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Abstract. Statistical emulation allows combining advanta-
geous features of statistical and process-based crop models
for understanding the effects of future climate changes on
crop yields. We describe here the development of emulators
for nine process-based crop models and five crops using out-
put from the Global Gridded Model Intercomparison Project
(GGCMI) Phase 2. The GGCMI Phase 2 experiment is de-
signed with the explicit goal of producing a structured train-
ing dataset for emulator development that samples across
four dimensions relevant to crop yields: atmospheric car-
bon dioxide (CO2) concentrations, temperature, water sup-
ply, and nitrogen inputs (CTWN). Simulations are run under
two different adaptation assumptions: that growing seasons
shorten in warmer climates, and that cultivar choice allows
growing seasons to remain fixed. The dataset allows emu-
lating the climatological-mean yield response of all mod-
els with a simple polynomial in mean growing-season val-
ues. Climatological-mean yields are a central metric in cli-
mate change impact analysis; we show here that they can be
captured without relying on interannual variations. In gen-
eral, emulation errors are negligible relative to differences
across crop models or even across climate model scenarios;
errors become significant only in some marginal lands where
crops are not currently grown. We demonstrate that the re-
sulting GGCMI emulators can reproduce yields under re-
alistic future climate simulations, even though the GGCMI
Phase 2 dataset is constructed with uniform CTWN offsets,
suggesting that the effects of changes in temperature and pre-
cipitation distributions are small relative to those of chang-
ing means. The resulting emulators therefore capture rele-
vant crop model responses in a lightweight, computationally
tractable form, providing a tool that can facilitate model com-
parison, diagnosis of interacting factors affecting yields, and
integrated assessment of climate impacts.

1 Introduction

Improving our understanding of the impacts of future cli-
mate change on crop yields is critical for global food se-
curity in the 21st century. Projections of future yields un-
der climate change are generally made with one of two ap-
proaches: either process-based models, which simulate the
process of photosynthesis and the biology and phenology
of individual crops, or statistical models, which use histor-
ical weather and yield data to capture relationships between
observed crop yields and major drivers. Process-based crop
models provide some advantages, including capturing the di-
rect effects of CO2 fertilization and allowing projections in
areas where crops are not currently grown. However, they
are computationally expensive and can be difficult or im-
possible to directly integrate into integrated climate change
impacts assessments. Statistical crop models can only cap-
ture crop responses under the range of current conditions but

have several advantages: they implicitly include management
and behavioral practices that are difficult to model explicitly,
and they are typically simple analytical expressions that are
easily implemented by downstream impact modelers. Both
types of models are routinely used, and comparative studies
have concluded that when done carefully, both approaches
can provide similar yield estimates (e.g., Lobell and Burke,
2010; Moore et al., 2017; Roberts et al., 2017; Zhao et al.,
2017; B. Liu et al., 2016).

Statistical emulation allows combining some of the advan-
tageous features of both statistical and process-based mod-
els. The approach involves constructing a “surrogate model”
of numerical simulations by using their output as training
data for a statistical representation (e.g., O’Hagan, 2006;
Conti et al., 2009). Emulation is particularly useful in cases
where simulations are complex and output data volumes are
large and has been used in a variety of fields, including hy-
drology (e.g., Razavi et al., 2012), engineering (e.g., Stor-
lie et al., 2009), environmental sciences (e.g., Ratto et al.,
2012), and climate (e.g., Castruccio et al., 2014; Holden
et al., 2014). For agricultural impacts studies, emulation of
process-based models allows capturing key relationships be-
tween input variables in a lightweight, flexible form that is
compatible with economic studies. The resultant statistical
model can produce yield projections under arbitrary emis-
sions scenarios and is an important diagnostic tool for model
comparison and model evaluation.

Interest is rising in applying statistical emulation to crop
models, and multiple studies have developed crop model
emulators in the past decade. Early studies proposing or
describing potential crop-yield emulators include Howden
and Crimp (2005); Räisänen and Ruokolainen (2006); Lo-
bell and Burke (2010), and Ferrise et al. (2011). Studies de-
veloping single-model emulators include Holzkämper et al.
(2012) for the CropSyst model, Ruane et al. (2013) for the
CERES wheat model, and Oyebamiji et al. (2015) for the
Lund–Potsdam–Jena managed Land (LPJmL) model. More
recently, emulators have begun to be used in the context of
multi-model intercomparison, with multiple authors (Blanc
and Sultan, 2015; Blanc, 2017; Ostberg et al., 2018; Mis-
try et al., 2017) using them to analyze the five crop models
of the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP). ISIMIP offers a relatively large training set –
control, historical, and several Representative Concentration
Pathway (RCP) scenarios using output from up to five cli-
mate models (Warszawski et al., 2014; Frieler et al., 2017)
– and choices of emulation strategy differ. Blanc and Sultan
(2015) and Blanc (2017) use historical and RPC8.5 scenar-
ios, combine multiple climate model projections for RCP8.5,
and regress across soil regions. Ostberg et al. (2018) use
global mean temperature change (and CO2) as regressors,
and then pattern-scales to emulate local yields. Mistry et al.
(2017) compare emulated and observed historical yields, us-
ing local weather data and a historical crop simulation. The
constraints of the ISIMIP experiment mean that all these ef-
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forts do share important common features. All emulate an-
nual crop yields along an entire scenario or scenarios, and
all future climate scenarios are non-stationary, with impor-
tant covariates (temperature and precipitation, for example)
evolving simultaneously.

An alternative approach to emulation involves construc-
tion of a “parameter sweep” training set, a collection of mul-
tiple stationary scenarios that systematically cover a range
of input parameter values. A parameter sweep offers several
important advantages for emulation over an experiment in
which climate evolves over time. First, it allows separating
the effects of different variables that affect yields but that
are highly correlated in realistic future scenarios like those
used in ISIMIP (e.g., CO2 and temperature). Second, it al-
lows making a distinction between year-to-year yield varia-
tions and climatological changes, which may involve differ-
ent responses to the particular climate regressors used (e.g.,
Ruane et al., 2016). For example, if year-to-year yield vari-
ations are driven predominantly by variations in the distri-
bution of temperatures throughout the growing period, and
long-term climate changes are driven predominantly by addi-
tive mean shifts, then regressing on the mean growing period
temperature will produce different yield responses at annual
vs. climatological timescales.

Systematic parameter sweeps have begun to be used in
crop model evaluation and emulation, with early efforts in
2014 and 2015 (Ruane et al., 2014; Makowski et al., 2015;
Pirttioja et al., 2015), and several recent studies in 2018 and
2019 (Fronzek et al., 2018; Ruiz-Ramos et al., 2018; Snyder
et al., 2019). These three studies sample multiple perturba-
tions to temperature and precipitation, and two of the three
add CO2 as well, for a total of 132, 99, and 220 different com-
binations, respectively. All take advantage of the structured
training set to construct emulators (“response surfaces”) of
climatological-mean yields, omitting year-to-year variations.
All the 2018–2019 papers have some limitations, however,
for assessing global agricultural impacts, including that none
evaluate responses in every grid cell globally. Two involve
many crop models but only one crop (wheat) (Fronzek et al.,
2018; Ruiz-Ramos et al., 2018) and cover only one to four
individual sites. Snyder et al. (2019) analyzes five crops over
∼ 1000 sites with individual site-specific crop models, and
extrapolates in space to estimate mean latitudinal responses.

In this paper, we describe a set of globally gridded crop
model emulators developed from the new parameter-sweep
dataset of the Global Gridded Crop Model Intercompari-
son (GGCMI) Phase 2 effort. GGCMI Phase 2, a part of
the Agricultural Model Intercomparison and Improvement
Project (AgMIP) (Rosenzweig et al., 2013, 2014), provides
the first near-global-coverage systematic parameter sweep of
multi-model crop simulations consisting of up to 756 combi-
nations in CO2, temperature, water supply, applied nitrogen,
and two different assumptions on growing-season adaptation
(A0: none; A1: retaining growing-season length) (CTWN-A,
Franke et al., 2020a; Minoli et al., 2019b). The experiment

is designed to allow diagnosing the impacts on crop yields
of both individual factors and their joint effects, and to allow
construction of crop model emulators. In Sect. 2, we describe
the training dataset, including the GGCMI Phase 2 experi-
mental protocol and model participation (Sect. 2.1) and the
models’ differing year-to-year and climatological-mean re-
sponses (Sect. 2.2). Section 3 describes the statistical model
used for emulation, Sect. 4 evaluates measures of emulator
fidelity, and Sect. 5 shows examples of preliminary results.

