Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-3001-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-12-3001-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scientific workflows applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic model
Shahbaz Memon
CORRESPONDING AUTHOR
Jülich Supercomputing Centre, Forschungszentrum Jülich, Leo-Brandt Straße, 52428 Jülich, Germany
Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
Dorothée Vallot
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Thomas Zwinger
CSC – IT Center for Science Ltd., Espoo, Finland
Jan Åström
CSC – IT Center for Science Ltd., Espoo, Finland
Helmut Neukirchen
Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
Morris Riedel
Jülich Supercomputing Centre, Forschungszentrum Jülich, Leo-Brandt Straße, 52428 Jülich, Germany
Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
Matthias Book
Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
Related authors
No articles found.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Short summary
This paper investigates a stabilization method for free-surface flows in the context of glacier simulations. Previous applications of the stabilization on ice flows have only considered simple ice-sheet benchmark problems; in particular the method had not been tested on real-world glacier domains. This work addresses this shortcoming by demonstrating that the stabilization works well also in this case and increases stability and robustness without negatively impacting computation times.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Yiliang Ma, Liyun Zhao, Rupert Gladstone, Thomas Zwinger, Michael Wolovick, and John C. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2024-1102, https://doi.org/10.5194/egusphere-2024-1102, 2024
Short summary
Short summary
Totten Glacier in Antarctica holds a sea level potential of 3.85 m. Basal sliding and sub-shelf melt rate have important impact on ice sheet dynamics. We simulate the evolution of Totten Glacier using an ice flow model with different basal sliding parameterizations as well as sub-shelf melt rates to quantify their effect on the projections. We found the modelled glacier retreat and mass loss is sensitive to the choice of basal sliding parameterizations and maximal sub-shelf melt rate.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Denis Cohen, Guillaume Jouvet, Thomas Zwinger, Angela Landgraf, and Urs H. Fischer
E&G Quaternary Sci. J., 72, 189–201, https://doi.org/10.5194/egqsj-72-189-2023, https://doi.org/10.5194/egqsj-72-189-2023, 2023
Short summary
Short summary
During glacial times in Switzerland, glaciers of the Alps excavated valleys in low-lying regions that were later filled with sediment or water. How glaciers eroded these valleys is not well understood because erosion occurred near ice margins where ice moved slowly and was present for short times. Erosion is linked to the speed of ice and to water flowing under it. Here we present a model that estimates the location of water channels beneath the ice and links these locations to zones of erosion.
Maryam Zarrinderakht, Christian Schoof, and Thomas Zwinger
EGUsphere, https://doi.org/10.5194/egusphere-2023-807, https://doi.org/10.5194/egusphere-2023-807, 2023
Short summary
Short summary
We used a model to study how crevasses propagate in ice shelves. Our model combines a viscous model and a fracture mechanics model. We studied periodic crevasses on an ice shelf being stretched. We show that existing models based only on stress cannot fully explain how crevasses grow and lead to iceberg calving. This model can be a useful tool to train a low-dimensional representation calving law for an ice sheet model.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Rocco Sedona, Lars Hoffmann, Reinhold Spang, Gabriele Cavallaro, Sabine Griessbach, Michael Höpfner, Matthias Book, and Morris Riedel
Atmos. Meas. Tech., 13, 3661–3682, https://doi.org/10.5194/amt-13-3661-2020, https://doi.org/10.5194/amt-13-3661-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) play a key role in polar ozone depletion in the stratosphere. In this paper, we explore the potential of applying machine learning (ML) methods to classify PSC observations of infrared spectra to classify PSC types. ML methods have proved to reach results in line with those obtained using well-established approaches. Among the considered ML methods, random forest (RF) seems to be the most promising one, being able to produce explainable classification results.
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.
Dorothée Vallot, Sigit Adinugroho, Robin Strand, Penelope How, Rickard Pettersson, Douglas I. Benn, and Nicholas R. J. Hulton
Geosci. Instrum. Method. Data Syst., 8, 113–127, https://doi.org/10.5194/gi-8-113-2019, https://doi.org/10.5194/gi-8-113-2019, 2019
Short summary
Short summary
This paper presents a novel method to quantify the sizes and frequency of calving events from time-lapse camera images. The calving front of a tidewater glacier experiences different episodes of iceberg deliveries that can be captured by a time-lapse camera situated in front of the glacier. An automatic way of detecting calving events is presented here and compared to manually detected events.
