Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-3995-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-3995-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
James A. Franke
CORRESPONDING AUTHOR
Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of
Chicago, Chicago, IL, USA
Christoph Müller
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam,
Germany
Joshua Elliott
Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of
Chicago, Chicago, IL, USA
NASA Goddard Institute for Space Studies, New York, NY, USA
Alex C. Ruane
Center for Climate Systems Research, Columbia University, New York, NY 10025, USA
Jonas Jägermeyr
NASA Goddard Institute for Space Studies, New York, NY, USA
Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of
Chicago, Chicago, IL, USA
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam,
Germany
Center for Climate Systems Research, Columbia University, New York, NY 10025, USA
Abigail Snyder
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
Marie Dury
Unité de Modélisation du Climat et des Cycles Biogéochimiques, UR SPHERES, Institut d'Astrophysique et de Géophysique, University of Liège, Liège, Belgium
Pete D. Falloon
Met Office Hadley Centre, Exeter, UK
Christian Folberth
Ecosystem Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
Louis François
Unité de Modélisation du Climat et des Cycles Biogéochimiques, UR SPHERES, Institut d'Astrophysique et de Géophysique, University of Liège, Liège, Belgium
Tobias Hank
Department of Geography, Ludwig-Maximilians-Universität München, Munich,
Germany
R. Cesar Izaurralde
Department of Geographical Sciences, University of Maryland, College Park, MD, USA
Texas Agrilife Research and Extension, Texas A&M University, Temple, TX, USA
Ingrid Jacquemin
Unité de Modélisation du Climat et des Cycles Biogéochimiques, UR SPHERES, Institut d'Astrophysique et de Géophysique, University of Liège, Liège, Belgium
Curtis Jones
Department of Geographical Sciences, University of Maryland, College Park, MD, USA
Michelle Li
Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of
Chicago, Chicago, IL, USA
Department of Statistics, University of Chicago, Chicago, IL, USA
Wenfeng Liu
EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Stefan Olin
Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
Meridel Phillips
NASA Goddard Institute for Space Studies, New York, NY, USA
Earth Institute Center for Climate Systems Research, Columbia University, New York, NY, USA
Thomas A. M. Pugh
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
Ashwan Reddy
Department of Geographical Sciences, University of Maryland, College Park, MD, USA
Karina Williams
Met Office Hadley Centre, Exeter, UK
Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter, UK
Ziwei Wang
Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of
Chicago, Chicago, IL, USA
Florian Zabel
Department of Geography, Ludwig-Maximilians-Universität München, Munich,
Germany
Elisabeth J. Moyer
Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of
Chicago, Chicago, IL, USA
Related authors
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023, https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Lily-belle Sweet, Christoph Müller, Jonas Jägermeyr, and Jakob Zscheischler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3006, https://doi.org/10.5194/egusphere-2025-3006, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study presents a method to identify climate drivers of an impact, such as agricultural yield failure, from high-resolution weather data. The approach systematically generates, selects and combines predictors that generalise across different environments. Tested on crop model simulations, the identified drivers are used to create parsimonious models that achieve high predictive performance over long time horizons, offering a more interpretable alternative to black-box models.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025, https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Short summary
Disturbances, such as fire, can change which vegetation grows in a forest, affecting water and carbon flows and, thus, the climate. Disturbances are expected to increase with climate change, but it is uncertain by how much. Using a simulation model, we studied how future climate, disturbances, and their combined effect impact northern (high-latitude) forest ecosystems. Our findings highlight the importance of considering these factors and the need to better understand how disturbances will change in the future.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Jette Elena Stoebke, David Wårlind, Stefan Olin, Annemarie Eckes-Shephard, Bogdan Brzeziecki, Mikko Peltoniemi, and Thomas A. M. Pugh
EGUsphere, https://doi.org/10.5194/egusphere-2025-2995, https://doi.org/10.5194/egusphere-2025-2995, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Forests are shaped by how trees compete for resources like sunlight. We improved a widely used vegetation model to better capture how light filters through the forest canopy, especially after tree death or harvesting. By assigning trees explicit positions, the model captures forest structure and change more realistically. This advances our understanding of tree competition and forest responses to management, providing a better tool to predict future forest dynamics.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan Cornelis Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Paul Oliver Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
Earth Syst. Dynam., 16, 753–801, https://doi.org/10.5194/esd-16-753-2025, https://doi.org/10.5194/esd-16-753-2025, 2025
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic–climate scenarios' largest effect on variance starting in 2030.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025, https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Eya Cherif, Teja Kattenborn, Luke A. Brown, Michael Ewald, Katja Berger, Phuong D. Dao, Tobias B. Hank, Etienne Laliberté, Bing Lu, and Hannes Feilhauer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1284, https://doi.org/10.5194/egusphere-2025-1284, 2025
Short summary
Short summary
Hyperspectral imagery combined with machine learning enables accurate large-scale mapping of plant traits but struggles with uncertainty when facing unfamiliar environmental conditions. This study introduces a distance-based method that measures dissimilarities between new and training data to reliably quantify uncertainty. Results show it effectively identifies uncertain predictions, greatly improving the reliability of global vegetation monitoring compared to traditional methods.
Benjamin Wade Clouser, Carly Cyd KleinStern, Adrien Desmoulin, Clare E. Singer, Jason M. St. Clair, Thomas F. Hanisco, David S. Sayres, and Elisabeth J. Moyer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1190, https://doi.org/10.5194/egusphere-2025-1190, 2025
Short summary
Short summary
Water molecules comes in several varieties, of which H216O is the most common. These varieties behave differently enough under freezing to create strong changes in the ratio of heavy to light water molecules. Here we compare observations of these ratios from satellites and high-altitude airborne instruments. These observations provide information about how air reaches the upper parts of the atmosphere, so it is important to reconcile difference between different modes of observations.
Inika Taylor, Douglas I. Kelley, Camilla Mathison, Karina E. Williams, Andrew J. Hartley, Richard A. Betts, and Chantelle Burton
EGUsphere, https://doi.org/10.5194/egusphere-2025-720, https://doi.org/10.5194/egusphere-2025-720, 2025
Short summary
Short summary
Climate change is reshaping fire seasons worldwide and, in many places, increasing fire weather risk. We use climate model simulations to project future changes in fire danger at different levels of global warming, focusing on Australia, Brazil, and the USA. Keeping warming below 2 °C significantly limits the increase in fire risk, but even at 1.5 °C, fire seasons lengthen, with more extreme conditions. However, low-fire weather periods remain, offering critical windows for fire management.
Christian Folberth, Artem Baklanov, Nikolay Khabarov, Thomas Oberleitner, Juraj Balkovič, and Rastislav Skalský
EGUsphere, https://doi.org/10.5194/egusphere-2025-862, https://doi.org/10.5194/egusphere-2025-862, 2025
Short summary
Short summary
Global gridded crop models (GGCMs) are important tools in agricultural climate impact assessments but computationally costly. An emergent approach to derive crop productivity estimates similar to those from GGCMs are emulators that mimic the original model, but typically with considerable bias. Here we present a modelling package that trains emulators with very high accuracy and high computational gain, providing a basis for more comprehensive scenario assessments.