2 Training dataset

2.1 The GGCMI Phase 2 dataset

The GGCMI Phase 2 simulations are described in detail in
Franke et al. (2020a), but we summarize briefly here. The ex-
periment involves nine different globally gridded crop mod-
els, each simulating multiple crops (maize, rice, soybean,
and spring and winter wheat) across a systematic parame-
ter sweep of as many as 756 combinations, each driven by
a historical climate time series with systematic perturbations
to CO2, temperature, water supply, and nitrogen application
(CTWN). The simulation protocol involves four levels of at-
mospheric CO2, seven of temperature, nine of water sup-
ply, and three of applied nitrogen, and simulations are re-
peated for two adaptation scenarios: A0 simulations assume
no adaptation in cultivar choice, so that growing seasons
shorten in warmer climates, and A1 simulations assume that
adaptation in cultivar choice maintains fixed growing sea-
sons. The complete protocol for each modeling group in-
volves up to 43 524 years of global simulated output for each
crop. Because the computational demand is high, modeling
groups were allowed to submit at various specified levels of
participation, with the lowest recommended level of partici-
pation consisting of 20 % of the maximum possible simula-
tions. The mean participation level is 65 %, but three models
(APSIM-UGOE, EPIC-IIASA, and ORCHIDEE-crop) con-
tributed data below the recommended threshold (< 5 % of
the full protocol) and are excluded here since they could not
be robustly emulated. Table 1 shows the participating mod-
els and the number of simulation scenarios that each pro-
vides, and Fig. S1 in the Supplement shows model sampling
density. See Franke et al. (2020a) for the parameter combi-
nations included by each model. Table 2 shows the specified
input values; we sample across all parameter combinations.

Each individual crop model simulation is run for 31 years
over historic weather for the period of 1981–2010, with
added uniform perturbations to any of the CTWN variables.
Historical weather is taken for most models from the Ag-
MIP Modern-Era Retrospective Analysis for Research and
Applications (AgMERRA) (Ruane et al., 2015) historical
daily climate data product, but the PROMET model uses the
ERA-Interim reanalysis (Dee et al., 2011) and the JULES
model uses a bias-corrected version of ERA-Interim, WFDEI
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Table 1. Crop models included in GGCMI Phase 2 emulators and the number of CTWN-A (carbon dioxide, temperature, water, nitrogen,
adaptation) simulations performed for each model. The maximum number is 756 for A0 (no adaptation) experiments, and 648 for A1
(maintaining growing-season length) experiments since T0 is not simulated under A1. “N dim.” indicates whether the models are able to
represent varying nitrogen levels. Each model provides the same set of CTWN simulations across all its modeled crops, but some models
omit individual crops. Table adapted from Franke et al. (2020a). For clarity, three simulation models that submitted data to the GGCMI
Phase 2 experiment (Franke et al., 2020a) are not shown here, as they provided a training set too small to be used in emulation.

Model (key citations) Maize Soybean Rice Winter
wheat

Spring
wheat

N dim. Sims per crop
(A0 /A1)

CARAIB (Dury et al., 2011; Pirttioja et al.,
2015)

X X X X X – 252 / 216

EPIC-TAMU (Izaurralde et al., 2006) X X X X X X 756 / 648

JULES (Osborne et al., 2015; Williams and Fal-
loon, 2015; Williams et al., 2017)

X X X – X – 252 / 0

GEPIC (Liu et al., 2007; Folberth et al., 2012) X X X X X X 430/181

LPJ-GUESS (Lindeskog et al., 2013; Olin et al.,
2015)

X – – X X X 756 / 648

LPJmL (von Bloh et al., 2018) X X X X X X 756 / 648

pDSSAT (Elliott et al., 2014; Jones et al., 2003) X X X X X X 756 / 648

PEPIC (W. Liu et al., 2016a, b) X X X X X X 149/121

PROMET (Hank et al., 2015; Mauser et al.,
2015; Zabel et al., 2019)

X X X X X – 261/232

Table 2. GGCMI Phase 2 input levels for the parameter sweep. Values for temperature and water supply are perturbations from the historical
climatology. For water supply, perturbations are fractional changes to historical precipitation, except in the irrigated (W∞) simulations, which
are all performed with the maximum beneficial levels of water. Bold font indicates the “baseline” historical level. The full protocol samples
across all parameter combinations for a total of 756 cases. Table is repeated from Franke et al. (2020a).

Input variable Tested range Unit

[CO2] (C) 360, 510, 660, 810 ppm

Temperature (T ) −1, 0, 1, 2, 3, 4, 6 ◦C

Precipitation (W ) −50, −30, −20, −10, 0, %
10, 20, 30, (and W∞)

Applied nitrogen (N ) 10, 60, 200 kg ha−1

Adaptation (A) A0: none, A1: new cultivar to maintain original growing-season length –

(WATCH Forcing Data methodology applied to ERA-Interim
reanalysis data; Weedon et al., 2014) as these groups have
specific subdaily input data requirements. Temperature per-
turbations are applied as additive mean shifts, water supply
as fractional multipliers to precipitation (except in the irri-
gatedW∞ case), and CO2 and nitrogen application levels are
specified as fixed values. Models provide near-global output
at 0.5◦ latitude and longitude resolution for each simulation
year, including areas not currently cultivated. Crop models
included here are not formally calibrated, given that there is
no adequate calibration target for gridded global-scale crop
model simulations. This may be a shortcoming if targeting

absolute yield levels, but when focusing on relative yield
changes, calibration can also have negative effects on model
skill (Müller et al., 2017). In analyses where we distinguish
yields over currently cultivated land, we use the harvested
area masks of Portmann et al. (2010). (See Fig. S2 in the
Supplement for maps of cultivated areas.)

2.2 Climatological vs. year-to-year responses

The central metric in assessments of climate change impacts
on crop yields is the change in multi-annual means (e.g.,
Schlenker and Roberts, 2009; Challinor et al., 2014; Rosen-
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zweig et al., 2014; Müller et al., 2015; Zhao et al., 2016;
Hsiang et al., 2017). Agricultural impacts assessments work
with multi-annual yields, as their analysis frameworks re-
quire information on long-term effects (e.g., Nelson et al.,
2014b; Stevanović et al., 2016; Wiebe et al., 2015; Hasegawa
et al., 2018; Snyder et al., 2019). Changes in extremes or
year-to-year variability are other metrics of potential interest
but are often not explicitly considered in integrated climate
change impact assessments or land-use change projections.
For this reason, we emulate the climatological-mean re-
sponse, i.e., the change in aggregated mean yield in each 30-
year simulation. Emulation then becomes relatively straight-
forward since changes in time-averaged yields are consid-
erably smoother than those in year-to-year yield response.
In the GGCMI Phase 2 simulation output dataset, year-to-
year responses to weather are also often quantitatively dis-
tinct from responses to climatological shifts, with the dis-
crepancy especially strong in wheat and rice. The difference
in behavior is illustrated in Fig. 1, which shows irrigated and
rainfed maize and wheat in representative locations. When
discrepancies are large, year-to-year responses are generally
stronger than climatological ones, but exact responses dif-
fer by crop and region and even by model within GGCMI
Phase 2.

While differences in responses at different timescales can
arise for many reasons, including memory in the crop model
or lurking covariates, the most likely explanation here is that
the regressors used, mean growing-season temperature or
precipitation, do not fully describe the conditions that affect
crop yields. The mean growing-season value is only a proxy
for the distribution of daily climatic conditions that crops are
sensitive to, and present-day variations between years can be
very different from future forced changes. Present-day vari-
ations in growing season means from year to year may be
associated with changes in growing-season distributions that
are unrelated to changes in future warmer climates: that is, a
warm year at present may be quite different from a warm year
in the future (e.g., Ruane et al., 2016). Changes in temper-
ature distributions have been shown to strongly affect crop
yields (e.g., Hansen and Jones, 2000; Gadgil et al., 2002),
though precipitation effects should be smaller since crops re-
spond not to rainfall but to soil moisture, which integrates
over weeks or even months (e.g., Potter et al., 2005; Glotter
et al., 2014; Challinor et al., 2004).

