Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-3067-2020
https://doi.org/10.5194/gmd-13-3067-2020
Development and technical paper
 | 
10 Jul 2020
Development and technical paper |  | 10 Jul 2020

Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration

Xavier Couvelard, Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Fabrice Ardhuin, Rachid Benshila, and Gurvan Madec

Related authors

Accuracy of numerical wave model results: application to the Atlantic coasts of Europe
Matias Alday, Fabrice Ardhuin, Guillaume Dodet, and Mickael Accensi
Ocean Sci., 18, 1665–1689, https://doi.org/10.5194/os-18-1665-2022,https://doi.org/10.5194/os-18-1665-2022, 2022
Short summary
wavetrisk-2.1: an adaptive dynamical core for ocean modelling
Nicholas K.-R. Kevlahan and Florian Lemarié
Geosci. Model Dev., 15, 6521–6539, https://doi.org/10.5194/gmd-15-6521-2022,https://doi.org/10.5194/gmd-15-6521-2022, 2022
Short summary
A COMBINED COLOR AND WAVE-BASED APPROACH TO SATELLITE DERIVED BATHYMETRY USING DEEP LEARNING
M. Al Najar, Y. El Bennioui, G. Thoumyre, R. Almar, E. W. J. Bergsma, R. Benshila, J.-M. Delvit, and D. G. Wilson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 9–16, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-9-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-9-2022, 2022
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022,https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
A NEMO-based model of Sargassum distribution in the tropical Atlantic: description of the model and sensitivity analysis (NEMO-Sarg1.0)
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021,https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary

Related subject area

Numerical methods
Fast approximate Barnes interpolation: illustrated by Python-Numba implementation fast-barnes-py v1.0
Bruno K. Zürcher
Geosci. Model Dev., 16, 1697–1711, https://doi.org/10.5194/gmd-16-1697-2023,https://doi.org/10.5194/gmd-16-1697-2023, 2023
Short summary
Strategies for conservative and non-conservative monotone remapping on the sphere
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023,https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023,https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary

Cited articles

Alari, V., Staneva, J., Breivik, Ø., Bidlot, J.-R., Mogensen, K., and Janssen, P.: Surface wave effects on water temperature in the Baltic Sea: simulation with the coupled NEMO-WAM model, Ocean Dynam., 66, 917–930, https://doi.org/10.1007/s10236-016-0963-x, 2016. a, b, c
Ali, A., Christensen, K. H., Øyvind Breivik, Malila, M., Raj, R. P., Bertino, L., Chassignet, E. P., and Bakhoday-Paskyabi, M.: A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans, Ocean Model., 137, 76–97, https://doi.org/10.1016/j.ocemod.2019.02.005, 2019. a
Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations, Mon. Weather Rev., 109, 18–36, https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2, 1981. a
Ardhuin, F. and Jenkins, A. D.: On the interaction of surface waves and upper ocean turbulence, J. Phys. Oceanogr., 36, 551–557, https://doi.org/10.1175/JPO2862.1, 2006. a
Ardhuin, F., Herbers, T. H. C., Watts, K. P., van Vledder, G. P., Jensen, R., and Graber, H. C.: Swell and Slanting-Fetch Effects on Wind Wave Growth, J. Phys. Oceanogr., 37, 908–931, https://doi.org/10.1175/JPO3039.1, 2007. a
Download
Short summary
Within the framework of the Copernicus Marine Environment Monitoring Service (CMEMS), an objective is to demonstrate the contribution of coupling the high-resolution analysis and forecasting system with a wave model. This study describes the necessary steps and discusses the various choices made for coupling a wave model and an oceanic model for global-scale applications.