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563–4576, https://doi.org/10.5194/gmd-11-4563-2018, https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary
Short summary
Ice flow forced by gravity is governed by the full Stokes (FS) equations, which are computationally expensive to solve. Therefore, approximations to the FS equations are used, especially when modeling an ice sheet on long time spans. Here, we report a combination of an approximation with the FS equations that allows simulating the dynamics of ice sheets over long time spans without introducing artifacts caused by application of approximations in parts of the domain where they are not valid.
Katrin Lindbäck, Jack Kohler, Rickard Pettersson, Christopher Nuth, Kirsty Langley, Alexandra Messerli, Dorothée Vallot, Kenichi Matsuoka, and Ola Brandt
Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, https://doi.org/10.5194/essd-10-1769-2018, 2018
Short summary
Short summary
Tidewater glaciers terminate directly into the sea and the glacier fronts are important feeding areas for birds and marine mammals. Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts end on land. In this paper, we present digital maps of ice thickness and topography under five tidewater glaciers in Kongsfjorden, northwestern Svalbard, which will be useful in studies of future glacier changes in the area.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2637–2652, https://doi.org/10.5194/tc-12-2637-2018, https://doi.org/10.5194/tc-12-2637-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula. The model was also used to simulate the distribution of temperature within the ice, which governs the rate at which the ice can deform. This is especially important for glaciers like the Fleming Glacier, which has both regions of rapid deformation and regions of rapid sliding at the bed.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2653–2666, https://doi.org/10.5194/tc-12-2653-2018, https://doi.org/10.5194/tc-12-2653-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula in both 2008 and 2015. The comparison suggests the grounding line retreated by ~ 9 km from 2008 to 2015. The retreat may be enhanced by a positive feedback between friction, melting and sliding at the glacier bed.
Sue Cook, Jan Åström, Thomas Zwinger, Benjamin Keith Galton-Fenzi, Jamin Stevens Greenbaum, and Richard Coleman
The Cryosphere, 12, 2401–2411, https://doi.org/10.5194/tc-12-2401-2018, https://doi.org/10.5194/tc-12-2401-2018, 2018
Short summary
Short summary
The growth of fractures on Antarctic ice shelves is important because it controls the amount of ice lost as icebergs. We use a model constructed of multiple interconnected blocks to predict the locations where fractures will form on the Totten Ice Shelf in East Antarctica. The results show that iceberg calving is controlled not only by fractures forming near the front of the ice shelf but also by fractures which formed many kilometres upstream.
Yongmei Gong, Thomas Zwinger, Jan Åström, Bas Altena, Thomas Schellenberger, Rupert Gladstone, and John C. Moore
The Cryosphere, 12, 1563–1577, https://doi.org/10.5194/tc-12-1563-2018, https://doi.org/10.5194/tc-12-1563-2018, 2018
Short summary
Short summary
In this study we apply a discrete element model capable of simulating ice fracturing. A microscopic-scale discrete process is applied in addition to a continuum ice dynamics model to investigate the mechanisms facilitated by basal meltwater production, surface meltwater and ice crack opening, for the surge in Basin 3, Austfonna ice cap. The discrete element model is used to locate the ice cracks that can penetrate though the full thickness of the glacier and deliver surface water to the bed.
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Hakime Seddik, Ralf Greve, Thomas Zwinger, and Shin Sugiyama
The Cryosphere, 11, 2213–2229, https://doi.org/10.5194/tc-11-2213-2017, https://doi.org/10.5194/tc-11-2213-2017, 2017
Short summary
Short summary
The Shirase Glacier in Antarctica is studied by means of a computer model. This model implements two physical approaches to represent the glacier flow dynamics. This study finds that it is important to use the more precise and sophisticated method in order to better understand and predict the evolution of fast flowing glaciers. This may be important to more accurately predict the sea level change due to global warming.
Rupert Michael Gladstone, Roland Charles Warner, Benjamin Keith Galton-Fenzi, Olivier Gagliardini, Thomas Zwinger, and Ralf Greve
The Cryosphere, 11, 319–329, https://doi.org/10.5194/tc-11-319-2017, https://doi.org/10.5194/tc-11-319-2017, 2017
Short summary
Short summary
Computer models are used to simulate the behaviour of glaciers and ice sheets. It has been found that such models are required to be run at very high resolution (which means high computational expense) in order to accurately represent the evolution of marine ice sheets (ice sheets resting on bedrock below sea level), in certain situations which depend on sub-glacial physical processes.