A second factor of importance is that any nonlinearity
in crop responses will itself lead to a distinction between
climatological and year-to-year fits, even if distributional
differences are negligible. Given the interannual variations
in the climate time series, the mean annual yield response
to a perturbation is not the same as the response of the
climatological-mean yield. The effect of nonlinearity may
be particularly relevant for precipitation since model crop
yields drop steeply and nonlinearly with increasing dryness.
(Crop yields should drop under excess precipitation as well,

but process-based models do not capture losses in saturated
conditions well; Glotter et al., 2015; Li et al., 2019.)

In the GGCMI Phase 2 experiment, the imposed pertur-
bations involve no changes in underlying distributions. The
choice is reasonable since climate models do not agree on
distributional changes. Most models do project small mean
increases in growing-season temperature variability in culti-
vated areas and can produce substantial local changes, but
models disagree on spatial patterns. For example, in mod-
els of the Coupled Model Intercomparison Project Phase
5 (CMIP5) archive, in the high-end RCP (Representative
Concentration Pathway) 8.5 climate projections to the year
2100 (Riahi et al., 2011), growing-season daily maximum
temperature variability over currently cultivated rice areas
(weighted by production) increases by 10 % in HadGEM2-
ES but only by 0.4 % in MIROC-ESM-CHEM. (See Sect. S2
in the Supplement.) We therefore explicitly test the assump-
tion that distributional changes are not consequential for
climatological-mean yields: in Sect. 4.3, we confirm that an
emulator trained on the GGCMI Phase 2 dataset can success-
fully reproduce yield changes under a full climate model pro-
jection.

Note that even though distributions of climate variables are
unchanged in the GGCMI Phase 2 simulations, the spread in
annual yields still becomes wider in highly impacted climate
states, because of the nonlinearity of yield responses (Fig. 2).
In the GGCMI Phase 2 dataset, all crops except rice show
greater year-to-year yield variance in conditions of extreme
climate stress. (Rice is typically irrigated and experiences
no water stress in simulations.) Increased variance has been
noted in previous studies. For example, Urban et al. (2012)
used statistical models trained on present-day yields to find
a projected future increase in yield variance of US maize of
20 % per Kelvin unit temperature rise. Although the authors
do not diagnose a specific cause of that increase, they dis-
cuss multiple potential mechanisms, including nonlinearity
in responses.

3 Emulation

Emulation involves fitting individual regression models from
GGCMI Phase 2 output for each crop and model and 0.5◦

geographic pixel; the regressors are the applied perturba-
tions in CTWN. Here, we largely discuss emulations of
climatological-mean crop yields with no growing-season
adaptation (A0 scenarios) but note that any output of the
crop models can potentially be emulated. We provide sep-
arate emulations of irrigated and rainfed yields and applied
irrigation water (pirrww in mm yr−1) in both A0 and A1 sce-
narios, meaning that each model and crop combination re-
sults in 6 sets of regressions. See Sects. S3, S4, and S6 in the
Supplement for these additional emulation cases.
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Figure 1. Example showing distinction between crop-yield responses to year-to-year and climatological-mean shifts in climate variables,
showing representative high-yield regions for maize in pDSSAT (northern Iowa, a, b) and winter wheat in EPIC-TAMU (France, c, d).
Left column (a, c) shows irrigated crops, with all temperature cases with other variables held at baseline values, and right column (b, d)
shows rainfed crops, with all precipitation cases. Figure shows A0 output, in which growing seasons shift under future climate, so local
growing-season temperature changes can differ from prescribed uniform offsets: for example, a 6 K applied uniform warming results in a
growing-season temperature warmer by ∼ 7 K for maize in Iowa (b) but by less than 6 K for wheat in France (d). Open black circles mark
climatological-mean yields and bold black lines show a third-order polynomial fit through them. Colored lines show linear regressions (by
orthogonal distance regression) through the 30 annual yields of each parameter case. Colored circles show annual yields for selected cases.
Differences in slopes of colored and black lines mean that responses to year-to-year fluctuations differ from those to longer-term climate
shifts. Differences are generally stronger for wheat (c, d) than maize (a, b). Note that for rainfed crops, slope differences in this representation
could also result from correlated precipitation and temperature fluctuations in the baseline time series, but P –T correlations do not contribute
to the effects shown here. Such correlations would complicate emulations based on year-to-year yields but would not necessarily bias them.

3.1 Statistical model

For the statistical model of crop yields as a function of
CTWN, we choose a relatively simple parametric model
with a third-order polynomial basis function (Eq. 1). If the
climatological-mean response is relatively smooth, then a
simpler form provides a reasonable fit that allows for some
interpretation of resultant parameter weights. A relatively
simple parametric form also allows fast model emulation at
the grid-cell level, rather than requiring spatial aggregation.
Emulating at the grid-cell level preserves the spatial resolu-
tion of the parent models and means that emulators indirectly
include any yield response to geographically distributed fac-
tors such as soil type, insolation, and the baseline climate.

The third-order polynomial CTWN model of Eq. (1) con-
tains 34 terms, since the N3 term is omitted, as it cannot be
fitted in a training set sampling only three nitrogen levels. To
facilitate comparing emulators parameter by parameter, we

hold this functional form across locations, crops, and mod-
els, except for several necessary distinctions: regressions for
irrigated crops do not contain W terms, and regressions for
models that do not sample the nitrogen levels omit the N
terms. Results shown throughout the paper use this full spec-
ification, but we also show (in Sect. 3.2 below) that for all
but two models, 11 terms can be dropped without signifi-
cant reduction in emulator fidelity. The higher specification
of the 34-term model aids primarily in regions where crops
are not currently grown. Most modeling groups submitted a
sufficiently large training set that the 34-term model can be
fit with standard ordinary least squares (OLS), but for mod-
els with lower sampling, it must be fit with a Bayesian ridge
regression method. (See Sect. 4 for evaluation of the fidelity
of emulators constructed with Eq. 1.)

Geosci. Model Dev., 13, 3995–4018, 2020 https://doi.org/10.5194/gmd-13-3995-2020



J. A. Franke et al.: The GGCMI crop model emulators 4001

Figure 2. Example showing results of increased crop-yield sensitivity to year-to-year climate variations under climate stress. Yield distribu-
tions are from examples in Fig. 1a–b of maize in Iowa (a) for irrigated maize in scenarios of altered temperature and (b) for rainfed maize
in scenarios of altered precipitation. Because yield sensitivities rise under strong warming or drying, distributions of year-to-year crop yields
widen in T + 6 and P − 50 % scenarios relative to present-day simulations, even though all input climate time series have identical variance
for temperature. Note that precipitation changes have different variance since the perturbations are fractional.
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In this study, we do not focus on comparing other func-
tional forms or non-parametric models. In general, higher-
order and interaction terms are expected to be important for
representing crop yields. Higher-order terms are needed be-
cause crop-yield responses to weather are well documented
to be nonlinear: e.g., Schlenker and Roberts (2009) for T per-
turbations and He et al. (2016) forW (precipitation). Interac-
tion terms are needed since the yield response is expected to
depend on interactions between the major inputs. For exam-
ple, Lobell and Field (2007) and Tebaldi and Lobell (2008)
showed that in real-world yields (with C and N fixed), the
joint distribution in T and W is needed to explain observed
yield variance. Other observation-based studies have shown
the importance of the interaction between W and N (e.g.,
Aulakh and Malhi, 2005), and betweenN andC (Osaki et al.,
1992; Nakamura et al., 1997). Some prior studies have used
even more complex statistical specifications in crop model

emulation: for example, Blanc and Sultan (2015) and Blanc
(2017) use a 39-term fractional polynomial and “borrow in-
formation across space” by fitting grid points simultaneously
across soil region in a panel regression. The GGCMI Phase 2
dataset allows fitting our simple third-order polynomial form
independently at each grid cell while still providing a satis-
factory emulation for all models and crops.