Beiyao Xu, Steven Dobbie, Huiyi Yang, Lianxin Yang, Yu Jiang, Andrew Challinor, Karina Williams, Yunxia Wang, and Tijian Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4077, https://doi.org/10.5194/egusphere-2024-4077, 2025
Short summary
Short summary
Ozone (O3) pollution harms rice production and threatens food security. To understand these impacts, we calibrated a crop model using unique data from experiments where rice was grown in open fields under controlled O3 exposure (free air). This is the first time such data has been used to improve a model’s ability to predict how rice responds to O3 pollution. Our work provides a more accurate tool to study O3’s effects and guide strategies to protect agriculture.
Dilli Paudel, Michiel Kallenberg, Stella Ofori-Ampofo, Hilmy Baja, Ron van Bree, Aike Potze, Pratishtha Poudel, Abdelrahman Saleh, Weston Anderson, Malte von Bloh, Andres Castellano, Oumnia Ennaji, Raed Hamed, Rahel Laudien, Donghoon Lee, Inti Luna, Michele Meroni, Janet Mumo Mutuku, Siyabusa Mkuhlani, Jonathan Richetti, Alex C. Ruane, Ritvik Sahajpal, Guanyuan Shai, Vasileios Sitokonstantinou, Rogério de Souza Nóia Júnior, Amit Kumar Srivastava, Robert Strong, Lily-belle Sweet, Petar Vojnovic, and Ioannis N. Athanasiadis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-83, https://doi.org/10.5194/essd-2025-83, 2025
Preprint under review for ESSD
Short summary
Short summary
Improving crop yield predictions is crucial for food security. Prior research relied on case studies, making it hard to compare methods & track progress. We introduce CY-Bench, a global dataset for forecasting maize and wheat yields across diverse farming systems in over 25 countries. It includes standardized weather, soil, and satellite data, curated by a diverse set of experts. CY-Bench supports the development of better forecasting tools to help decision-makers plan for global food security.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Prashant Paudel, Stefan Olin, Mark Tjoelker, Mikael Pontarp, Daniel Metcalfe, and Benjamin Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-3977, https://doi.org/10.5194/egusphere-2024-3977, 2025
Short summary
Short summary
Ecological processes respond to changes in rainfall conditions. Competition and stress created by water availability are two primary components at two ends of the rainfall gradient. In wetter areas, plants compete for resources, while in drier regions, stress limits growth. The complex interaction between plant characters and their response to growth conditions governs ecosystem processes. These findings can be used to understand how future rainfall changes could impact ecosystems.
Fredrik Lagergren, Anna Maria Jönsson, Mats Lindeskog, and Thomas A. M. Pugh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-239, https://doi.org/10.5194/gmd-2024-239, 2025
Preprint under review for GMD
Short summary
Short summary
The European spruce bark beetle (SBB) has, in recent years, been the most important disturbance agent in many European forests. We implemented a SBB module in a dynamic vegetation model and calibrated it against observations from Sweden, Switzerland, Austria and France. The start and duration of outbreaks triggered by storm damage and the increased damage driven by recent warm and dry periods were reasonably well simulated, although the spread was reflected in uncertain parameter estimates.
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3784, https://doi.org/10.5194/egusphere-2024-3784, 2025
Short summary
Short summary
We offer pairwise observed datasets that compare the characteristics of tropical ecosystems, specifically pristine forests, regrowth forests, and cashew plantations. Our findings uncover some key differences in their characteristics, emphasizing the influence of human activities on these ecosystems. By sharing our unique datasets, we hope to improve the knowledge of tropical forest ecosystems in Southeast Asia, advancing tropical research, and tackling global environmental challenges.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Abigail Snyder, Noah Prime, Claudia Tebaldi, and Kalyn Dorheim
Earth Syst. Dynam., 15, 1301–1318, https://doi.org/10.5194/esd-15-1301-2024, https://doi.org/10.5194/esd-15-1301-2024, 2024
Short summary
Short summary
From running climate models to using their outputs to identify impacts, modeling the integrated human–Earth system is expensive. This work presents a method to identify a smaller subset of models from the full set that preserves the uncertainty characteristics of the full set. This results in a smaller number of runs that an impact modeler can use to assess how uncertainty propagates from the Earth to the human system, while still capturing the range of outcomes provided by climate models.
Benjamin W. Clouser, Laszlo C. Sarkozy, Clare E. Singer, Carly C. KleinStern, Adrien Desmoulin, Dylan Gaeta, Sergey Khaykin, Stephen Gabbard, Stephen Shertz, and Elisabeth J. Moyer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-98, https://doi.org/10.5194/amt-2024-98, 2024
Revised manuscript under review for AMT
Short summary
Short summary
The water molecule comes in several different varieties, which are nearly indistinguishable in daily life. However, slight differences between the water molecule types can be exploited to achieve better scientific understanding of parts of Earth's atmosphere. In this work we describe the design, construction, and operation of an instrument meant to measure these molecules aboard research aircraft up to altitudes of 20 kilometers.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-98, https://doi.org/10.5194/essd-2024-98, 2024
Revised manuscript not accepted
Short summary
Short summary
We offer pairwise observed datasets that compare the characteristics of tropical ecosystems, specifically pristine forests, regrowth forests, and cashew plantations. Our findings uncover some key differences in their characteristics, emphasizing the influence of human activities on these ecosystems. By sharing our unique datasets, we hope to improve the knowledge of tropical forest ecosystems in Southeast Asia, advancing tropical research, and tackling global environmental challenges.
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024, https://doi.org/10.5194/gmd-17-2547-2024, 2024
Short summary
Short summary
The effects of ozone (O3) stress on crop photosynthesis and leaf senescence were added to maize, rice, soybean, and wheat crop models. The modified models reproduced growth and yields under different O3 levels measured in field experiments and reported in the literature. The combined interactions between O3 and additional stresses were reproduced with the new models. These updated crop models can be used to simulate impacts of O3 stress under future climate change and air pollution scenarios.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023, https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Paul Konopka, Christian Rolf, Marc von Hobe, Sergey M. Khaykin, Benjamin Clouser, Elisabeth Moyer, Fabrizio Ravegnani, Francesco D'Amato, Silvia Viciani, Nicole Spelten, Armin Afchine, Martina Krämer, Fred Stroh, and Felix Ploeger
Atmos. Chem. Phys., 23, 12935–12947, https://doi.org/10.5194/acp-23-12935-2023, https://doi.org/10.5194/acp-23-12935-2023, 2023
Short summary
Short summary
We studied water vapor in a critical region of the atmosphere, the Asian summer monsoon anticyclone, using rare in situ observations. Our study shows that extremely high water vapor values observed in the stratosphere within the Asian monsoon anticyclone still undergo significant freeze-drying and that water vapor concentrations set by the Lagrangian dry point are a better proxy for the stratospheric water vapor budget than rare observations of enhanced water mixing ratios.
