Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5645-2020
https://doi.org/10.5194/gmd-13-5645-2020
Model description paper
 | 
18 Nov 2020
Model description paper |  | 18 Nov 2020

COSIPY v1.3 – an open-source coupled snowpack and ice surface energy and mass balance model

Tobias Sauter, Anselm Arndt, and Christoph Schneider

Related authors

Brief communication: What do we need to know? Ten questions about climate and water challenges in Berlin-Brandenburg
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428,https://doi.org/10.5194/egusphere-2025-428, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Assessing economic impacts of future GLOFs in Nepal’s Everest region under different SSP scenarios using three-dimensional simulations
Wilhelm Furian and Tobias Sauter
EGUsphere, https://doi.org/10.5194/egusphere-2025-50,https://doi.org/10.5194/egusphere-2025-50, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024,https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Strategies for regional modeling of surface mass balance at the Monte Sarmiento Massif, Tierra del Fuego
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023,https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Revisiting extreme precipitation amounts over southern South America and implications for the Patagonian Icefields
Tobias Sauter
Hydrol. Earth Syst. Sci., 24, 2003–2016, https://doi.org/10.5194/hess-24-2003-2020,https://doi.org/10.5194/hess-24-2003-2020, 2020
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Anderson, E. A.: Development and testing of snow pack energy balance equations, Water Resour. Res., 4, 19–37, https://doi.org/10.1029/WR004i001p00019, 1968. a
Anderson, E. A.: A point energy and mass balance model of a snow cover, Technical Report, National Weather Service (NWS), United States, 1976. a, b, c
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swis avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. a, b, c, d
Bintanja, R. and Van Den Broeke, M. R.: The Surface Energy Balance of Antarctic Snow and Blue Ice, J. Appl. Meteorol., 34, 902–926, https://doi.org/10.1175/1520-0450(1995)034<0902:TSEBOA>2.0.CO;2, 1995. a
Boone, A.: Description du Schema de Neige ISBA-ES (Explicit Snow), Tech. rep., Centre National de Recherches Météorologiques, Météo-France, Toulouse, 2004 (updated in November 2009). a, b
Download
Short summary
Glacial changes play a key role from a socioeconomic, political, and scientific point of view. Here, we present the open-source coupled snowpack and ice surface energy and mass balance model, which provides a lean, flexible, and user-friendly framework for modeling distributed snow and glacier mass changes. The model provides a suitable platform for sensitivity, detection, and attribution analyses for glacier changes and a tool for quantifying inherent uncertainties.
Share