T. Zwinger, T. Malm, M. Schäfer, R. Stenberg, and J. C. Moore
The Cryosphere, 9, 1415–1426, https://doi.org/10.5194/tc-9-1415-2015, https://doi.org/10.5194/tc-9-1415-2015, 2015
Short summary
Short summary
By deploying a large-scale high-resolution turbulent CFD simulation using the present-day topography of the Scharffenbergbotnen (SBB) valley, we show how the surrounding topography redirects incoming easterly katabatic storm fronts to impact the blue ice areas (BIA) inside the valley, where the snow cover frequently is removed. A further simulation of a reconstructed topography at the Late Glacial Maximum further reveals that the BIA at SBB must have formed after this period.
M. Schäfer, F. Gillet-Chaulet, R. Gladstone, R. Pettersson, V. A. Pohjola, T. Strozzi, and T. Zwinger
The Cryosphere, 8, 1951–1973, https://doi.org/10.5194/tc-8-1951-2014, https://doi.org/10.5194/tc-8-1951-2014, 2014
R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore
The Cryosphere, 8, 1393–1405, https://doi.org/10.5194/tc-8-1393-2014, https://doi.org/10.5194/tc-8-1393-2014, 2014
B. Sun, J. C. Moore, T. Zwinger, L. Zhao, D. Steinhage, X. Tang, D. Zhang, X. Cui, and C. Martín
The Cryosphere, 8, 1121–1128, https://doi.org/10.5194/tc-8-1121-2014, https://doi.org/10.5194/tc-8-1121-2014, 2014
S. Cook, I. C. Rutt, T. Murray, A. Luckman, T. Zwinger, N. Selmes, A. Goldsack, and T. D. James
The Cryosphere, 8, 827–841, https://doi.org/10.5194/tc-8-827-2014, https://doi.org/10.5194/tc-8-827-2014, 2014
T. Zwinger, M. Schäfer, C. Martín, and J. C. Moore
The Cryosphere, 8, 607–621, https://doi.org/10.5194/tc-8-607-2014, https://doi.org/10.5194/tc-8-607-2014, 2014
T. Sato, T. Shiraiwa, R. Greve, H. Seddik, E. Edelmann, and T. Zwinger
Clim. Past, 10, 393–404, https://doi.org/10.5194/cp-10-393-2014, https://doi.org/10.5194/cp-10-393-2014, 2014
B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback
The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014, https://doi.org/10.5194/tc-8-137-2014, 2014
J. A. Åström, T. I. Riikilä, T. Tallinen, T. Zwinger, D. Benn, J. C. Moore, and J. Timonen
The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, https://doi.org/10.5194/tc-7-1591-2013, 2013
O. Gagliardini, T. Zwinger, F. Gillet-Chaulet, G. Durand, L. Favier, B. de Fleurian, R. Greve, M. Malinen, C. Martín, P. Råback, J. Ruokolainen, M. Sacchettini, M. Schäfer, H. Seddik, and J. Thies
Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, https://doi.org/10.5194/gmd-6-1299-2013, 2013
A. S. Drouet, D. Docquier, G. Durand, R. Hindmarsh, F. Pattyn, O. Gagliardini, and T. Zwinger
The Cryosphere, 7, 395–406, https://doi.org/10.5194/tc-7-395-2013, https://doi.org/10.5194/tc-7-395-2013, 2013
L. Zhao, L. Tian, T. Zwinger, R. Ding, J. Zong, Q. Ye, and J. C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-145-2013, https://doi.org/10.5194/tcd-7-145-2013, 2013
Revised manuscript not accepted
F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan
The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, https://doi.org/10.5194/tc-6-1561-2012, 2012
Related subject area
Cryosphere
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
A global–land snow scheme (GLASS) v1.0 for the GFDL Earth System Model: formulation and evaluation at instrumented sites
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Lagrangian tracking of sea ice in Community Ice CodE (CICE; version 5)
openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Refactoring the elastic–viscous–plastic solver from the sea ice model CICE v6.5.1 for improved performance
A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0)
Clustering simulated snow profiles to form avalanche forecast regions
Simulation of snow albedo and solar irradiance profile with the two-stream radiative transfer in snow (TARTES) v2.0 model
Evaluation of MITgcm-based ocean reanalysis for the Southern Ocean
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
A stochastic parameterization of ice sheet surface mass balance for the Stochastic Ice-Sheet and Sea-Level System Model (StISSM v1.0)
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Universal differential equations for glacier ice flow modelling
A new model for supraglacial hydrology evolution and drainage for the Greenland Ice Sheet (SHED v1.0)
Modeling sensitivities of thermally and hydraulically driven ice stream surge cycling
A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0
A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
SnowQM 1.0: A fast R Package for bias-correcting spatial fields of snow water equivalent using quantile mapping
The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
SUHMO: an adaptive mesh refinement SUbglacial Hydrology MOdel v1.0
Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
The Multiple Snow Data Assimilation System (MuSA v1.0)
The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0)
Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)
SnowClim v1.0: high-resolution snow model and data for the western United States
Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography)
Geometric remapping of particle distributions in the Discrete Element Model for Sea Ice (DEMSI v0.0)
Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)
NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China
An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018
WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture
The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation
SNICAR-ADv3: a community tool for modeling spectral snow albedo
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024, https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
Short summary
Modeling snow cover in climate and weather forecasting models is a challenge even for high-resolution models. Recent simulations with CNRM-AROME have shown difficulties when representing snow in the European Alps. Using remote sensing data and in situ observations, we evaluate modifications of the land surface configuration in order to improve it. We propose a new surface configuration, enabling a more realistic simulation of snow cover, relevant for climate and weather forecasting applications.