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023, https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Short summary
Today, most climate model data are provided at daily time steps. However, more and more models from different sectors, such as energy, water, agriculture, and health, require climate information at a sub-daily temporal resolution for a more robust and reliable climate impact assessment. Here we describe and validate the Teddy tool, a new model for the temporal disaggregation of daily climate model data for climate impact analysis.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Kara D. Lamb, Jerry Y. Harrington, Benjamin W. Clouser, Elisabeth J. Moyer, Laszlo Sarkozy, Volker Ebert, Ottmar Möhler, and Harald Saathoff
Atmos. Chem. Phys., 23, 6043–6064, https://doi.org/10.5194/acp-23-6043-2023, https://doi.org/10.5194/acp-23-6043-2023, 2023
Short summary
Short summary
This study investigates how ice grows directly from vapor in cirrus clouds by comparing observations of populations of ice crystals growing in a cloud chamber against models developed in the context of single-crystal laboratory studies. We demonstrate that previous discrepancies between different experimental measurements do not necessarily point to different physical interpretations but are rather due to assumptions that were made in terms of how experiments were modeled in previous studies.
Jens Heinke, Susanne Rolinski, and Christoph Müller
Geosci. Model Dev., 16, 2455–2475, https://doi.org/10.5194/gmd-16-2455-2023, https://doi.org/10.5194/gmd-16-2455-2023, 2023
Short summary
Short summary
We develop a livestock module for the global vegetation model LPJmL5.0 to simulate the impact of grazing dairy cattle on carbon and nitrogen cycles in grasslands. A novelty of the approach is that it accounts for the effect of feed quality on feed uptake and feed utilization by animals. The portioning of dietary nitrogen into milk, feces, and urine shows very good agreement with estimates obtained from animal trials.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Claudia Tebaldi, Abigail Snyder, and Kalyn Dorheim
Earth Syst. Dynam., 13, 1557–1609, https://doi.org/10.5194/esd-13-1557-2022, https://doi.org/10.5194/esd-13-1557-2022, 2022
Short summary
Short summary
Impact modelers need many future scenarios to characterize the consequences of climate change. The climate modeling community cannot fully meet this need because of the computational cost of climate models. Emulators have fallen short of providing the entire range of inputs that modern impact models require. Our proposal, STITCHES, meets these demands in a comprehensive way and may thus support a fully integrated impact research effort and save resources for the climate modeling enterprise.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022, https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Short summary
We present a number of augmentations to the ecosystem model LPJ-GUESS, which will allow us to use it in studies of the interactions between the land biosphere and the climate. The new module enables calculation of fluxes of energy and water into the atmosphere that are consistent with the modelled vegetation processes. The modelled fluxes are in fair agreement with observations across 21 sites from the FLUXNET network.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Vera Porwollik, Susanne Rolinski, Jens Heinke, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Biogeosciences, 19, 957–977, https://doi.org/10.5194/bg-19-957-2022, https://doi.org/10.5194/bg-19-957-2022, 2022
Short summary
Short summary
The study assesses impacts of grass cover crop cultivation on cropland during main-crop off-season periods applying the global vegetation model LPJmL (V.5.0-tillage-cc). Compared to simulated bare-soil fallowing practices, cover crops led to increased soil carbon content and reduced nitrogen leaching rates on the majority of global cropland. Yield responses of main crops following cover crops vary with location, duration of altered management, crop type, water regime, and tillage practice.
Jianyong Ma, Stefan Olin, Peter Anthoni, Sam S. Rabin, Anita D. Bayer, Sylvia S. Nyawira, and Almut Arneth
Geosci. Model Dev., 15, 815–839, https://doi.org/10.5194/gmd-15-815-2022, https://doi.org/10.5194/gmd-15-815-2022, 2022
Short summary
Short summary
The implementation of the biological N fixation process in LPJ-GUESS in this study provides an opportunity to quantify N fixation rates between legumes and to better estimate grain legume production on a global scale. It also helps to predict and detect the potential contribution of N-fixing plants as
green manureto reducing or removing the use of N fertilizer in global agricultural systems, considering different climate conditions, management practices, and land-use change scenarios.
Katherine V. Calvin, Abigail Snyder, Xin Zhao, and Marshall Wise
Geosci. Model Dev., 15, 429–447, https://doi.org/10.5194/gmd-15-429-2022, https://doi.org/10.5194/gmd-15-429-2022, 2022
Short summary
Short summary
Future changes in land use and cover have important implications for agriculture, energy, water use, and climate. In this study, we demonstrate a more systematic and empirically based approach to estimating a few key parameters for an economic model of land use and land cover change, gcamland. We identify parameter combinations that best replicate historical land use in the United States.
Adrian Gustafson, Paul A. Miller, Robert G. Björk, Stefan Olin, and Benjamin Smith
Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021, https://doi.org/10.5194/bg-18-6329-2021, 2021
Short summary
Short summary
We performed model simulations of vegetation change for a historic period and a range of climate change scenarios at a high spatial resolution. Projected treeline advance continued at the same or increased rates compared to our historic simulation. Temperature isotherms advanced faster than treelines, revealing a lag in potential vegetation shifts that was modulated by nitrogen availability. At the year 2100 projected treelines had advanced by 45–195 elevational metres depending on the scenario.
Henrique M. D. Goulart, Karin van der Wiel, Christian Folberth, Juraj Balkovic, and Bart van den Hurk
Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, https://doi.org/10.5194/esd-12-1503-2021, 2021
Short summary
Short summary
Agriculture is sensitive to weather conditions and to climate change. We identify the weather conditions linked to soybean failures and explore changes related to climate change. Additionally, we build future versions of a historical extreme season under future climate scenarios. Results show that soybean failures are likely to increase with climate change. Future events with similar physical conditions to the extreme season are not expected to increase, but events with similar impacts are.
Tobias Herzfeld, Jens Heinke, Susanne Rolinski, and Christoph Müller
Earth Syst. Dynam., 12, 1037–1055, https://doi.org/10.5194/esd-12-1037-2021, https://doi.org/10.5194/esd-12-1037-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration on cropland has been proposed as a climate change mitigation strategy. We simulate different agricultural management practices under climate change scenarios using a global biophysical model. We find that at the global aggregated level, agricultural management practices are not capable of enhancing total carbon storage in the soil, yet for some climate regions, we find that there is potential to enhance the carbon content in cropland soils.
