Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-3001-2019
https://doi.org/10.5194/gmd-12-3001-2019
Development and technical paper
 | 
15 Jul 2019
Development and technical paper |  | 15 Jul 2019

Scientific workflows applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic model

Shahbaz Memon, Dorothée Vallot, Thomas Zwinger, Jan Åström, Helmut Neukirchen, Morris Riedel, and Matthias Book

Related authors

Scale invariance in kilometer-scale sea ice deformation
Matias Uusinoka, Jari Haapala, Jan Åström, Mikko Lensu, and Arttu Polojärvi
EGUsphere, https://doi.org/10.5194/egusphere-2025-311,https://doi.org/10.5194/egusphere-2025-311, 2025
Short summary
Sensitivity of the future evolution of the Wilkes Subglacial Basin ice sheet to grounding-line melt parameterizations
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024,https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024,https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0)
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024,https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Sensitivity of Totten Glacier dynamics to sliding parameterizations and ice shelf basal melt rates
Yiliang Ma, Liyun Zhao, Rupert Gladstone, Thomas Zwinger, Michael Wolovick, and John C. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2024-1102,https://doi.org/10.5194/egusphere-2024-1102, 2024
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D., Moore, J. C., and Timonen, J.: A particle based simulation model for glacier dynamics, The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013. a, b, c
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen, J., and Moore, J. C.: Termini of calving glaciers as self-organized critical systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/ngeo2290, 2014. a
Barker, A. and van Hemert, J.: Scientific Workflow: A Survey and Research Directions, in: Parallel Processing and Applied Mathematics. PPAM 2007, Lecture Notes in Computer Science, Springer, https://doi.org/10.1007/978-3-540-68111-3_78, 2008. a
Bassis, J. and Jacobs, S.: Diverse calving patterns linked to glacier geometry, Nat. Geosci., 6, 833-–836, https://doi.org/10.1038/ngeo1887, 2013. a
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, Cambridge, MA, USA, 2010. a
Download
Short summary
Scientific workflows enable complex scientific computational scenarios, which include data intensive scenarios, parametric executions, and interactive simulations. In this article, we applied the UNICORE workflow management system to automate a formerly hard-coded coupling of a glacier flow model and a calving model, which contain many tasks and dependencies, ranging from pre-processing and data management to repetitive executions on heterogeneous high-performance computing (HPC) resources.
Share