3.2 Feature importance and reduced statistical model

Because a simpler statistical model may improve the inter-
pretability of its parameter weights, we also develop a re-
duced 23-term version that is satisfactory for most models
and crops (Eq. 2). To identify terms that can be omitted, we
apply a feature selection cross-validation process in which
terms in the polynomial are tested for importance. Higher-
order and interaction terms are successively added to the re-
gression model, and in each case we calculate an aggregate
mean absolute error (weighted by currently cultivated area)
and eliminate those terms that do not contribute significantly
to reducing error. The procedure is illustrated in Fig. 3. We
develop our reduced statistical model by considering yields
over currently cultivated land in three models: two that pro-
vided the complete set of 672 rainfed simulations, i.e., with-
out the W∞ simulations (pDSSAT, EPIC-TAMU), and one
that provided the smallest training set (121 input combina-
tions, PEPIC). Although models exhibit different absolute
levels of error, all three agree remarkably well on feature im-
portance, i.e., on which terms reduce error and which provide
no predictive benefit. Agreement is indicated by matching
line slopes in Fig. 3.

https://doi.org/10.5194/gmd-13-3995-2020 Geosci. Model Dev., 13, 3995–4018, 2020



4002 J. A. Franke et al.: The GGCMI crop model emulators

Y =K1

+K2C+K3T +K4W +K5N +K6C
2

+���K∗CT +K7CW +K8CN +K9T
2
+K10TW

+K11TN +K12W
2
+K13WN +K14N

2

+�
��K∗C

3
+����
K∗C

2T +����K∗C
2W +����

K∗C
2N

+����
K∗CT

2
+����
K∗CTW +����

K∗CTN +����K∗CW
2

+�����
K∗CWN +K15CN

2
+K16T

3
+K17T

2W

+����
K∗T

2N +K18TW
2
+K19TWN +K20TN

2

+K21W
3
+K22W

2N +K23WN
2
+���K∗N

3 (2)

The eliminated terms include many of those in C: the cu-
bic; the CT, CTN, CTW, and CWN interaction terms; and
all higher-order interaction terms in C. Finally, we eliminate
one second-order interaction term in W and two in T . Impli-
cations of this choice include that nitrogen interactions are
complex and important and that water interaction effects are
more nonlinear than those in temperature. Note that some
terms that did not reduce the aggregate error must still be in-
cluded if a higher-order version of that term provides benefit:
for example, including the T 3 term requires also retaining
T 2 and T terms. The reduced-form emulator is acceptable
across currently cultivated land for all model and crop com-
binations other than JULES soybean and spring wheat and
PROMET soybean and rice. These cases involve yield re-
sponses that benefit strongly from inclusion of higher-order
carbon dioxide interaction terms. Additional terms in the sta-
tistical model also help emulation in some geographic loca-
tions outside of currently cultivated regions, where yield re-
sponses are often non-standard. See Sect. 7 in the Supple-
ment for evaluation of the fidelity of emulators constructed
with Eq. (2) and for more details on JULES and PROMET.

3.3 Model fitting

To fit the parameters K , we use a Bayesian ridge regular-
ization method (MacKay, 1991) rather than ordinary least
squares (OLS). The Bayesian ridge method reduces volatil-
ity in parameter estimates when the sampling is sparse, by
weighting parameter estimates towards zero, allowing the
use of a consistent functional form across all models and
locations. The choice slightly reduces mean absolute error
for some of the high-order interaction terms in the model
(Fig. 3a, b) but drastically reduces standard parameter error
in the model by stabilizing the estimates (Fig. 3e, f). The esti-
mation method scores relatively lower on adjusted R2 for the
simplest parameter specifications but quickly reaches parity
with the OLS. We use adjusted R2 as a metric because addi-
tional terms are penalized (Eq. 3, where n is the number of
samples and k is the number of features):

R2
adj = 1−

(n− 1) · (1−R2)

n− k
. (3)

We use the implementation of the Bayesian ridge estimator
from the scikit-learn package in Python (Pedregosa et al.,
2011).

An additional diagnostic of fit quality is the distribution
of residuals: normally or near-normally distributed residu-
als imply that errors around the fit are random and unbiased.
When fitting Eq. (1) to the GGCMI Phase 2 dataset, the dis-
tribution of the residuals depends on the number of features
included in the regression, the method for estimating the pa-
rameters, and the target distribution in the training set. The
residuals are only normally distributed (p value> 0.05 in the
Shapiro–Wilk test) for a single model, PEPIC, for any spec-
ification tested here, but their skew is relatively small except
in a single case, EPIC-TAMU maize (Fig. 3g, h). While in-
cluding higher-order terms in the statistical model generally
reduces residual skew, for EPIC-TAMU maize it increases
skew instead but also reduces the error in cross validation,
which we consider more important in the context of emula-
tion. The residual distribution suggests that projections using
the EPIC-TAMU maize emulator will tend to be biased high,
but in practice, the overall magnitude of these errors is below
2 % of yield changes (see Sect. 4.2.).

4 Emulator evaluation

In this section, we show illustrations of GGCMI model yield
responses to climate perturbations and evaluate the ability
of our emulators to reproduce them. Model emulation with
the parametric method used here requires that crop-yield re-
sponses be sufficiently smooth and continuous to allow fit-
ting with a relatively simple functional form; in Sect. 4.1, we
show that this condition largely holds in the GGCMI Phase 2
simulations. In Sect. 4.2, we evaluate metrics of emulator
performance and show that emulation errors – discrepancies
between emulation and simulation – are generally small, es-
pecially when compared to the differences across crop mod-
els or to projected yield changes. We use the term “error”
because, under the “perfect model” emulation approach, we
take the simulation output to be perfect ground truth. We
evaluate two separate error metrics, one more loose that
incorporates information about the inter-model uncertainty,
and one more stringent that tests out-of-sample prediction
error within an individual model. For both metrics, emula-
tion error is generally small other than in limited geographic
locations, usually where crops are not currently grown. Fi-
nally, in Sect. 4.3, we assess the emulator’s ability to repro-
duce crop yields in a more realistic future simulation driven
by a climate model projection, and find that its performance
remains satisfactory. We analyze here results using the 34-
term polynomial of Eq. (1); see Sect. 7 in the Supplement for
analogous analysis of the 23-term polynomial of Eq. (2).
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Figure 3. Illustration of results from the polynomial feature selection process for three different crop models (colors), for all grid cells with
more than 1000 ha cultivated for maize (left) and rice (right). Solid lines are Bayesian ridge regression results, and dashed lines are for
standard OLS. Rows show four metrics of fit quality, and x axes show the terms successively tested in the statistical model, sequentially
added to the model in order from left to right. Terms that do not reduce the aggregate error are marked in gray and are not included in the
final model. (a, b) Log mean absolute error between emulated yield and simulated values calculated with a 3-fold cross-validation process,
where the emulator is trained on two-thirds of the data and predicts the remaining third. (c, d) Log mean standard parameter error. The
Bayesian ridge method strongly reduces parameter error and results in more stable estimates. (e, f) Adjusted R2 score for the fit at each
model specification. (g, h) Distribution of the residuals. Skewness is low at the high model specifications tested in all model cases other than
EPIC-TAMU maize.

4.1 Yield response

Crop yields show strong spatial differentiation across geo-
graphic regions, and emulators are able to readily reproduce
these patterns. Figure 4 shows one example of simulated
and emulated yields under current climate, using maize in
LPJmL. Absolute emulation errors for this model–crop com-
bination are low – 99.8 % of grid cells have errors below
0.5 t ha−1 – but emulation errors as a percentage of base-
line yield can be large in areas with low potential yield and
no current cultivation in the real world (e.g., the Sahara,
Patagonia). These regions are not currently viable for agri-
culture and may never become viable even under extreme
climate change. Emulator spatial skill varies across models
and crops, with maize being the quantitatively easiest to em-
ulate across all models and locations.

Yield responses to the four main drivers considered here
(C, T , W , and N ) are also quite diverse across loca-
tions, crops, and models, but in nearly all cases the local
climatological-mean responses are smooth enough to permit
emulation with the functional form used here. Figure 5 illus-
trates the geographic diversity of responses within a single
crop and model, for rainfed maize in pDSSAT. While the
CO2 responses (in t ha−1 ppm−1) are quite similar, the pre-
cipitation response is stronger in more arid locations and the
nitrogen responses appear strongly location-dependent. The
heterogeneity in response supports the choice of emulating at
the grid-cell level. In regions with current cultivation, yields
evolve smoothly across the space sampled, and the polyno-
mial fit captures the climatological-mean response to per-
turbations well. Emulators do perform poorly in a few re-
gions that involve discontinuous or irregular yield responses.
Poor performance is illustrated here with PROMET maize in
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Figure 4. Illustration of spatial pattern in baseline yield successfully captured by the emulator: simulated (a) and emulated (b) yield under
historical (1981–2010) conditions for rainfed maize from the LPJmL model. Absolute yield differences (c) are less than 0.5 t ha−1 in almost
all (99.8 %) grid cells across the globe. Percent difference (from simulated baseline, d) is below 5 % in most (75 %) grid cells currently
cultivated in the real world. Approximately 7 % of all grid cells, but only 3 % of currently cultivated grid cells, have emulated yields that
differ from the baseline simulation by more than 20 %. Notable exceptions include areas with very low simulated baseline yield, including,
for example, the Sahara, the Andes, and northern Quebec. Percent error weighted by cultivation area globally is essentially zero (see also
Table 3). Performance varies by crop and model. See Supplement figures in Sect. S8 for more examples.

northern Canada, which is too cold for maize at present in
PROMET (0 t ha−1 yield) but shows an abrupt rise to moder-
ate yields once temperature rises by 4 ◦C. Under these condi-
tions, the third-order polynomial cannot fit the response, and
errors are high. See Sect. 4.2 for additional discussion.