Halima Usman, Thomas A. M. Pugh, Anders Ahlström, and Sofia Baig
Earth Syst. Dynam., 12, 857–870, https://doi.org/10.5194/esd-12-857-2021, https://doi.org/10.5194/esd-12-857-2021, 2021
Short summary
Short summary
The study assesses the impacts of climate change on forest productivity in the Hindu Kush Himalayan region. LPJ-GUESS was simulated from 1851 to 2100. In first approach, the model was compared with observational estimates. The comparison showed a moderate agreement. In the second approach, the model was assessed for the temporal and spatial trends of net biome productivity and its components along with carbon pool. Increases in both variables were predicted in 2100.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Yvonne Jans, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Hydrol. Earth Syst. Sci., 25, 2027–2044, https://doi.org/10.5194/hess-25-2027-2021, https://doi.org/10.5194/hess-25-2027-2021, 2021
Short summary
Short summary
Growth of and irrigation water demand on cotton may be challenged by future climate change. To analyze the global cotton production and irrigation water consumption under spatially varying present and future climatic conditions, we use the global terrestrial biosphere model LPJmL. Our simulation results suggest that the beneficial effects of elevated [CO2] on cotton yields overcompensate yield losses from direct climate change impacts, i.e., without the beneficial effect of [CO2] fertilization.
Bruno Ringeval, Christoph Müller, Thomas A. M. Pugh, Nathaniel D. Mueller, Philippe Ciais, Christian Folberth, Wenfeng Liu, Philippe Debaeke, and Sylvain Pellerin
Geosci. Model Dev., 14, 1639–1656, https://doi.org/10.5194/gmd-14-1639-2021, https://doi.org/10.5194/gmd-14-1639-2021, 2021
Short summary
Short summary
We assess how and why global gridded crop models (GGCMs) differ in their simulation of potential yield. We build a GCCM emulator based on generic formalism and fit its parameters against aboveground biomass and yield at harvest simulated by eight GGCMs. Despite huge differences between GGCMs, we show that the calibration of a few key parameters allows the emulator to reproduce the GGCM simulations. Our simple but mechanistic model could help to improve the global simulation of potential yield.
Camilla Mathison, Andrew J. Challinor, Chetan Deva, Pete Falloon, Sébastien Garrigues, Sophie Moulin, Karina Williams, and Andy Wiltshire
Geosci. Model Dev., 14, 437–471, https://doi.org/10.5194/gmd-14-437-2021, https://doi.org/10.5194/gmd-14-437-2021, 2021
Short summary
Short summary
Sequential cropping (also known as multiple or double cropping) is a common cropping system, particularly in tropical regions. Typically, land surface models only simulate a single crop per year. To understand how sequential crops influence surface fluxes, we implement sequential cropping in JULES to simulate all the crops grown within a year at a given location in a seamless way. We demonstrate the method using a site in Avignon, four locations in India and a regional run for two Indian states.
Felix Leung, Karina Williams, Stephen Sitch, Amos P. K. Tai, Andy Wiltshire, Jemma Gornall, Elizabeth A. Ainsworth, Timothy Arkebauer, and David Scoby
Geosci. Model Dev., 13, 6201–6213, https://doi.org/10.5194/gmd-13-6201-2020, https://doi.org/10.5194/gmd-13-6201-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is detrimental to plant productivity and crop yield. Currently, the Joint UK Land Environment Simulator (JULES) includes a representation of crops (JULES-crop). The parameters for O3 damage in soybean in JULES-crop were calibrated against photosynthesis measurements from the Soybean Free Air Concentration Enrichment (SoyFACE). The result shows good performance for yield, and it helps contribute to understanding of the impacts of climate and air pollution on food security.
Tony W. Carr, Juraj Balkovič, Paul E. Dodds, Christian Folberth, Emil Fulajtar, and Rastislav Skalsky
Biogeosciences, 17, 5263–5283, https://doi.org/10.5194/bg-17-5263-2020, https://doi.org/10.5194/bg-17-5263-2020, 2020
Short summary
Short summary
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily simulation outputs from an EPIC-based global gridded crop model. Evaluation against field data confirmed the robustness of the outputs for the majority of global cropland and overestimations at locations with steep slopes and strong rainfall. Additionally, we address sensitivities and uncertainties of model inputs to improve water erosion estimates in global agricultural impact studies.
Femke Lutz, Stephen Del Grosso, Stephen Ogle, Stephen Williams, Sara Minoli, Susanne Rolinski, Jens Heinke, Jetse J. Stoorvogel, and Christoph Müller
Geosci. Model Dev., 13, 3905–3923, https://doi.org/10.5194/gmd-13-3905-2020, https://doi.org/10.5194/gmd-13-3905-2020, 2020
Short summary
Short summary
Previous findings have shown deviations between the LPJmL5.0-tillage model and results from meta-analyses on global estimates of tillage effects on N2O emissions. By comparing model results with observational data of four experimental sites and outputs from field-scale DayCent model simulations, we show that advancing information on agricultural management, as well as the representation of soil moisture dynamics, improves LPJmL5.0-tillage and the estimates of tillage effects on N2O emissions.
Cited articles
Aulakh, M. S. and Malhi, S. S.: Interactions of Nitrogen with Other
Nutrients and Water: Effect on Crop Yield and Quality, Nutrient
Use Efficiency, Carbon Sequestration, and Environmental
Pollution, Adv. Agron., 86, 341–409,
https://doi.org/10.1016/S0065-2113(05)86007-9, 2005. a
Blanc, E.: Statistical emulators of maize, rice, soybean and wheat yields from
global gridded crop models, Agr. Forest Meteorol., 236, 145–161, https://doi.org/10.1016/j.agrformet.2016.12.022, 2017. a, b, c
Blanc, E. and Sultan, B.: Emulating maize yields from global gridded crop
models using statistical estimates, Agr. Forest Meteorol.,
214-215, 134–147, https://doi.org/10.1016/j.agrformet.2015.08.256, 2015. a, b, c
Castruccio, S., McInerney, D. J., Stein, M. L., Liu Crouch, F., Jacob, R. L.,
and Moyer, E. J.: Statistical Emulation of Climate Model Projections
Based on Precomputed GCM Runs, J. Climate, 27, 1829–1844,
https://doi.org/10.1175/JCLI-D-13-00099.1, 2014. a, b
Challinor, A., Wheeler, T., Craufurd, P., Slingo, J., and Grimes, D.: Design
and optimisation of a large-area process-based model for annual crops,
Agr. Forest Meteorol., 124, 99–120,
https://doi.org/10.1016/j.agrformet.2004.01.002,
2004. a
Challinor, A., Watson, J., Lobell, D., Howden, S., Smith, D., and Chhetri, N.:
A meta-analysis of crop yield under climate change and adaptation, Nat.
Clim. Change, 4, 287–291, https://doi.org/10.1038/nclimate2153, 2014. a
Conti, S., Gosling, J. P., Oakley, J. E., and O'Hagan, A.: Gaussian process
emulation of dynamic computer codes, Biometrika, 96, 663–676,
https://doi.org/10.1093/biomet/asp028, 2009. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda,
M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597, 2011. a
Dury, M., Hambuckers, A., Warnant, P., Henrot, A., Favre, E., Ouberdous, M.,
and François, L.: Responses of European forest ecosystems to 21st
century climate: assessing changes in interannual variability and fire
intensity, iForest, 4, 82–99,
https://doi.org/10.3832/ifor0572-004, 2011. a
Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M., Jhunjhnuwala, K.,
Best, N., Wilde, M., and Foster, I.: The parallel system for integrating
impact models and sectors (pSIMS), Environ. Modell.
