Articles | Volume 13, issue 11
Geosci. Model Dev., 13, 5645–5662, 2020
Geosci. Model Dev., 13, 5645–5662, 2020

Model description paper 18 Nov 2020

Model description paper | 18 Nov 2020

COSIPY v1.3 – an open-source coupled snowpack and ice surface energy and mass balance model

Tobias Sauter et al.

Related authors

Revisiting extreme precipitation amounts over southern South America and implications for the Patagonian Icefields
Tobias Sauter
Hydrol. Earth Syst. Sci., 24, 2003–2016,,, 2020
Short summary
Effects of local advection on the spatial sensible heat flux variation on a mountain glacier
Tobias Sauter and Stephan Peter Galos
The Cryosphere, 10, 2887–2905,,, 2016
Short summary
Snowdrift modelling for the Vestfonna ice cap, north-eastern Svalbard
T. Sauter, M. Möller, R. Finkelnburg, M. Grabiec, D. Scherer, and C. Schneider
The Cryosphere, 7, 1287–1301,,, 2013

Related subject area

fenics_ice 1.0: a framework for quantifying initialization uncertainty for time-dependent ice sheet models
Conrad P. Koziol, Joe A. Todd, Daniel N. Goldberg, and James R. Maddison
Geosci. Model Dev., 14, 5843–5861,,, 2021
Short summary
Development of adjoint-based ocean state estimation for the Amundsen and Bellingshausen seas and ice shelf cavities using MITgcm–ECCO (66j)
Yoshihiro Nakayama, Dimitris Menemenlis, Ou Wang, Hong Zhang, Ian Fenty, and An T. Nguyen
Geosci. Model Dev., 14, 4909–4924,,, 2021
Short summary
Sensitivity of Northern Hemisphere climate to ice–ocean interface heat flux parameterizations
Xiaoxu Shi, Dirk Notz, Jiping Liu, Hu Yang, and Gerrit Lohmann
Geosci. Model Dev., 14, 4891–4908,,, 2021
Short summary
icepack: a new glacier flow modeling package in Python, version 1.0
Daniel R. Shapero, Jessica A. Badgeley, Andrew O. Hoffman, and Ian R. Joughin
Geosci. Model Dev., 14, 4593–4616,,, 2021
Short summary
Benefits of sea ice initialization for the interannual-to-decadal climate prediction skill in the Arctic in EC-Earth3
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev., 14, 4283–4305,,, 2021
Short summary

Cited articles

Anderson, E. A.: Development and testing of snow pack energy balance equations, Water Resour. Res., 4, 19–37,, 1968. a
Anderson, E. A.: A point energy and mass balance model of a snow cover, Technical Report, National Weather Service (NWS), United States, 1976. a, b, c
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swis avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145,, 2002. a, b, c, d
Bintanja, R. and Van Den Broeke, M. R.: The Surface Energy Balance of Antarctic Snow and Blue Ice, J. Appl. Meteorol., 34, 902–926,<0902:TSEBOA>2.0.CO;2, 1995. a
Boone, A.: Description du Schema de Neige ISBA-ES (Explicit Snow), Tech. rep., Centre National de Recherches Météorologiques, Météo-France, Toulouse, 2004 (updated in November 2009). a, b
Short summary
Glacial changes play a key role from a socioeconomic, political, and scientific point of view. Here, we present the open-source coupled snowpack and ice surface energy and mass balance model, which provides a lean, flexible, and user-friendly framework for modeling distributed snow and glacier mass changes. The model provides a suitable platform for sensitivity, detection, and attribution analyses for glacier changes and a tool for quantifying inherent uncertainties.