison, J. Glaciol., 59, 410–422, 2013.
Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012.
Pollard, D. and DeConto, R.: Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations (PSUICE3D v2.1), datacommons@psu, The Pennsylvania State University, https://doi.org/10.26208/m3bt-jy63, 2020.
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure, Earth Planet Sci.
Lett., 412, 112–121, 2015.
Pollard, D., DeConto, R. M., and Alley, R. B.: A continuum model (PSUMEL1) of ice mélange and its role during retreat of the Antarctic Ice Sheet, Geosci. Model Dev., 11, 5149–5172, https://doi.org/10.5194/gmd-11-5149-2018, 2018.
Powell, E., Gomez, N., Hay, C., Latychev, K., and Mitrovica, J. X.: Viscous
effects in the solid Earth response to modern Antarctic ice mass flux:
Implications for geodetic studies of WAIS stability in a warming world. J.
Climate, 33, 443–459, 2020.
Reese, R., Winkelmann, R., and Gudmundsson, G. H.: Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams, The Cryosphere, 12, 3229–3242, https://doi.org/10.5194/tc-12-3229-2018, 2018.
Schlemm, T. and Levermann, A.: A simple stress-based cliff-calving law, The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019, 2019.
Schoof, C.: Ice sheet grounding line dynamics: steady states, stability, and
hysteresis. J. Geophys. Res.-Earth Surf., 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007.
Seddik, H., Greve, R., Zwinger, T., Gillet-Chaulet, F., and Gagliardini, O.:
Simulations of the Greenland ice sheet 100 years into the future with the
full Stokes model Elmer/Ice, J. Glaciol., 58, 427–440, 2012.
Sergienko, O. V. and Wingham, D. J.: Grounding line stability in a regime of
low driving and basal stresses, J. Glaciol., 65, 833–849, 2019.
Shields, C. A., Kiehl, J. T., and Meehl, G. A.: Future changes in regional
precipitation simulated by a half-degree coupled climate model: Sensitivity
to horizontal resolution, J. Adv. Model. Earth Syst., 8, 863–884, 2016.
Sun, S., Pattyn, F., Simon, E. G., Albrecht, T., Cornford, S., Calov, R.,
Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R, Greve, R.,
Hoffman, M. J., Humbert, A., Kazmierczak, E., Kleiner, T., Leguy, G. R.,
Lipscomb, W. H., Martin, D., Morlighem, M., Nowicki, S., Pollard, D., Price,
S., Quiquet, A.., Seroussi, H., Schlemm, T., Sutter, J., van de Wal, R. S. W.,
Winkelmann, R., and Zhang, T.: Antarctic ice sheet response to sudden and
sustained ice shelf collapse (ABUMIP), J. Glaciol., in press, 2020.
Thoma, M., Grosfeld, K., Barbi, D., Determann, J., Goeller, S., Mayer, C., and Pattyn, F.: RIMBAY – a multi-approximation 3D ice-dynamics model for comprehensive applications: model description and examples, Geosci. Model Dev., 7, 1–21, https://doi.org/10.5194/gmd-7-1-2014, 2014.
Turcotte, D. L. and Schubert, G.: Geodynamics: Applications of Continuum
Physics to Geological Problems, Wiley, New York, 1982.
Short summary
Buttressing by floating ice shelves at ice-sheet grounding lines is an
important process that affects ice retreat and whether structural failure
occurs in deep bathymetry. Here, we use a simple algorithm to better
represent 2-D grounding-line curvature in an ice-sheet model. Along with other
enhancements, this improves the performance in idealized-fjord intercomparisons
and enables better diagnosis of potential structural failure at future
retreating Antarctic grounding lines.
Buttressing by floating ice shelves at ice-sheet grounding lines is an
important process that...