Softw., 62, 509–516, https://doi.org/10.1016/j.envsoft.2014.04.008, 2014. a
Ferrise, R., Moriondo, M., and Bindi, M.: Probabilistic assessments of climate change impacts on durum wheat in the Mediterranean region, Nat. Hazards Earth Syst. Sci., 11, 1293–1302, https://doi.org/10.5194/nhess-11-1293-2011, 2011. a
Folberth, C., Gaiser, T., Abbaspour, K. C., Schulin, R., and Yang, H.:
Regionalization of a large-scale crop growth model for sub-Saharan
Africa: Model setup, evaluation, and estimation of maize yields,
Agriculture, Ecosyst. Environ.t, 151, 21–33,
https://doi.org/10.1016/j.agee.2012.01.026, 2012. a
Franke, J.: AgMIP's GGCMI Phase II: Crop model Emulators at 0.5 degree global resolution (Version 2.0) [Data set], Zenodo, https://doi.org/10.5281/zenodo.3592453, 2019. a
Franke, J. A., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Balkovic, J., Ciais, P., Dury, M., Falloon, P. D., Folberth, C., François, L., Hank, T., Hoffmann, M., Izaurralde, R. C., Jacquemin, I., Jones, C., Khabarov, N., Koch, M., Li, M., Liu, W., Olin, S., Phillips, M., Pugh, T. A. M., Reddy, A., Wang, X., Williams, K., Zabel, F., and Moyer, E. J.: The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0), Geosci. Model Dev., 13, 2315–2336, https://doi.org/10.5194/gmd-13-2315-2020, 2020a. a, b, c, d, e, f
Franke, J. A., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Snyder, A., Dury, M., Falloon, P. D., Folberth, C., François, L., Hank, T., Izaurralde, R. C., Jacquemin, I., Jones, C., Li, M., Liu, W., Olin, S., Phillips, M., Pugh, T. A. M., Reddy, A., Williams, K., Wang, Z., Zabel, F., and Moyer, E. J.: GGCMI Phase 2: Crop model emulators of irrigation water demand (IWD) (Version 1.0) [Data set], Zenodo, https://doi.org/10.5281/zenodo.3994593, 2020b. a
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 ∘C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017. a
Fronzek, S., Pirttioja, N., Carter, T. R., Bindi, M., Hoffmann, H., Palosuo,
T., Ruiz-Ramos, M., Tao, F., Trnka, M., Acutis, M., Asseng, S., Baranowski,
P., Basso, B., Bodin, P., Buis, S., Cammarano, D., Deligios, P., Destain,
M.-F., Dumont, B., Ewert, F., Ferrise, R., François, L., Gaiser, T.,
Hlavinka, P., Jacquemin, I., Kersebaum, K. C., Kollas, C., Krzyszczak, J.,
Lorite, I. J., Minet, J., Minguez, M. I., Montesino, M., Moriondo, M.,
Müller, C., Nendel, C., Öztürk, I., Perego, A.,
Rodríguez, A., Ruane, A. C., Ruget, F., Sanna, M., Semenov, M. A.,
Slawinski, C., Stratonovitch, P., Supit, I., Waha, K., Wang, E., Wu, L.,
Zhao, Z., and Rötter, R. P.: Classifying multi-model wheat yield impact
response surfaces showing sensitivity to temperature and precipitation
change, Agr. Syst., 159, 209–224,
https://doi.org/10.1016/j.agsy.2017.08.004, 2018. a, b
Gadgil, S., Rao, P. S., and Rao, K. N.: Use of climate information for
farm-level decision making: rainfed groundnut in southern India, Agr.
Syst., 74, 431–457, https://doi.org/10.1016/S0308-521X(02)00049-5, 2002. a
Glotter, M., Elliott, J., McInerney, D., Best, N., Foster, I., and Moyer,
E. J.: Evaluating the utility of dynamical downscaling in agricultural
impacts projections, P. Natl. Acad. Sci. USA, 111,
8776–8781, https://doi.org/10.1073/pnas.1314787111, 2014. a
Glotter, M., Moyer, E., Ruane, A., and Elliott, J.: Evaluating the
Sensitivity of Agricultural Model Performance to Different
Climate Inputs, J. Appl. Meteorol. Clim., 55, 579–594,
https://doi.org/10.1175/JAMC-D-15-0120.1, 2015. a
Hank, T., Bach, H., and Mauser, W.: Using a Remote Sensing-Supported
Hydro-Agroecological Model for Field-Scale Simulation of
Heterogeneous Crop Growth and Yield: Application for Wheat in
Central Europe, Remote Sens., 7, 3934–3965, https://doi.org/10.3390/rs70403934,
2015. a
Hansen, J. and Jones, J.: Scaling-up crop models for climate variability
applications, Agr. Sys., 65, 43–72,
https://doi.org/10.1016/S0308-521X(00)00025-1, 2000. a
Hasegawa, T., Fujimori, S., Havlík, P., Valin, H., Bodirsky, B. L.,
Doelman, J. C., Fellmann, T., Kyle, P., Koopman, J. F., Lotze-Campen, H.,
Mason-D'Croz, D., Ochi, Y., Domínguez, I. P., Stehfest, E., Sulser, T. B.,
Tabeau, A., Takahashi, K., Takakura, J., Hans van Meij and, W.-J. v. Z.,
Wiebe, K., and Witzke, P.: Risk of increased food insecurity under stringent
global climate change mitigation policy, Nat. Clim. Change, 8, 699–703,
2018. a
Haugen, M., Stein, M., Moyer, E., and Sriver, R.: Estimating changes in
temperature distributions in a large ensemble of climate simulations using
quantile regression, J. Climate, 31, 8573–8588,
https://doi.org/10.1175/JCLI-D-17-0782.1, 2018. a
He, W., Yang, J., Zhou, W., Drury, C., Yang, X., D. Reynolds, W., Wang, H., He,
P., and Li, Z.-T.: Sensitivity analysis of crop yields, soil water contents
and nitrogen leaching to precipitation, management practices and soil
hydraulic properties in semi-arid and humid regions of Canada using the
DSSAT model, Nutr. Cycl. Agroecosys., 106, 201–215,
https://doi.org/10.1007/s10705-016-9800-3, 2016. a
Holden, P. B., Edwards, N. R., Garthwaite, P. H., Fraedrich, K., Lunkeit, F., Kirk, E., Labriet, M., Kanudia, A., and Babonneau, F.: PLASIM-ENTSem v1.0: a spatio-temporal emulator of future climate change for impacts assessment, Geosci. Model Dev., 7, 433–451, https://doi.org/10.5194/gmd-7-433-2014, 2014. a
Holzkämper, A., Calanca, P., and Fuhrer, J.: Statistical crop models:
Predicting the effects of temperature and precipitation changes, Clim.