Crop-yield responses in all models generally follow sim-
ilar functional forms at any given location though with a
spread in magnitude (Fig. 6, which shows rainfed maize in
northern Iowa in a selection of GGCMI models). Absolute
yield differences between models can be substantial because
some models are uncalibrated. In general, models are most
similar in their responses to temperature perturbations and
least similar to changes in CO2. That is, CO2 fertilization ef-
fects within a single model are consistent across locations,
but CO2 effects differ strongly across models.

Note that while the nitrogen dimension is important, it
is also the most troublesome to emulate in the GGCMI
Phase 2 experiment because of its limited sampling. The

GGCMI Phase 2 protocol specified only three nitrogen lev-
els (10, 60 and 200 kg N yr−1 ha−1), so a third-order fit
would be overdetermined but a second-order fit can re-
sult in potentially non-physical results. Steep and nonlin-
ear declines in yield with lower nitrogen levels mean that
some regressions imply a peak in yield between the 100
and 200 kg N yr−1 ha−1 levels (Fig. 6, right). While reduced
yields under high nitrogen levels are physically possible and
could reflect overapplication at particular times in the grow-
ing period, they are implausible at the magnitude shown here
and likely an artifact of the fit. The Bayesian ridge estima-
tor mitigates the “peak-decline effect” in the nitrogen dimen-
sion relative to ordinary least squares but does not entirely
remove it. The polynomial fit also cannot capture the well-
documented saturation effect of nitrogen application (e.g.,
Ingestad, 1977) as accurately as would be possible with a
non-parametric model.
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Figure 5. Illustration of spatial variations in yield response, which are successfully captured by the emulator. Panels show simulations (points)
and emulations (lines) of rainfed maize in the pDSSAT model in six example locations selected to represent high-cultivation areas around the
globe. Legend includes hectares cultivated in each selected grid cell. Each panel shows variation along a single variable, with others held at
baseline values. Dots show climatological-mean yields and lines the results of the full 4-D emulator of Eq. (1). In general, the climatological
response surface is sufficiently smooth that it can be represented within the sampled variable space by the simple polynomial used in this
work. In some cases, extrapolation would produce misleading results, and the emulator fails in conditions where yield response changes
abruptly. Failure is illustrated here by rainfed maize in north-central Ontario for the PROMET model (in gray), which shows present-day
yields of zero rising abruptly if temperature warms by 4 ◦C.

Figure 6. Illustration of variations in yield response across models, again successfully captured by the emulator. Panels show simulations
and emulations from six representative GGCMI models for rainfed maize in the same Iowa grid cell shown in Fig. 5, with the same plot
conventions. Three models (PROMET, JULES, and CARAIB) that do not simulate the nitrogen dimension are omitted for clarity. Models are
uncalibrated, producing spread in absolute yields. While most model responses can readily emulate with a simple polynomial, some response
surfaces diverge slightly from the polynomial form, producing emulation error (e.g., pDSSAT here, for water), but resulting error generally
remains small relative to differences across models.

4.2 Emulator performance metrics

Our emulators collectively consist of nearly 3 million indi-
vidual regressions, so developing concise performance met-
rics poses a challenge. No general agreed-upon criteria ex-
ist for defining an acceptable crop model emulator, so we
present two different metrics below, one relatively loose and
one more stringent. Both metrics assess the ability of the
emulator to reproduce simulated crop yields in the GGCMI
Phase 2 experiment. In this section, we show only results
from emulators based on the 34-term Eq. (1); see Sect. S7 in
the Supplement for analogous assessment of emulators based
on the 23-term Eq. (2).

1. Normalized error. We take as our first metric what we
term the “normalized error”, which compares the fidelity of
an emulator to the inter-model spread. For a multi-model
comparison exercise like GGCMI Phase 2, a reasonable
though loose emulator criterion is that its errors be small rel-
ative to inter-model differences. The normalized error e is
defined separately for each C, T , W , and N scenario s as the
difference between emulated and simulated fractional yield
changes, normalized by the standard deviation in simulated
changes across all models:

es =
Fem, s−Fsim, s

σsim, s
, (4)
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Figure 7. Assessment of emulator performance over currently cultivated areas based on normalized error (Eq. 5). We show performance of
all nine models emulated, over all crops and all sampled T andW inputs (“ir.” indicates the irrigatedW∞ setting) but with CO2 and nitrogen
held fixed at baseline values. Large columns are crops, and large rows are models; squares within are T , W scenario pairs. Colors denote
the fraction of currently cultivated hectares (“area frac”) for each crop with normalized area e less than 1 indicating the error between the
emulation and simulation less than 1 standard deviation of the ensemble simulation spread. Of the possible 63 scenarios at a single CO2
and N value, we consider only those for which all nine (eight for rice, soybean, and winter wheat) models submitted data (Fig. S1) so the
model ensemble standard deviation can be calculated uniformly in each case. JULES did not simulate winter wheat and LPJ-GUESS did not
simulate rice and soybean. Emulator performance is generally satisfactory, with some exceptions. Emulator failures (significant areas of poor
performance) occur for individual model–crop combinations, with performance generally degrading for colder and wetter scenarios.

where F is the fractional change in yields Y between sce-
nario s and baseline b:

Fs =
Ys−Yb

Yb
. (5)

We calculate the mean error for each grid cell, model, and
crop in each C, T , W , and N scenario by comparing emu-
lated and simulated yields. A normalized error e < 1 means
that any deviation of the emulation from the simulation is
less than 1 standard deviation of the inter-model spread.

Evaluation of this metric implies that GGCMI Phase 2
emulators are generally satisfactory. Emulator performance
is illustrated in Fig. 7, which shows all models and crops
over currently cultivated area. Over all crops and models,
the average normalized error e < 1 over 95 % of currently
cultivated area. For maize, the most tractable crop to emu-
late, all 9 models return e < 1 over 97 % of currently cul-
tivated area. Only three model–crop combinations are prob-
lematic, returning e < 1 over less than 90 % of cultivated area
even when using the 34-term statistical model: PROMET
and CARAIB for soybeans (79 % and 83 %), and JULES for
spring wheat (85 %). Misfits typically occur when models
show strong discontinuities in yield response (as shown in
Fig. 5), or when carbon dioxide fertilization gains interact
nonlinearly with changes in temperature or water. Including
higher-order C terms helps in the latter case but does not re-
duce emulator errors to zero. See Figs. S22–S23 in the Sup-
plement for examples of worst-case emulator failures.

While Fig. 7 shows only currently cultivated land, perfor-
mance can be worse in locations where crops are not cur-
rently cultivated or on marginal lands where current poten-
tial yields are low. In general, emulator performance is poor
anywhere that models show steep yield changes once some
threshold has been reached. Some of these cases involve
complete crop failures in a changed climate, but most in-
volve yield improvements: abrupt gains in regions that are
too cold or dry under current conditions but that become vi-
able given warming or wetting. Figure 8 illustrates this effect
for CARAIB in the T + 4 scenario, showing normalized er-
ror over all simulated areas with non-zero baseline yield and
at least six models providing simulations. CARAIB emulator
performance is generally good where crops are grown but can
be poor (e > 2) in arid or mountainous zones, e.g., the edges
of the Sahara, inner Mongolia, South Africa, and southern
Australia. Effects will vary by crop model as they differ in
process implementations; see the different model description
papers referenced in Table 1 for more details. Note that the
choice of statistical model for emulation involves a trade-off
in the spatial pattern of errors. The 34-term statistical model
used here maximally improves emulator fidelity in problem-
atic “fringe” areas at the expense of lowering it slightly over
high-yield areas. For example, over currently cultivated land,
CARAIB maize emulators have normalized error e < 1 over
98.5 % of area with the full 34-term Eq. (1) but over 98.8 %
with the reduced 23-term Eq. (2). The effect is reversed over
uncultivated land, with CARAIB maize emulators showing
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Figure 8. Illustration of our first test of emulator performance, applied to the CARAIB model for the T + 4 scenario for rainfed crops.
Colors indicate the normalized emulator error e, where e > 1 means that emulator error exceeds the multi-model standard deviation. For
consistency, we show e only for geographic areas simulated by at least six models and where baseline yields are greater than 0.5 t ha−1.
Emulator performance is generally good relative to model spread in areas where crops are currently cultivated (compare to Figs. S2–S3) and
in temperate zones in general; emulation issues occur primarily in marginal areas with low-yield potentials.

e < 1 over 93.7 % of area with the full Eq. (1) but only over
88.7 % of area with the reduced Eq. (2).