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024, https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Enrico Zorzetto, Sergey Malyshev, Paul Ginoux, and Elena Shevliakova
Geosci. Model Dev., 17, 7219–7244, https://doi.org/10.5194/gmd-17-7219-2024, https://doi.org/10.5194/gmd-17-7219-2024, 2024
Short summary
Short summary
We describe a new snow scheme developed for use in global climate models, which simulates the interactions of snowpack with vegetation, atmosphere, and soil. We test the new snow model over a set of sites where in situ observations are available. We find that when compared to a simpler snow model, this model improves predictions of seasonal snow and of soil temperature under the snowpack, important variables for simulating both the hydrological cycle and the global climate system.
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024, https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Short summary
We present the open-source model ELSA, which simulates the internal age structure of large ice sheets. It creates layers of snow accumulation at fixed times during the simulation, which are used to model the internal stratification of the ice sheet. Together with reconstructed isochrones from radiostratigraphy data, ELSA can be used to assess ice sheet models and to improve their parameterization. ELSA can be used coupled to an ice sheet model or forced with its output.
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev., 17, 6867–6886, https://doi.org/10.5194/gmd-17-6867-2024, https://doi.org/10.5194/gmd-17-6867-2024, 2024
Short summary
Short summary
In this work, we introduce a newly developed Antarctic sea ice forecasting system, namely the Southern Ocean Ice Prediction System (SOIPS). The system is based on a regional sea ice‒ocean‒ice shelf coupled model and can assimilate sea ice concentration observations. By assessing the system's performance in sea ice forecasts, we find that the system can provide reliable Antarctic sea ice forecasts for the next 7 d and has the potential to guide ship navigation in the Antarctic sea ice zone.
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024, https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
Short summary
Sea ice models are mainly based on non-moving structured grids, which is different from buoy measurements that follow the ice drift. To facilitate Lagrangian analysis, we introduce online tracking of sea ice in Community Ice CodE (CICE). We validate the sea ice tracking with buoys and evaluate the sea ice deformation in high-resolution simulations, which show multi-fractal characteristics. The source code is openly available and can be used in various scientific and operational applications.
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024, https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary
Short summary
openAMUNDSEN is a fully distributed open-source snow-hydrological model for mountain catchments. It includes process representations of an empirical, semi-empirical, and physical nature. It uses temperature, precipitation, humidity, radiation, and wind speed as forcing data and is computationally efficient, of a modular nature, and easily extendible. The Python code is available on GitHub (https://github.com/openamundsen/openamundsen), including documentation (https://doc.openamundsen.org).
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024, https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Till Andreas Soya Rasmussen, Jacob Poulsen, Mads Hvid Ribergaard, Ruchira Sasanka, Anthony P. Craig, Elizabeth C. Hunke, and Stefan Rethmeier
Geosci. Model Dev., 17, 6529–6544, https://doi.org/10.5194/gmd-17-6529-2024, https://doi.org/10.5194/gmd-17-6529-2024, 2024
Short summary
Short summary
Earth system models (ESMs) today strive for better quality based on improved resolutions and improved physics. A limiting factor is the supercomputers at hand and how best to utilize them. This study focuses on the refactorization of one part of a sea ice model (CICE), namely the dynamics. It shows that the performance can be significantly improved, which means that one can either run the same simulations much cheaper or advance the system according to what is needed.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Simon Horton, Florian Herla, and Pascal Haegeli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1609, https://doi.org/10.5194/egusphere-2024-1609, 2024
Short summary
Short summary
We present a method for avalanche forecasters to analyze patterns in snowpack model simulations. It uses fuzzy clustering to group small regions into larger forecast areas based on snow characteristics, location, and time. Tested in the Columbia Mountains during winter 2022–23, it accurately matched real forecast regions and identified major avalanche hazard patterns. This approach simplifies complex model outputs, helping forecasters make informed decisions.