Res., 51, 11–21, https://doi.org/10.3354/cr01057, 2012. a
Howden, S. and Crimp, S.: Assessing dangerous climate change impacts on
Australia's wheat industry, Modelling and Simulation Society of Australia and
New Zealand, 505–511, 2005. a
Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen,
D. J., Muir-Wood, R., Wilson, P., Oppenheimer, M., Larsen, K., and Houser,
T.: Estimating economic damage from climate change in the United States,
Science, 356, 1362–1369, https://doi.org/10.1126/science.aal4369, 2017. a
Ingestad, T.: Nitrogen and Plant Growth; Maximum Efficiency of
Nitrogen Fertilizers, Ambio, 6, 146–151, 1977. a
Izaurralde, R., Williams, J., Mcgill, W., Rosenberg, N., and Quiroga Jakas, M.:
Simulating soil C dynamics with EPIC: Model description and testing
against long-term data, Ecol. Model., 192, 362–384,
https://doi.org/10.1016/j.ecolmodel.2005.07.010, 2006. a
Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, R. J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K. D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J., Lamarque, J.-F., Law, R. M., Meinshausen, M., Osprey, S., Palin, E. J., Parsons Chini, L., Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and Zerroukat, M.: The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev., 4, 543–570, https://doi.org/10.5194/gmd-4-543-2011, 2011. a
Jones, J., Hoogenboom, G., Porter, C., Boote, K., Batchelor, W., Hunt, L.,
Wilkens, P., Singh, U., Gijsman, A., and Ritchie, J.: The DSSAT cropping
system model, Eur. J. Agron., 18, 235–265,
https://doi.org/10.1016/S1161-0301(02)00107-7, 2003. a
Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E., and Peng, B.: Excessive
rainfall leads to maize yield loss of a comparable magnitude to extreme
drought in the United States, Glob. Change Biol., 25, 2325–2337,
https://doi.org/10.1111/gcb.14628, 2019. a, b
Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and Smith, B.: Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa, Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, 2013. a
Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B.,
Martre, P., Ruane, A. C., Wallach, D., Jones, J. W., et al.: Similar
estimates of temperature impacts on global wheat yield by three independent
methods, Nat. Clim. Change, 6, 1130, https://doi.org/10.1038/nclimate3115, 2016. a
Liu, J., Williams, J. R., Zehnder, A. J., and Yang, H.: GEPIC -
modelling wheat yield and crop water productivity with high resolution on a
global scale, Agr. Syst., 94, 478–493,
https://doi.org/10.1016/j.agsy.2006.11.019, 2007. a
Liu, W., Yang, H., Folberth, C., Wang, X., Luo, Q., and Schulin, R.: Global
investigation of impacts of PET methods on simulating crop-water relations
for maize, Agr. Forest Meteorol., 221, 164–175,
https://doi.org/10.1016/j.agrformet.2016.02.017, 2016a. a
Liu, W., Yang, H., Liu, J., Azevedo, L. B., Wang, X., Xu, Z., Abbaspour, K. C.,
and Schulin, R.: Global assessment of nitrogen losses and trade-offs with
yields from major crop cultivations, Sci. Total Environ., 572,
526–537, https://doi.org/10.1016/j.scitotenv.2016.08.093, 2016b. a
Lobell, D. B. and Burke, M. B.: On the use of statistical models to predict
crop yield responses to climate change, Agr. Forest Meteorol.,
150, 1443–1452, https://doi.org/10.1016/j.agrformet.2010.07.008, 2010. a, b
Lobell, D. B. and Field, C. B.: Global scale climate-crop yield relationships
and the impacts of recent warming, Environ. Res. Lett., 2,
014002, https://doi.org/10.1088/1748-9326/2/1/014002, 2007. a
MacKay, D.: Bayesian Interpolation, Neural Comput., 4, 415–447,
https://doi.org/10.1162/neco.1992.4.3.415, 1991. a
Makowski, D., Asseng, S., Ewert, F., Bassu, S., Durand, J., Martre, P., Adam,
M., Aggarwal, P., Angulo, C., Baron, C., Basso, B., Bertuzzi, P., Biernath,
C., Boogaard, H., Boote, K., Brisson, N., Cammarano, D., Challinor, A.,
Conijn, J., and Wolf, J.: Statistical Analysis of Large Simulated Yield
Datasets for Studying Climate Effects, World Scientific Publishing
Co, p. 1100, https://doi.org/10.13140/RG.2.1.5173.8328, 2015. a
Mauser, W., Klepper, G., Zabel, F., Delzeit, R., Hank, T., Putzenlechner, B.,
and Calzadilla, A.: Global biomass production potentials exceed expected
future demand without the need for cropland expansion, Nat. Commun.,
6, 8946, https://doi.org/10.1038/ncomms9946, 2015. a
Minoli, S., Egli, D. B., Rolinski, S., and Müller, C.: Modelling cropping
periods of grain crops at the global scale, Global Planet. Change, 174,
35–46,https://doi.org/10.1016/j.gloplacha.2018.12.013,
2019a. a
Minoli, S., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Zabel, F.,
Dury, M., Folberth, C., François, L., Hank, T., Jacquemin, I., Liu, W.,
Olin, S., and Pugh, T. A.: Global response patterns of major rainfed crops to
adaptation by maintaining current growing periods and irrigation, Earth's
Future, 7, 1464–1480, https://doi.org/10.1029/2018EF001130,
2019b. a
Mistry, M. N., Wing, I. S., and De Cian, E.: Simulated vs. empirical weather
responsiveness of crop yields: US evidence and implications for the
agricultural impacts of climate change, Environ. Res. Lett., 12, 075007,
https://doi.org/10.1088/1748-9326/aa788c, 2017. a, b
Moore, F. C., Baldos, U., Hertel, T., and Diaz, D.: New science of climate
change impacts on agriculture implies higher social cost of carbon, Nat.
Commun., 8, 1607, https://doi.org/10.1038/s41467-017-01792-x, 2017. a
Müller, C., Elliott, J., Chryssanthacopoulos, J., Deryng, D., Folberth, C.,
Pugh, T. A. M., and Schmid, E.: Implications of climate mitigation for future
agricultural production, Environ. Res. Let., 10, 125004,
https://doi.org/10.1088/1748-9326/10/12/125004,
2015. a
Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.: Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, 2017. a, b
Nakamura, T., Osaki, M., Koike, T., Hanba, Y. T., Wada, E., and Tadano, T.:
Effect of CO2 enrichment on carbon and nitrogen interaction in wheat and
soybean, Soil Sci. Plant Nutr., 43, 789–798,
https://doi.org/10.1080/00380768.1997.10414645, 1997. a
Nelson, G. C., Mensbrugghe, D., Ahammad, H., Blanc, E., Calvin, K., Hasegawa,
T., Havlik, P., Heyhoe, E., Kyle, P., Lotze-Campen, H., Lampe, M.,
Mason d'Croz, D., Meijl, H., Müller, C., Reilly, J., Robertson, R., Sands,
R. D., Schmitz, C., Tabeau, A., Takahashi, K., Valin, H., and Willenbockel,
D.: Agriculture and climate change in global scenarios: why don't the models
agree, Agr. Econ., 45, 85–101, https://doi.org/10.1111/agec.12091,
2014a. a
Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng,
D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., von Lampe,
M., Lotze-Campen, H., d'Croz, D. M., van Meijl, H., van der Mensbrugghe,
D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., abd
Andrzej Tabeau, C. S., and Willenbockel, D.: Climate change effects on
agriculture: Economic responses to biophysical shocks, P.
