Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-933-2019
https://doi.org/10.5194/gmd-12-933-2019
Methods for assessment of models
 | 
12 Mar 2019
Methods for assessment of models |  | 12 Mar 2019

ATAT 1.1, the Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data

Jeremy C. Ely, Chris D. Clark, David Small, and Richard C. A. Hindmarsh

Related authors

A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0
Tancrède P. M. Leger, Christopher D. Clark, Carla Huynh, Sharman Jones, Jeremy C. Ely, Sarah L. Bradley, Christiaan Diemont, and Anna L. C. Hughes
Clim. Past, 20, 701–755, https://doi.org/10.5194/cp-20-701-2024,https://doi.org/10.5194/cp-20-701-2024, 2024
Short summary
Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023,https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Surface mass balance modelling of the Juneau Icefield highlights the potential for rapid ice loss by the mid-21st century
Ryan N. Ing, Jeremy C. Ely, Julie M. Jones, and Bethan J. Davies
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-33,https://doi.org/10.5194/tc-2023-33, 2023
Preprint withdrawn
Short summary
Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021,https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland
Niall Gandy, Lauren J. Gregoire, Jeremy C. Ely, Christopher D. Clark, David M. Hodgson, Victoria Lee, Tom Bradwell, and Ruza F. Ivanovic
The Cryosphere, 12, 3635–3651, https://doi.org/10.5194/tc-12-3635-2018,https://doi.org/10.5194/tc-12-3635-2018, 2018
Short summary

Related subject area

Cryosphere
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024,https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev., 17, 6867–6886, https://doi.org/10.5194/gmd-17-6867-2024,https://doi.org/10.5194/gmd-17-6867-2024, 2024
Short summary
Lagrangian tracking of sea ice in Community Ice CodE (CICE; version 5)
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024,https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024,https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024,https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary

Cited articles

Applegate, P. J., Kirchner, N., Stone, E. J., Keller, K., and Greve, R.: An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior, The Cryosphere, 6, 589–606, https://doi.org/10.5194/tc-6-589-2012, 2012. 
Arnold, J. R. and Libby, W. F.: Radiocarbon dates, Science, 113, 111–120, 1951. 
Auriac, A., Whitehouse, P. L., Bentley, M. J., Patton, H., Lloyd, J. M., and Hubbard, A.: Glacial isostatic adjustment associated with the Barents Sea ice sheet: a modelling inter-comparison, Quaternary Sci. Rev., 147, 122–135, 2016. 
Balco, G.: Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010, Quaternary Sci. Rev., 30, 3–27, 2011. 
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea level rise from the ice sheets, Nat. Clim. Change, 3, 424–427, 2013. 
Download
Short summary
During the last 2.6 million years, the Earth's climate has cycled between cold glacials and warm interglacials, causing the growth and retreat of ice sheets. These ice sheets can be independently reconstructed using numerical models or from dated evidence that they leave behind (e.g. sediments, boulders). Here, we present a tool for comparing numerical model simulations with dated ice-sheet material. We demonstrate the utility of this tool by applying it to the last British–Irish ice sheet.