Ghislain Picard and Quentin Libois
EGUsphere, https://doi.org/10.5194/egusphere-2024-1176, https://doi.org/10.5194/egusphere-2024-1176, 2024
Short summary
Short summary
TARTES is a radiative transfer model to compute the reflectivity in the solar domain (albedo), and the profiles of solar light and energy absorption in a multi-layered snowpack whose physical properties are prescribed by the user. It uniquely considers snow grain shape in a flexible way, allowing us to apply the most recent advances showing that snow does not behave as a collection of ice spheres, but instead as a random medium. TARTES is also simple but compares well with other complex models.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Ian Fenty, Matthew Mazloff, Köhl Armin, and Dimitris Menemenlis
EGUsphere, https://doi.org/10.5194/egusphere-2024-727, https://doi.org/10.5194/egusphere-2024-727, 2024
Short summary
Short summary
Global and basin-scale ocean reanalyses are becoming easily accessible. Yet, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluations. We conduct intercomparison analyses of Massachusetts Institute of Technology general circulation model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open ocean temporal variability and Antarctic continental shelves require improvements.
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024, https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
Short summary
In this paper, we provide a novel numerical implementation for solving the energy exchanges at the surface of snow and ice. By combining the strong points of previous models, our solution leads to more accurate and robust simulations of the energy exchanges, surface temperature, and melt while preserving a reasonable computation time.
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
Short summary
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024, https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
Short summary
We solve momentum balance for unstructured meshes to predict ice flow for real glaciers using a pseudo-transient method on graphics processing units (GPUs) and compare it to a standard central processing unit (CPU) implementation. We justify the GPU implementation by applying the price-to-performance metric for up to million-grid-point spatial resolutions. This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge predictions.
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023, https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
Short summary
Vapor diffusion is one of the main processes governing snowpack evolution, and it must be accounted for in models. Recent attempts to represent vapor diffusion in numerical models have faced several difficulties regarding computational cost and mass and energy conservation. Here, we develop our own finite-element software to explore numerical approaches and enable us to overcome these difficulties. We illustrate the capability of these approaches on established numerical benchmarks.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Kevin Hank, Lev Tarasov, and Elisa Mantelli
Geosci. Model Dev., 16, 5627–5652, https://doi.org/10.5194/gmd-16-5627-2023, https://doi.org/10.5194/gmd-16-5627-2023, 2023
Short summary
Short summary
Physically meaningful modeling of geophysical system instabilities is numerically challenging, given the potential effects of purely numerical artifacts. Here we explore the sensitivity of ice stream surge activation to numerical and physical model aspects. We find that surge characteristics exhibit a resolution dependency but converge at higher horizontal grid resolutions and are significantly affected by the incorporation of bed thermal and sub-glacial hydrology models.
Yannic Fischler, Thomas Kleiner, Christian Bischof, Jeremie Schmiedel, Roiy Sayag, Raban Emunds, Lennart Frederik Oestreich, and Angelika Humbert
Geosci. Model Dev., 16, 5305–5322, https://doi.org/10.5194/gmd-16-5305-2023, https://doi.org/10.5194/gmd-16-5305-2023, 2023
Short summary
Short summary
Water underneath ice sheets affects the motion of glaciers. This study presents a newly developed code, CUAS-MPI, that simulates subglacial hydrology. It is designed for supercomputers and is hence a parallelized code. We measure the performance of this code for simulations of the entire Greenland Ice Sheet and find that the code works efficiently. Moreover, we validated the code to ensure the correctness of the solution. CUAS-MPI opens new possibilities for simulations of ice sheet hydrology.
Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli
Geosci. Model Dev., 16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023, https://doi.org/10.5194/gmd-16-4521-2023, 2023
Short summary
Short summary
Snow layer segmentation and snow grain classification are essential diagnostic tasks for cryospheric applications. A SnowMicroPen (SMP) can be used to that end; however, the manual classification of its profiles becomes infeasible for large datasets. Here, we evaluate how well machine learning models automate this task. Of the 14 models trained on the MOSAiC SMP dataset, the long short-term memory model performed the best. The findings presented here facilitate and accelerate SMP data analysis.