The normalized error assessment is relatively forgiving for
several reasons. First, it is an in-sample validation, with the
emulation evaluated against the simulations actually used to
train the emulator. Had we used a spline interpolation, the er-
ror would necessarily be zero. Second, the metric scales em-
ulator fidelity not by the magnitude of yield changes in the
evaluated model but by the spread in yield changes across
models. The normalized error e for a given model then de-
pends on the particular suite of models considered in the in-
tercomparison exercise. The rationale for the choice is to re-
late the fidelity of the emulation to the true uncertainty, which
we take as the multi-model spread, but the metric then has
the property that where models differ more widely, the stan-
dard for emulators becomes less stringent and vice versa. In
GGCMI Phase 2, the effect is manifested in the higher nor-
malized errors for soybeans across all models, which result
not because soybean yields are difficult to emulate but be-
cause models agree more closely on yield changes for soy-
beans than for the other crops.

2. Out-of-sample validation. We provide a second, more
stringent test of emulator performance via a 3-fold cross val-

idation (also termed an out-of-sample validation). In this test,
the GGCMI Phase 2 dataset is split randomly into two parts,
with 90 % of the data used to train (calibrate) the model and
the held-out 10 % used to test (evaluate) the fidelity of the
resulting emulator. The procedure is repeated three times; in
each case, we calculate the root mean square error (RMSE)
between the emulated (predicted) and actual simulated test
set values, and then average the three results. The result is a
single metric for each grid cell for each model–crop combi-
nation. As a last step, we normalize the error metric for each
grid cell by dividing by its maximum yield change over the
entire CTWN dataset. (Since all models have submitted the
extreme T+6 scenario, this normalization choice is not prob-
lematic.) Note that this validation exercise is independent of
the procedure for generating the final published emulator val-
ues, which are generated using the full CTWN dataset.

The resulting error metric is generally low. Table 3 shows
the yield-change-normalized RMSE for rainfed crops in all
models over currently cultivated land, both in selected major
producing regions and in the global average. We include all
simulations in the CTWN space and report the average error
value in Table 3. Global mean grid-cell RMSE is below 5 %
of maximum yield changes in all cases, or in absolute terms
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less than 0.2 t ha−1 for all except JULES soybean simulations
(0.36 t ha−1). Emulators for rainfed and irrigated crops have
similar fractional errors, but since irrigated crops experience
lower yield changes across the CTWN scenarios, they also
have lower absolute errors. See Sect. S9 in the Supplement
for maps of cross-validation RMSE for each crop and model.

Note that this relatively simple metric may be overconser-
vative. The randomized sampling protocol for dividing train-
ing and test sets can mean that a training set omits edge sim-
ulations at the highest or lowest value in CTWN space. The
test prediction then involves extrapolating out of the train-
ing set range (e.g., predicting a T + 6 case when the training
set extends only to T + 4), an improper use of an emulator.
RMSE values would be lower if we had used a more careful
sampling strategy that precluded extrapolation (e.g., “leave
one out”). For additional discussion of more detailed poten-
tial evaluation metrics, see, e.g., Castruccio et al. (2014).

4.3 Emulation of realistic climate projections

Finally, we test the ability of an emulator based on the
GGCMI Phase 2 perturbed mean training set to reproduce
the response of a crop model driven by a realistic, evolving
climate scenario. Our emulators are trained only on growing-
season means, and the GGCMI Phase 2 exercise involved
only changes in means. We therefore seek to assess whether
changes in the higher moments of temperature and precip-
itation distributions in a climate projection might have ef-
fects that lead to significant emulator error. Note that we are
not asking whether year-to-year climate variability matters to
crop yields; this point is well established (Ray et al., 2015).
The question instead is whether a realistic future climate
projection involves changes in variability large enough that
they compromise an emulator based on the GGCMI Phase 2
dataset.

To assess this potential error, we generate new crop model
simulations using the LPJmL crop model (taken as a repre-
sentative of GGCMI models), driven by a climate simula-
tion from the Coupled Model Intercomparison Project phase
5 (CMIP5) archive (Jones et al., 2011; The HadGEM2 De-
velopment Team, 2011; Taylor et al., 2012). To maximize
any potential bias, we choose a climate model (HadGEM2-
ES) that exhibits relatively large changes in growing-season
temperature variability among CMIP5 members (Table S1
in the Supplement), and use the high-end RCP8.5 scenario.
We also hold CO2 fixed to emphasize the results of temper-
ature and precipitation changes, in the absence of the benefi-
cial effects of increased CO2. We then compare the resulting
simulated yields to the output of the GGCMI LPJmL emu-
lator driven by the HadGEM2-ES yearly growing-season T
and P anomalies (Fig. 9). The GGCMI LPJmL emulator is
able to capture the yield changes well: for all crops, emu-
lated and simulated global production in the last decade of
the simulation are identical to within 1.5 %. These results im-
ply that globally, the results of future distributional shifts on

climatological yields are small relative to the effects of mean
changes (Fig. 9). The GGCMI LPJmL emulators also repro-
duce decadal variations in yields, which are especially strong
in spring wheat grown in northern latitudes (Fig. 9, right) and
even capture much of the residual year-to-year yield variabil-
ity: R2 of emulated vs. simulated annual yield anomalies rel-
ative to the 10-year running mean is 0.8 for spring wheat (and
∼ 0.3 for all other crops).

Distributional effects might be expected to be stronger at
high latitudes because temperature and precipitation variabil-
ity are larger there, so changes in variability can be cor-
respondingly more important. However, we find that most
crops (spring wheat, winter wheat, and maize) show no em-
ulator bias that grows with latitude. Rice is the exception:
the climatological-mean emulator slightly overpredicts yield
losses in the tropics and underpredicts losses at higher lati-
tudes (where little rice is currently grown). Poleward of 30◦

latitude, the LPJmL simulation under the HadGEM2 RCP
scenario shows a 49 % reduction in rice yields by the end
of the century (without growing-season adaptation), but the
GGCMI-based emulator produces a reduction of only 39 %
(Fig. S11 in the Supplement). These losses are concentrated
in the lower midlatitudes: only 21 % of global rice is culti-
vated poleward of 30◦ and only 1 % poleward of 45◦.

It is worth noting two complications involved in compar-
ing emulated to simulated yields under a realistic climate
change scenario, as in Fig. 9. First, it is not trivial to choose
how to relate temperature or precipitation in the evolving cli-
mate scenario to the T and P offsets used as regressors to
the emulator. Using growing-season mean temperature can
lead to complications if crop models assume that growing-
season lengths shift under climate change. For consistency,
we match the temperature changes in the climate scenario
to their equivalent emulator regressors by calculating means
over the fixed baseline growing season. This choice ensures
that the emulation is appropriately matched to the simulation.
Second, although the emulator outputs an estimated yield
change, the baseline from which that yield change is cal-
culated will be different between simulation and emulation
because the historical climate time series are not identical.
For example, the baseline (1981–2010) yield of winter wheat
simulated by LPJmL using the AgMERRA time series as part
of GGCMI Phase 2 is 7 % lower than that simulated using the
HadGEM2-ES time series. To minimize the effects of dif-
ferent historical climate assumptions, we drive the emulator
with the anomaly of the climate scenario from its own 1981–
2010 mean. Bias in the historical climate time series could
in theory produce discrepancies between emulated and sim-
ulated yield changes because of the nonlinearities discussed
in Sect. 2.2, but the effect appears to play a small role in the
LPJmL comparison of Fig. 9.
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Table 3. RMSE of emulator replication of simulated yields of rainfed crops, stated as a percentage of simulated yield change. Values are
the mean grid-cell error as a percentage of simulated yield change, over all currently cultivated grid cells weighted by cultivation area, for
selected major regions (NA: North America, SA: South America). For comparison, global mean values are shown in parentheses. Errors are
calculated using the 90–10 cross-validation scheme described in text, with the model trained on 90 % of the data and validated on the held-out
10 % (repeated twice). All fits are made with the Bayesian ridge method; for context, we mark with ∗ those cases where the Bayesian ridge
is required because the OLS linear model fails (e.g., PEPIC, which has the lowest number of samples at n= 121). n/a – not applicable