Natl. Acad. Sci. USA, 111, 3274–3279, 2014b. a
O'Hagan, A.: Bayesian analysis of computer code outputs: A tutorial,
Reliab. Eng. Syst. Safe., 91, 1290–1300,
https://doi.org/10.1016/j.ress.2005.11.025, 2006. a
Olin, S., Schurgers, G., Lindeskog, M., Wårlind, D., Smith, B., Bodin, P., Holmér, J., and Arneth, A.: Modelling the response of yields and tissue C : N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe, Biogeosciences, 12, 2489–2515, https://doi.org/10.5194/bg-12-2489-2015, 2015. a
Osaki, M., Shinano, T., and Tadano, T.: Carbon-nitrogen interaction in field
crop production, Soil Sci. Plant Nutr., 38, 553–564,
https://doi.org/10.1007/BF00025019, 1992. a
Osborne, T., Gornall, J., Hooker, J., Williams, K., Wiltshire, A., Betts, R., and Wheeler, T.: JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator, Geosci. Model Dev., 8, 1139–1155, https://doi.org/10.5194/gmd-8-1139-2015, 2015. a
Ostberg, S., Schewe, J., Childers, K., and Frieler, K.: Changes in crop yields and their variability at different levels of global warming, Earth Syst. Dynam., 9, 479–496, https://doi.org/10.5194/esd-9-479-2018, 2018. a, b
Oyebamiji, O. K., Edwards, N. R., Holden, P. B., Garthwaite, P. H., Schaphoff,
S., and Gerten, D.: Emulating global climate change impacts on crop yields,
Stat. Model., 15, 499–525, https://doi.org/10.1177/1471082X14568248, 2015. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Pirttioja, N., Carter, T., Fronzek, S., Bindi, M., Hoffmann, H., Palosuo, T.,
Ruiz-Ramos, M., Tao, F., Trnka, M., Acutis, M., Asseng, S., Baranowski, P.,
Basso, B., Bodin, P., Buis, S., Cammarano, D., Deligios, P., Destain, M.,
Dumont, B., Ewert, F., Ferrise, R., François, L., Gaiser, T., Hlavinka,
P., Jacquemin, I., Kersebaum, K., Kollas, C., Krzyszczak, J., Lorite, I.,
Minet, J., Minguez, M., Montesino, M., Moriondo, M., Müller, C., Nendel,
C., Öztürk, I., Perego, A., Rodríguez, A., Ruane, A., Ruget,
F., Sanna, M., Semenov, M., Slawinski, C., Stratonovitch, P., Supit, I.,
Waha, K., Wang, E., Wu, L., Zhao, Z., and Rötter, R.: Temperature and
precipitation effects on wheat yield across a European transect: a crop
model ensemble analysis using impact response surfaces, Clim. Res., 65,
87–105, https://doi.org/10.3354/cr01322, 2015. a, b
Poppick, A., McInerney, D. J., Moyer, E. J., and Stein, M. L.: Temperatures in
transient climates: Improved methods for simulations with evolving temporal
covariances, Ann. Appl. Stat., 10, 477–505, https://doi.org/10.1214/16-AOAS903, 2016. a
Portmann, F., Siebert, S., and Doell, P.: MIRCA2000 – Global Monthly
Irrigated and Rainfed Crop Areas around the Year 2000: A New
High-Resolution Data Set for Agricultural and Hydrological
Modeling, Global Biogeochem. Cy., 24, GB1011,
https://doi.org/10.1029/2008GB003435, 2010. a
Potter, N. J., Zhang, L., Milly, P. C. D., McMahon, T. A., and Jakeman, A. J.:
Effects of rainfall seasonality and soil moisture capacity on mean annual
water balance for Australian catchments, Water Resour. Res., 41, W06007,
https://doi.org/10.1029/2004WR003697,
2005. a
Räisänen, J. and Ruokolainen, L.: Probabilistic forecasts of near-term
climate change based on a resampling ensemble technique, Tellus A, 58, 461–472,
https://doi.org/10.1111/j.1600-0870.2006.00189.x, 2006. a
Ratto, M., Castelletti, A., and Pagano, A.: Emulation techniques for the
reduction and sensitivity analysis of complex environmental models,
Environ. Modell. Softw., 34, 1–4,
https://doi.org/10.1016/j.envsoft.2011.11.003, 2012. a
Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.: Climate variation
explains a third of global crop yield variability, Nat. Commun., 6,
5989, https://doi.org/10.1038/ncomms6989,
2015. a
Razavi, S., Tolson, B. A., and Burn, D. H.: Review of surrogate modeling in
water resources, Water Resour. Res., 48, W07401, https://doi.org/10.1029/2011WR011527,
2012. a
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., and Rafaj, P.: RCP 8.5—A scenario of comparatively
high greenhouse gas emissions, Climatic Change, 109, 33,
https://doi.org/10.1007/s10584-011-0149-y, 2011. a, b
Roberts, M., Braun, N., R Sinclair, T., B Lobell, D., and Schlenker, W.:
Comparing and combining process-based crop models and statistical models with
some implications for climate change, Environ. Res. Lett., 12, 095010,
https://doi.org/10.1088/1748-9326/aa7f33, 2017. a
Rosenzweig, C., Jones, J., Hatfield, J., Ruane, A., Boote, K., Thorburn, P.,
Antle, J., Nelson, G., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert,
F., Wallach, D., Baigorria, G., and Winter, J.: The Agricultural Model
Intercomparison and Improvement Project (AgMIP): Protocols and
pilot studies, Agr. Forest Meteorol., 170, 166–182,
https://doi.org/10.1016/j.agrformet.2012.09.011, 2013. a
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth,
A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K.,
Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and Jones,
J. W.: Assessing agricultural risks of climate change in the 21st century in
a global gridded crop model intercomparison, P. Natl.