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev., 16, 4063–4081, https://doi.org/10.5194/gmd-16-4063-2023, https://doi.org/10.5194/gmd-16-4063-2023, 2023
Short summary
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-298, https://doi.org/10.5194/gmd-2022-298, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better quality maps. The correction can then be extended backwards and forwards in time for periods when better quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the last 60 years at a resolution of one day and one kilometre. This is the first time that such a dataset has been produced.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Short summary
State-of-the-art Earth system models simulate the observed sea ice extent relatively well, but this is often due to errors in the dynamic and other processes in the simulated sea ice changes cancelling each other out. We assessed the sensitivity of these processes simulated by the coupled ocean–sea ice model NEMO4.0-SI3 to 18 parameters. The performance of the model in simulating sea ice change processes was ultimately improved by adjusting the three identified key parameters.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Geosci. Model Dev., 16, 407–425, https://doi.org/10.5194/gmd-16-407-2023, https://doi.org/10.5194/gmd-16-407-2023, 2023
Short summary
Short summary
We present and validate a novel subglacial hydrology model, SUHMO, based on an adaptive mesh refinement framework. We propose the addition of a pseudo-diffusion to recover the wall melting in channels. Computational performance analysis demonstrates the efficiency of adaptive mesh refinement on large-scale hydrologic problems. The adaptive mesh refinement approach will eventually enable better ice bed boundary conditions for ice sheet simulations at a reasonable computational cost.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022, https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Short summary
We developed a snow model that can be used to quantify snowpack over large areas with a high degree of spatial detail. We ran the model over the western United States, creating a snow and climate dataset for three time periods. Compared to observations of snowpack, the model captured the key aspects of snow across time and space. The model and dataset will be useful in understanding historical and future changes in snowpack, with relevance to water resources, agriculture, and ecosystems.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Short summary
We present the dynamical core of the MPAS-Seaice model, which uses a mesh consisting of a Voronoi tessellation with polygonal cells. Such a mesh allows variable mesh resolution in different parts of the domain and the focusing of computational resources in regions of interest. We describe the velocity solver and tracer transport schemes used and examine errors generated by the model in both idealized and realistic test cases and examine the computational efficiency of the model.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Adrian K. Turner, Kara J. Peterson, and Dan Bolintineanu
Geosci. Model Dev., 15, 1953–1970, https://doi.org/10.5194/gmd-15-1953-2022, https://doi.org/10.5194/gmd-15-1953-2022, 2022
Short summary
Short summary
We developed a technique to remap sea ice tracer quantities between circular discrete element distributions. This is needed for a global discrete element method sea ice model being developed jointly by Los Alamos National Laboratory and Sandia National Laboratories that has the potential to better utilize newer supercomputers with graphics processing units and better represent sea ice dynamics. This new remapping technique ameliorates the effect of element distortion created by sea ice ridging.
Zhen Yin, Chen Zuo, Emma J. MacKie, and Jef Caers
Geosci. Model Dev., 15, 1477–1497, https://doi.org/10.5194/gmd-15-1477-2022, https://doi.org/10.5194/gmd-15-1477-2022, 2022
Short summary
Short summary
We provide a multiple-point geostatistics approach to probabilistically learn from training images to fill large-scale irregular geophysical data gaps. With a repository of global topographic training images, our approach models high-resolution basal topography and quantifies the geospatial uncertainty. It generated high-resolution topographic realizations to investigate the impact of basal topographic uncertainty on critical subglacial hydrological flow patterns associated with ice velocity.
Yu Yan, Wei Gu, Andrea M. U. Gierisch, Yingjun Xu, and Petteri Uotila
Geosci. Model Dev., 15, 1269–1288, https://doi.org/10.5194/gmd-15-1269-2022, https://doi.org/10.5194/gmd-15-1269-2022, 2022
Short summary
Short summary
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study presented the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of ocean and sea ice. NEMO-Bohai is intended to be a valuable tool for long-term ocean and ice simulations and climate change studies.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022, https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary
Short summary
We present an improved coupled modeling system for Arctic sea ice prediction. We perform Arctic sea ice prediction experiments with improved/updated physical parameterizations, which show better skill in predicting sea ice state as well as atmospheric and oceanic state in the Arctic compared with its predecessor. The improved model also shows extended predictive skill of Arctic sea ice after the summer season. This provides an added value of this prediction system for decision-making.
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, https://doi.org/10.5194/gmd-15-803-2022, 2022
Short summary
Short summary
Sea ice is a composite of individual pieces, called floes, ranging in horizontal size from meters to kilometers. Variations in sea ice geometry are often forced by ocean waves, a process that is an important target of global climate models as it affects the rate of sea ice melting. Yet directly simulating these interactions is computationally expensive. We present a neural-network-based model of wave–ice fracture that allows models to incorporate their effect without added computational cost.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021, https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
Short summary
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical description of snow and soil processes with various complexities. With STEMMUS-UEB, we demonstrated that the snowpack affects not only the soil surface moisture conditions (in the liquid and ice phase) and energy-related states (albedo, LE) but also the subsurface soil water and vapor transfer, which contributes to a better understanding of the hydrothermal implications of the snowpack in cold regions.