Model NA maize SA soybean SE Asian rice NA spr. wheat European win. wheat

CARAIB 0.7 (0.9) 2.4 (2.4) 2.4 (2.4) 1.3 (1.4) 2.7 (1.9)
EPIC-TAMU 2.4 (1.8) 1.8 (2.6) 1.6 (1.6) 1.8 (1.9)∗ 1.1 (1.1)
JULES 2.6 (2.6) 4.6 (4.0) 1.6 (1.7) 2.0 (2.2) n/a
GEPIC 2.1 (2.4) 1.0 (1.2) 2.0 (2.1) 3.7 (3.3) 4.0 (2.9)
LPJ-GUESS 1.0 (1.1) n/a n/a 1.0 (1.3) 1.0 (1.2)
LPJmL 1.8 (1.8) 1.1 (1.3) 1.2 (1.1) 0.8 (1.1) 1.5 (1.3)
pDSSAT 1.9 (1.7) 1.2 (1.1) 1.7 (1.6) 1.1 (1.3) 1.4 (1.5)
PROMET 3.4 (2.7)∗ 2.0 (2.7)∗ 2.1 (1.8)∗ 4.3 (3.7)∗ 4.6 (3.4)∗

PEPIC 1.8 (1.8)∗ 1.4 (1.9)∗ 1.4 (1.4)∗ 2.3 (2.3)∗ 4.9 (2.9)∗

Figure 9. Test of emulator performance in reproducing yield simulations made with a realistic climate projection. Panels show simulated
(black) and emulated (red) global production for four crops from the LPJmL model, driven with temperature and precipitation outputs from
the HadGEM2-ES climate model for the RCP8.5 scenario. In both cases, nitrogen and CO2 are held fixed, at 200 kg ha−1 and 360 ppm.
Points show yearly global production change from the 1981–2010 baseline, and lines show a 10-year running mean. See text for discussion
of relating the HadGEM2-ES temperature time series to the appropriate offset used in emulation. Emulators trained on uniform climatological
offsets reproduce well the simulated production response under a realistic climate scenario: yields at the end of the century match to within
1.5 %.

5 Emulator results and products

The crop model emulators developed here can be used for a
variety of applications because the emulator transforms the
discrete simulation samples into a continuous response sur-
face at any geographic scale. One use is construction of con-
tinuous agricultural damage functions in a flexible format.
As an example, we present in Fig. 10 global damage func-
tions over each of the four dimensions tested in this study,
constructed from the 4-D emulation of each crop model.

These damage functions are useful in diagnosing com-
monalities and differences in the responses of crop models.
In most cases, models agree on the sign of responses to indi-
vidual factors, but the spread in model responses is compa-
rable to the median response. Inter-model spreads are largest
for spring wheat and smallest for soybeans, as also shown

in Fig. 7. Model responses to individual factors conform to
expectations. As expected, the CO2 response is smallest for
maize, which is a C4 crop, and the nitrogen response is small-
est for soybeans, which are efficient fixers of atmospheric ni-
trogen. Nitrogen responses in crops other than soybeans are
relatively similar, and most models show saturation begin-
ning at values less than 200 kg ha−1. In nearly all crop mod-
els and for all crops except spring wheat, damages from re-
duced precipitation exceed benefits from increased precipita-
tion. Spring wheat is the exception, likely because it is grown
in high latitudes where rainfall may be limiting. Rice, by con-
trast, which is generally grown in locations with abundant
water, shows nearly no benefit from increased precipitation.
Note that these damage functions do not consider whether in-
creased precipitation might permit cultivation in new areas,
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Figure 10. Emulated global damage functions for the five crops over the four CTWN dimensions varied in GGCMI Phase 2. Black line shows
the multi-model mean and shaded area, and colored lines show the individual models. The number of models in each case varies because
some models did not provide all crops or simulate the N dimension. Each panel shows response to one covariate for rainfed crops, with all
others held constant at baseline values (e.g., C = 360 ppm, N = 200 kg ha−1). Damages are reported as percent change in global production
over currently cultivated land relative to the 1981–2010 baseline. Note that y-axis ranges are not uniform. As expected, the N response is
smallest in soybeans, which are nitrogen fixers, and the C response is smallest in maize, a C4 crop. See Fig. S12 in the Supplement for an
analogous figure identifying each crop model and Fig. S13 for damage functions for the A1 (adaptive growing-season) emulators, which
have reduced temperature responses.

and also that crop models generally do represent damages
from excess soil moisture well (Li et al., 2019).

The GGCMI Phase 2 emulators are also intended as a tool
for impacts assessments. The T andW functions presented in
Fig. 10 are not true global projections because they emulate
the consequences of uniform shifts across the globe. How-
ever, the emulator allows building analogous damage func-
tions based on climate model output, which has more realistic
spatial patterns of changes in temperature and precipitation.
In Fig. 11, we show emulated maize responses for three crop
models under the RCP8.5 scenario, using output from three
climate models from the CMIP5 archive. Losses are shown
as a function of mean growing-season temperature over cur-
rently cultivated land. While these damages functions aggre-
gate over all currently cultivated land, the global coverage of
GGCMI Phase 2 allows impacts modelers to develop damage
functions for any desired geopolitical or geographic region
larger than 0.5◦ in latitude and longitude.

The emulated responses of Fig. 11 allow diagnosing the
factors of greatest importance to projected yield changes un-
der future climate change. In the maize example here, tem-
perature is the overwhelmingly dominant factor for pDSSAT,
but CO2 responses are far larger in PROMET. CO2 is impor-
tant across models for spring wheat; see Fig. S14. For all crop
models, the aggregated effects of precipitation changes are
negative, exacerbating yield losses (compare T and T +W
cases) because precipitation in HadGEM2 actually declines
over maize cultivation regions, especially in Central and
South America. Precipitation effects are relatively small,
however, as manifested in two ways: as only a small mean
shift in yield projections for individual crop models (compare
T and T +W cases), and as a relatively small increase in the
spread of points here at a given temperature, despite the fact
that the climate projections used involve different relation-
ships between temperature and precipitation change. By con-
trast, the carbon dioxide fertilization response for PROMET

Geosci. Model Dev., 13, 3995–4018, 2020 https://doi.org/10.5194/gmd-13-3995-2020



J. A. Franke et al.: The GGCMI crop model emulators 4011

Figure 11. Illustration of the use of the emulator to study the factors affecting yields in a more realistic climate scenario. Figure shows
emulated yield changes (relative to 1981–2010) for maize (both rainfed and irrigated) on currently cultivated land under RCP8.5 climate
projections from three representative CMIP5 climate models (HadGEM2-ES, GFDL-ESM2M, and IPSL-CM5A-LR), using changes to T
only (a), to T andW (b), and to T ,W , and C (c). The x axis is the mean growing-season temperature change over cultivated land, computed
using the historical growing season; note that these values will be higher than the corresponding global mean temperature change. Dots are
emulated yearly global production changes to 2100 (90 years × 5 climate time series = 450 per crop model), with x axis the mean historical
growing-season T shift over all grid cells where maize is grown (unweighted by within-cell cultivated area). (a) Using only temperature
changes allows comparing regional simulated and emulated values. Open squares are GGCMI Phase 2 simulated values for each T level,
with CWN held at baseline; bold lines are emulated values over uniform1T shifts (repeated in each panel). Emulation uncertainty (compare
squares to lines) is small relative to differences across climate and crop models, and mean yield changes are similar whether T changes are
applied as a uniform shift or in a more realistic spatial pattern (compare lines to dots). (b) Adding in precipitation changes increases yield
spread across climate projections and depresses yield slightly. No squares are shown in panel (b) because the GGCMI uniform offsets of
both T and W are not directly comparable to GCM-specific changes of T and W in a climate projection. (c) CO2 fertilization is small in
pDSSAT, moderate in LPJmL, and very large in PROMET. The separation of groups of points in PROMET (gold) results because CMIP5
climate sensitivities differ by nearly a factor of 2; points at far right are under the highest-sensitivity model, HadGEM2-ES. In RCP8.5, the
30-year-average CO2 at the end of the century is 807 ppm (Riahi et al., 2011). For comparison, open squares in panel (c) show GGCMI-2
simulated production changes at T + 6, W = 0, C = 810 ppm. (Note that in these climate projections, the mean CO2 level when T > 5.8◦ is
912 ppm.) See Figs. S14–15 in the Supplement for analogous figures for other crops (spring wheat and soybeans).

is so large that projections from climate models of differ-
ent sensitivities (1T/1CO2) become clearly separated in
Fig. 11. PROMET yield responses would be more similar if
plotted as a function of CO2 than they are when plotted as in
Fig. 11 as a function of temperature change.

