Articles | Volume 13, issue 7
Geosci. Model Dev., 13, 3067–3090, 2020
https://doi.org/10.5194/gmd-13-3067-2020

Special issue: Nucleus for European Modelling of the Ocean - NEMO

Geosci. Model Dev., 13, 3067–3090, 2020
https://doi.org/10.5194/gmd-13-3067-2020
Development and technical paper
10 Jul 2020
Development and technical paper | 10 Jul 2020

Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration

Xavier Couvelard et al.

Related authors

Accuracy of numerical wave model results: Application to the Atlantic coasts of Europe
Matias Alday, Fabrice Ardhuin, Guillaume Dodet, and Mickael Accensi
EGUsphere, https://doi.org/10.5194/egusphere-2022-481,https://doi.org/10.5194/egusphere-2022-481, 2022
Short summary
A COMBINED COLOR AND WAVE-BASED APPROACH TO SATELLITE DERIVED BATHYMETRY USING DEEP LEARNING
M. Al Najar, Y. El Bennioui, G. Thoumyre, R. Almar, E. W. J. Bergsma, R. Benshila, J.-M. Delvit, and D. G. Wilson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 9–16, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-9-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-9-2022, 2022
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022,https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
WAVETRISK-2.1: an adaptive dynamical core for ocean modelling
Nicholas Keville-Reynolds Kevlahan and Florian Lemarié
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-365,https://doi.org/10.5194/gmd-2021-365, 2021
Revised manuscript accepted for GMD
Short summary
A NEMO-based model of Sargassum distribution in the tropical Atlantic: description of the model and sensitivity analysis (NEMO-Sarg1.0)
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021,https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary

Related subject area

Numerical methods
Assessing the robustness and scalability of the accelerated pseudo-transient method
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022,https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Assessment of stochastic weather forecast of precipitation near European cities, based on analogs of circulation
Meriem Krouma, Pascal Yiou, Céline Déandreis, and Soulivanh Thao
Geosci. Model Dev., 15, 4941–4958, https://doi.org/10.5194/gmd-15-4941-2022,https://doi.org/10.5194/gmd-15-4941-2022, 2022
Short summary
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501, https://doi.org/10.5194/gmd-15-4489-2022,https://doi.org/10.5194/gmd-15-4489-2022, 2022
Short summary
Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022,https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022,https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary

Cited articles

Alari, V., Staneva, J., Breivik, Ø., Bidlot, J.-R., Mogensen, K., and Janssen, P.: Surface wave effects on water temperature in the Baltic Sea: simulation with the coupled NEMO-WAM model, Ocean Dynam., 66, 917–930, https://doi.org/10.1007/s10236-016-0963-x, 2016. a, b, c
Ali, A., Christensen, K. H., Øyvind Breivik, Malila, M., Raj, R. P., Bertino, L., Chassignet, E. P., and Bakhoday-Paskyabi, M.: A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans, Ocean Model., 137, 76–97, https://doi.org/10.1016/j.ocemod.2019.02.005, 2019. a
Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations, Mon. Weather Rev., 109, 18–36, https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2, 1981. a
Ardhuin, F. and Jenkins, A. D.: On the interaction of surface waves and upper ocean turbulence, J. Phys. Oceanogr., 36, 551–557, https://doi.org/10.1175/JPO2862.1, 2006. a
Ardhuin, F., Herbers, T. H. C., Watts, K. P., van Vledder, G. P., Jensen, R., and Graber, H. C.: Swell and Slanting-Fetch Effects on Wind Wave Growth, J. Phys. Oceanogr., 37, 908–931, https://doi.org/10.1175/JPO3039.1, 2007. a
Download
Short summary
Within the framework of the Copernicus Marine Environment Monitoring Service (CMEMS), an objective is to demonstrate the contribution of coupling the high-resolution analysis and forecasting system with a wave model. This study describes the necessary steps and discusses the various choices made for coupling a wave model and an oceanic model for global-scale applications.