Cited articles
Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D., Moore, J. C., and Timonen, J.: A particle based simulation model for glacier dynamics, The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013. a, b, c
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z.,
O'Neel, S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I.,
Zwinger, T., Timonen, J., and Moore, J. C.: Termini of calving
glaciers as self-organized critical systems, Nat. Geosci., 7, 874–878,
https://doi.org/10.1038/ngeo2290, 2014. a
Barker, A. and van Hemert, J.: Scientific Workflow: A Survey and Research
Directions, in: Parallel Processing and Applied Mathematics. PPAM 2007,
Lecture Notes in Computer Science, Springer,
https://doi.org/10.1007/978-3-540-68111-3_78, 2008. a
Bassis, J. and Jacobs, S.: Diverse calving patterns linked to glacier geometry, Nat. Geosci., 6, 833-–836, https://doi.org/10.1038/ngeo1887, 2013. a
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, Cambridge, MA, USA, 2010. a
Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory
programming, IEEE Comput. Sci. Eng., 5, 46–55,
https://doi.org/10.1109/99.660313, 1998. a
Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P. J.,
Mayani, R., Chen, W., Ferreira da Silva, R., Livny, M., and Wenger, K.:
Pegasus: a Workflow Management System for Science Automation, Future
Gener. Comp. Sy., 46, 17–35, https://doi.org/10.1016/j.future.2014.10.008,
2015. a
Demuth, B., Schuller, B., Holl, S., Daivandy, J., Giesler, A., Huber, V., and
Sild, S.: The UNICORE Rich Client: Facilitating the Automated Execution of
Scientific Workflows, 2013 IEEE 9th International Conference on e-Science, 23–25 October 2013, Beijing, China,
238–245, https://doi.org/10.1109/eScience.2010.42, 2010. a
Eclipse Foundation: Eclipse Foundation: Rich Client Platform (RCP), available at:
https://wiki.eclipse.org/Rich_Client_Platform (last access: 23 May 2018), 2013. a
Ferreira da Silva, R., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R.,
and Deelman, E.: A Characterization of Workflow Management Systems for
Extreme-Scale Applications, Future Gener. Comp. Sy., 75, 228–238,
https://doi.org/10.1016/j.future.2017.02.026, 2017. a
Frey, J.: Condor DAGMan: Handling Inter-Job Dependencies, presentation
slides, available at: http://www.bo.infn.it/calcolo/condor/dagman/
(last access: 25 May 2018), 2003. a
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a, b, c
Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities, Int. J. Numer. Meth. Eng., 79, 1309–1331, https://doi.org/10.1002/nme.2579,
2009. a
Kääb, A., Lefauconnier, B., and Melvold, K.: Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data, Ann. Glaciol., 42, 7–13, https://doi.org/10.3189/172756405781812916, 2005. a
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.:
Calving rates at tidewater glaciers vary strongly with ocean temperature,
Nat. Commun., 6, 8566, https://doi.org/10.1038/ncomms9566, 2015. a
Memon, M. S., Memon, A. S., Riedel, M., Schuller, B., Mallmann, D., Tweddell,
B., Streit, A., van den Berghe, S., Snelling, D., Li, V., Marzolla, M., and
Andreetto, P.: Enhanced Resource Management Capabilities using
Standardized Job Management and Data Access Interfaces within
UNICORE Grids, in: International Conference on Parallel and Distributed
Systems (ICPADS), 5–7 December 2007, Hsinchu, Taiwan, IEEE,
https://doi.org/10.1109/ICPADS.2007.4447834, 2007. a, b, c
Memon, S., Attig, N., Gorbet, G., Gunathilake, L., Riedel, M., Lippert, T.,
Marru, S., Grimshaw, A., Janetzko, F., Demeler, B., and Singh, R.:
Improvements of the UltraScan scientific gateway to enable computational
jobs on large-scale and open-standards based cyberinfrastructures, in:
Proceedings of the Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery, XSEDE '13, 22–25 July 2013, San Diego, CA, USA, 39:1–39:7, ACM, New York,
NY, USA, https://doi.org/10.1145/2484762.2484800, 2013a. a
Memon, S., Holl, S., Schuller, B., Riedel, M., and Grimshaw, A.: Enhancing the Performance of Scientific Workflow Execution in e-Science Environments by
Harnessing the Standards Based Parameter Sweep Model, in: Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, XSEDE '13, 22–25 July 2013, San Diego, CA, USA, 56:1–56:7, ACM, New York, NY, USA,
https://doi.org/10.1145/2484762.2484820, 2013b. a
Memon, S., Cavallaro, G., Hagemeier, B., Riedel, M., and Neukirchen, H.:
Automated Analysis of remotely sensed images using the UNICORE workflow
management system, in: 2018 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), 23–27 July 2018, Valencia, Spain, IEEE,
https://doi.org/10.1109/IGARSS.2018.8519364, 2018a. a
Memon, S., Vallot, D., Riedel, M., Neukirchen, H., Zwinger, T., and Book, M.: Elmer-HiDEM Workflow UNICORE, https://doi.org/10.23728/b2share.f10fd88bcce240fb9c8c4149c130a0d5, 2018b. a
Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 3.0, University of Tennessee, Knoxville, TN, USA, available at: https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf (last access: 25 June 2019), 2012.