Disaggregating the factors driving crop-yield changes also
highlights the fact that errors of emulation are much smaller
than the spread across crop models or even across differ-
ent climate simulations. PROMET is the most quantitatively
difficult model to emulate for maize, but its comparatively
large emulation error (compare open squares to lines in the
T case) is still smaller than the spread simply due to differ-
ent T patterns across climate simulations (Fig. 11a; compare
differences between open squares and line with the spread
in dots for a given temperature value). Uncertainties in the
yield damage function due to projected patterns of tempera-
ture change are in turn smaller than spread due to differing
model relationships of W and T changes (Fig. 11b), and for
PROMET they are enormously outweighed by uncertainty
in climate sensitivity (Fig. 11c). While emulator fidelity is
important to ensure, it is important to recognize that these
other uncertainties will dominate any impacts assessment ex-

ercise. Note that the pattern-related yield effects are actu-
ally relatively small for maize. (In Fig. 11a, compare lines,
which show yield changes under uniform temperature shifts,
to dots, which show changes under realistic warming sce-
narios.) Pattern-related yield effects can be larger for other
crops, and the uncertainties due to climate projection differ-
ences correspondingly larger; see, for example, soybeans in
Fig. S15 in the Supplement.

6 Discussion and conclusions

In this work, we describe a new class of global gridded
crop model emulators for five crops (maize, soybean, rice,
and spring and winter wheat) and nine process-based crop
models, based on the GGCMI Phase 2 dataset, a set of crop
model simulations run with systematic perturbations to car-
bon, temperature, precipitation, and nitrogen (CTWN). The
goal of this project is to provide a lightweight tool that repro-
duces the output of large numerical simulations of process-
based crop models. The resulting emulators should provide
useful tools both for diagnosing crop model behavior and
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for climate impacts assessment, at least of large-scale time-
averaged responses. Specific findings of this work include the
following:

– In crop models, the climatological-mean yield re-
sponses to uniform perturbations in growing-season
mean temperature and precipitation are very distinct
from responses to historical weather fluctuations asso-
ciated with the same mean differences. This result sug-
gests that when emulating crop models, care must be
taken if considering responses on both short and long
timescales. The large GGCMI Phase 2 experiment al-
lows us to emulate climatological-mean responses with
a simple statistical model without relying on the “natu-
ral experiment” of year-to-year variations.

– Climatological-mean responses in all models can be
well fit with a simple third-order polynomial in mean
growing-season C, T , W , and N . The large GGCMI
training set allows fitting in most cases with OLS, but
use of a Bayesian ridge regression provides additional
stability and prevents overfitting. For most crop models,
emulation is also possible with a simplified version of
the statistical model with only 23 terms.

– The resulting emulators are highly flexible: they cap-
ture the strong geographic difference in crop yields and
yield responses, can perform well on models with quite
different sensitivities to climate or CO2 changes. Em-
ulators can faithfully reproduce the output of process-
based crop models in both in-sample and out-of-sample
tests. Emulation error is generally small other than in
localized regions where crops are not currently grown:
across all models and scenarios, errors over currently
cultivated land never exceed 5 % of yield changes at ei-
ther global or regional scale.

– Emulators trained on the GGCMI Phase 2 dataset,
which samples over uniform climate perturbations,
can effectively reproduce the behavior of crop models
driven by realistic future projections of future T and P
changes. This result suggests that any projected changes
in weather distributions (temperature and precipitation
variability) have relatively little effect on model–crop
yield responses relative to changes in means, at least on
the regionally aggregated level.

– The GGCMI emulators should provide powerful tools
for both model comparison and impacts assessments.
The emulators can be used to develop stand-alone dam-
age functions at any geographic scale larger than 0.5◦

or can be integrated directly into a larger integrated as-
sessment model (IAM) framework. Emulators can also
be used to study differences across crop models in re-
sponses to individual drivers of yield changes, making
them useful for model comparison and improvement.

While an emulator that captures the response of a process-
based crop model in a lightweight form will never be more
accurate then its parent model, it can have multiple advan-
tages over a numerical simulation. Emulation over the sys-
tematic sampling of the GGCMI Phase 2 experiment pro-
vides information on the influence of multiple interacting
factors in a way that individual, more realistic process-based
model runs cannot. Because we use a parametric statisti-
cal model, fitted parameter values can be physically inter-
preted to help understand differences between crop mod-
els. The flexibility and low computational requirements of
emulators also make them particularly suitable for applica-
tions in integrated climate change impact assessments and
projections of land-use change (e.g., Nelson et al., 2014a).
Data storage requirements are reduced by 3 orders of magni-
tude: the yield output for a single crop model simulating all
GGCMI Phase 2 scenarios for five crops is∼ 12.5 GB, while
the equivalent global gridded emulator parameters are only
∼ 20 MB. Computational requirements are nearly negligible:
a thousand years of global 0.5◦ yields, i.e., ∼ 40 000 000 in-
dividual yield projections, can be emulated in 20 s on a laptop
computer. The resulting suite of emulators should find con-
siderable use in climate impacts analyses (e.g., Stevanović
et al., 2016) and allow explicit evaluation of the uncertainty
embedded in the choice of climate and crop models (Müller
et al., 2017).

Several cautions should be noted when using the emula-
tors presented here. First, extrapolation outside the GGCMI
Phase 2 sample space should be avoided. Polynomial fits,
while faithful within sample, quickly become non-physical
outside of the tested range. This constraint is important given
the strong warming expected under high-end greenhouse gas
concentration scenarios (e.g., RCP8.5): if growing seasons
are held fixed, climate model project mean temperature in-
creases above 6 K by end of century in many agricultural re-
gions. Second, while the emulators are valuable for under-
standing the shape of yield responses and the factors that
drive them, the absolute values of emulated yields should
be treated with caution. The GGCMI Phase 2 models are
not formally calibrated, so the emulators should be used
for absolute projections only in combination with histori-
cal data. Third, neither growing-season specification tested
in GGCMI Phase 2 (A0 and A1) accounts for a major po-
tential adaptation pathway under climate change, a shift to
earlier or later planting dates (Waha et al., 2012), or gener-
ally different growing seasons (Minoli et al., 2019a). And
finally, the emulator should not be used to predict individ-
ual yearly yields, as the forced climatological-mean yield re-
sponse will not match the response to mean growing-season
weather in a single year. The emulator cannot provide a mea-
sure of changing yield variance and should not be used to
evaluate extremes.

In summary, the GGCMI Phase 2 dataset and emulators in-
vite a broad range of potential future avenues of analysis. Fu-
ture studies using the emulators described here could include
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a detailed examination of interaction terms, robust quantifi-
cation of model sensitivities to input drivers, and evaluation
of geographic shifts in optimal growing regions. The large
suite of crop models emulated lends itself particularly well
to model comparison efforts, including identifying locations
of model consensus (or lack thereof) and causes of model
differences. While studies of yield responses to changes in
growing-season variability would require new simulations,
the emulators presented here provide a ready means of test-
ing the null hypothesis that such effects are small. (Struc-
tured training sets could be constructed to directly study re-
sponses to variability changes; see, e.g., Poppick et al., 2016;
Haugen et al., 2018 for methods of constructing synthetic
climate time series with altered variability.) The GGCMI
Phase 2 dataset can be used as a testbed for examining the
ability of statistical models that use more detailed within-
season regressors to capture both year-to-year and climato-
logical changes, and for more systematic studies of emula-
tion itself, including evaluation of alternate statistical specifi-
cations or machine learning methods. In general, the GGCMI
Phase 2 experiment demonstrates the promise and utility of
systematic parameter sweeps for improving understanding of
the factors driving crop responses and for evaluating and im-
proving process-based crop models.

Code and data availability. The polynomial param-
eters for crop model emulators are available at
https://doi.org/10.5281/zenodo.3592453 (Franke, 2019) and
https://doi.org/10.5281/zenodo.3994593 (Franke et al., 2020b).
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