Acad. Sci. USA, 111, 3268–3273, https://doi.org/10.1073/pnas.1222463110, 2014. a, b
Ruane, A., I. Hudson, N., Asseng, S., Camarrano, D., Ewert, F., Martre, P.,
J. Boote, K., Thorburn, P., Aggarwal, P., Angulo, C., Basso, B., Bertuzzi,
P., Biernath, C., Brisson, N., Challinor, A., Doltra, J., Gayler, S.,
Goldberg, R., Grant, R., and Wolf, J.: Multi-wheat-model ensemble responses
to interannual climate variability, Environ. Modell. Softw., 81,
86–101, https://doi.org/10.1016/j.envsoft.2016.03.008, 2016. a, b
Ruane, A. C., Cecil, L. D., Horton, R. M., Gordon, R., McCollum, R., Brown, D.,
Killough, B., Goldberg, R., Greeley, A. P., and Rosenzweig, C.: Climate
change impact uncertainties for maize in Panama: Farm information, climate
projections, and yield sensitivities, Agr. Forest Meteorol.,
170, 132–145, https://doi.org/10.1016/j.agrformet.2011.10.015, 2013. a
Ruane, A. C., McDermid, S., Rosenzweig, C., Baigorria, G. A., Jones, J. W.,
Romero, C. C., and Cecil, L. D.: Carbon-temperature-water change analysis for
peanut production under climate change: A prototype for the AgMIP Coordinated
Climate-Crop Modeling Project (C3MP), Glob. Change Biol., 20, 394–407,
https://doi.org/10.1111/gcb.12412, 2014. a
Ruane, A. C., Goldberg, R., and Chryssanthacopoulos, J.: Climate forcing
datasets for agricultural modeling: Merged products for gap-filling and
historical climate series estimation, Agr. Forest Meteorol., 200, 233–248,
https://doi.org/10.1016/j.agrformet.2014.09.016, 2015. a
Ruiz-Ramos, M., Ferrise, R., Rodríguez, A., Lorite, I., Bindi, M., Carter, T.,
Fronzek, S., Palosuo, T., Pirttioja, N., Baranowski, P., Buis, S., Cammarano,
D., Chen, Y., Dumont, B., Ewert, F., Gaiser, T., Hlavinka, P., Hoffmann, H.,
Höhn, J., Jurecka, F., Kersebaum, K., Krzyszczak, J., Lana, M.,
Mechiche-Alami, A., Minet, J., Montesino, M., Nendel, C., Porter, J., Ruget,
F., Semenov, M., Steinmetz, Z., Stratonovitch, P., Supit, I., Tao, F., Trnka,
M., de Wit, A., and Rötter, R.: Adaptation response surfaces for managing
wheat under perturbed climate and CO2 in a Mediterranean environment,
Agr. Syst., 159, 260–274, https://doi.org/10.1016/j.agsy.2017.01.009,
2018. a, b
Schlenker, W. and Roberts, M. J.: Nonlinear temperature effects indicate severe
damages to U.S. crop yields under climate change,
Natl. Acad. Sci. USA, 106, 15594–15598,
https://doi.org/10.1073/pnas.0906865106, 2009. a, b
Snyder, A., Calvin, K. V., Phillips, M., and Ruane, A. C.: A crop yield change emulator for use in GCAM and similar models: Persephone v1.0, Geosci. Model Dev., 12, 1319–1350, https://doi.org/10.5194/gmd-12-1319-2019, 2019. a, b, c
Stevanović, M., Popp, A., Lotze-Campen, H., Dietrich, J. P., Müller,
C., Bonsch, M., Schmitz, C., Bodirsky, B. L., Humpenöder, F., and Weindl,
I.: The impact of high-end climate change on agricultural welfare, Sci.
Adv., 2, 8, https://doi.org/10.1126/sciadv.1501452,
2016. a, b
Storlie, C. B., Swiler, L. P., Helton, J. C., and Sallaberry, C. J.:
Implementation and evaluation of nonparametric regression procedures for
sensitivity analysis of computationally demanding models, Reliab.
Eng. Syst. Safe., 94, 1735–1763,
https://doi.org/10.1016/j.ress.2009.05.007, 2009. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5
and the Experiment Design, B. Am. Meteorol. Soc.,
93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Tebaldi, C. and Lobell, D. B.: Towards probabilistic projections of climate
change impacts on global crop yields, Geophys. Res. Let., 35, L08705,
https://doi.org/10.1029/2008GL033423, 2008. a
The HadGEM2 Development Team: Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011. a
Urban, D., Roberts, M. J., Schlenker, W., and Lobell, D. B.: Projected
temperature changes indicate significant increase in interannual variability
of U.S. maize yields: A Letter, Climatic Change, 112, 525–533,
https://doi.org/10.1007/s10584-012-0428-2, 2012. a
von Bloh, W., Schaphoff, S., Müller, C., Rolinski, S., Waha, K., and Zaehle, S.: Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0), Geosci. Model Dev., 11, 2789–2812, https://doi.org/10.5194/gmd-11-2789-2018, 2018. a
Waha, K., van Bussel, L. G. J., Müller, C., and Bondeau, A.: Climate-driven
simulation of global crop sowing dates, Global Ecol. Biogeogr., 21,
247–259, https://doi.org/10.1111/j.1466-8238.2011.00678.x,
2012. a
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe,
J.: The Inter-Sectoral Impact Model Intercomparison Project
(ISI–MIP): Project framework, P. Natl.
Acad. Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014. a
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo,
P.: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology
applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, 2014. a
Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., van der Mensbrugghe, D.,
Biewald, A., Bodirsky, B., Islam, S., Kavallari, A., Mason-D'Croz, D.,
Müller, C., Popp, A., Robertson, R., Robinson, S., van Meijl, H., and
Willenbockel, D.: Climate change impacts on agriculture in 2050 under a range
of plausible socioeconomic and emissions scenarios, Environ. Res.
Lett., 10, 085010, https://doi.org/10.1088/1748-9326/10/8/085010,
2015. a
Williams, K., Gornall, J., Harper, A., Wiltshire, A., Hemming, D., Quaife, T., Arkebauer, T., and Scoby, D.: Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska, Geosci. Model Dev., 10, 1291–1320, https://doi.org/10.5194/gmd-10-1291-2017, 2017. a
Williams, K. E. and Falloon, P. D.: Sources of interannual yield variability in JULES-crop and implications for forcing with seasonal weather forecasts, Geosci. Model Dev., 8, 3987–3997, https://doi.org/10.5194/gmd-8-3987-2015, 2015. a
Zabel, F., Delzeit, R., Schneider, J. M., Seppelt, R., Mauser, W., and
Vàclavík, T.: Global impacts of future cropland expansion and
intensification on agricultural markets and biodiversity, Nat.
Commun., 10, 2844, https://doi.org/10.1038/s41467-019-10775-z,
2019. a
Zhao, C., Piao, S., Wang, X., Huang, Y., Ciais, P., Elliott, J., Huang, M.,
Janssens, I. A., Li, T., Lian, X., Liu Y.,
Müller C., Peng S., Wang T., Zeng, Z., and Josep Peñuelas, J.: Plausible rice yield losses under
future climate warming, Nat. Plants, 3, 1–5, 2016. a
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M.,
Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F.,
Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S.,
Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y.,
Zhu, Z., and Asseng, S.: Temperature increase reduces global yields of major
crops in four independent estimates, P. Natl. Acad. Sci. USA, 114, 9326–9331,
https://doi.org/10.1073/pnas.1701762114, 2017. a
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Improving our understanding of the impacts of climate change on crop yields will be critical for...