a
Nuth, C., Schuler, T. V., Kohler, J., Altena, B., and Hagen, J. O.: Estimating
the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation
changes and mass-balance modelling, J. Glaciol., 58, 119–133,
https://doi.org/10.3189/2012JoG11J036, 2012. a
Råback, P.: ElmerGrid Manual, CSC – IT Center for Science,
available at: http://nic.funet.fi/index/elmer/doc/ElmerGridManual.pdf (last access: 20 June 2018), 2015.
Råback, P., Malinen, M., Ruokolainen, J., Pursula, A., and Zwinger, T.:
Elmer Models Manual, CSC – IT Center for Science Ltd., Espoo,
available at: http://www.nic.funet.fi/index/elmer/doc/ElmerModelsManual.pdf,
last access: 20 June 2018. a
Schellenberger, T., Dunse, T., Kääb, A., Kohler, J., and Reijmer, C. H.: Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking, The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, 2015. a
Streit, A., Bala, P., Beck-Ratzka, A., Benedyczak, K., Bergmann, S., Breu, R., Daivandy, J. M., Demuth, B., Eifer, A., Giesler, A., Hagemeier, B., Holl, S., Huber, V., Lamla, N., Mallmann, D., Memon, A. S., Memon, M. S., Rambadt, M., Riedel, M., Romberg, M., Schuller, B., Schlauch, T., Schreiber, A.,
Soddemann, T., and Ziegler, W.: UNICORE 6 – Recent and Future
Advancements, Ann. Telecommun., 65, 757–762,
https://doi.org/10.1007/s12243-010-0195-x, 2010. a, b, c
Todd, J. and Åström, J.: HiDEM, Zenodo, https://doi.org/10.5281/zenodo.1252379, 2018. a
Vallot, D., Pettersson, R., Luckman, A., Benn, D. I., Zwinger, T., Van Pelt, W. J. J., Kohler, J., Schäfer, M., Claremar, B., and Hulton, N. R. J.: Basal dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard:
non-local spatio-temporal response to water input, J. Glaciol.,
63, 1012–-1024, https://doi.org/10.1017/jog.2017.69, 2017. a
Vallot, D., Åström, J., Zwinger, T., Pettersson, R., Everett, A., Benn, D. I., Luckman, A., van Pelt, W. J. J., Nick, F., and Kohler, J.: Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard, The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, 2018. a, b
van Pelt, W. and Kohler, J.: Modelling the long-term mass balance and firn
evolution of glaciers around Kongsfjorden, Svalbard, J. Glaciol.,
61, 731–744, https://doi.org/10.3189/2015JoG14J223, 2015. a
Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Balcazar Vargas, M. P., Sufi, S., and Goble, C.: The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud, Nucleic Acids Res., 41, 557–561,
https://doi.org/10.1093/nar/gkt328, 2013. a
Zwinger, T., Malinen, M., Ruokolainen, J., and Råback, P.: Scaling and Performance Improvements in Elmer/Ice, Zenodo, https://doi.org/10.5281/zenodo.822189, 2013. a
Short summary
Scientific workflows enable complex scientific computational scenarios, which include data intensive scenarios, parametric executions, and interactive simulations. In this article, we applied the UNICORE workflow management system to automate a formerly hard-coded coupling of a glacier flow model and a calving model, which contain many tasks and dependencies, ranging from pre-processing and data management to repetitive executions on heterogeneous high-performance computing (HPC) resources.
Scientific workflows enable complex scientific computational scenarios, which include data...