Articles | Volume 12, issue 6
Geosci. Model Dev., 12, 2501–2521, 2019
https://doi.org/10.5194/gmd-12-2501-2019
Geosci. Model Dev., 12, 2501–2521, 2019
https://doi.org/10.5194/gmd-12-2501-2019

Model description paper 28 Jun 2019

Model description paper | 28 Jun 2019

The multiscale routing model mRM v1.0: simple river routing at resolutions from 1 to 50 km

Stephan Thober et al.

Related authors

High-resolution drought simulations and comparison to soil moisture observations in Germany
Friedrich Boeing, Oldrich Rakovech, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, and Andreas Marx
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-402,https://doi.org/10.5194/hess-2021-402, 2021
Preprint under review for HESS
Short summary
MPR 1.0: A stand-alone Multiscale Parameter Regionalization Tool for Improved Parameter Estimation of Land Surface Models
Robert Schweppe, Stephan Thober, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-103,https://doi.org/10.5194/gmd-2021-103, 2021
Revised manuscript accepted for GMD
Short summary
Machine learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-9,https://doi.org/10.5194/hess-2021-9, 2021
Revised manuscript accepted for HESS
Short summary
Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020,https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
The effect of soil moisture anomalies on maize yield in Germany
Michael Peichl, Stephan Thober, Volker Meyer, and Luis Samaniego
Nat. Hazards Earth Syst. Sci., 18, 889–906, https://doi.org/10.5194/nhess-18-889-2018,https://doi.org/10.5194/nhess-18-889-2018, 2018
Short summary

Related subject area

Hydrology
POET (v0.1): speedup of many-core parallel reactive transport simulations with fast DHT lookups
Marco De Lucia, Michael Kühn, Alexander Lindemann, Max Lübke, and Bettina Schnor
Geosci. Model Dev., 14, 7391–7409, https://doi.org/10.5194/gmd-14-7391-2021,https://doi.org/10.5194/gmd-14-7391-2021, 2021
Short summary
Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States
Mary M. F. O'Neill, Danielle T. Tijerina, Laura E. Condon, and Reed M. Maxwell
Geosci. Model Dev., 14, 7223–7254, https://doi.org/10.5194/gmd-14-7223-2021,https://doi.org/10.5194/gmd-14-7223-2021, 2021
Short summary
Cosmic-Ray neutron Sensor PYthon tool (crspy 1.2.1): an open-source tool for the processing of cosmic-ray neutron and soil moisture data
Daniel Power, Miguel Angel Rico-Ramirez, Sharon Desilets, Darin Desilets, and Rafael Rosolem
Geosci. Model Dev., 14, 7287–7307, https://doi.org/10.5194/gmd-14-7287-2021,https://doi.org/10.5194/gmd-14-7287-2021, 2021
Short summary
SuperflexPy 1.3.0: an open-source Python framework for building, testing, and improving conceptual hydrological models
Marco Dal Molin, Dmitri Kavetski, and Fabrizio Fenicia
Geosci. Model Dev., 14, 7047–7072, https://doi.org/10.5194/gmd-14-7047-2021,https://doi.org/10.5194/gmd-14-7047-2021, 2021
Short summary
DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021,https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary

Cited articles

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. a
Beighley, R. E., Eggert, K. G., Dunne, T., He, Y., Gummadi, V., and Verdin, K. L.: Simulating hydrologic and hydraulic processes throughout the Amazon River Basin, Hydrol. Process., 23, 1221–1235, https://doi.org/10.1002/hyp.7252, 2009. a, b
Beighley, R. E., Ray, R. L., He, Y., Lee, H., Schaller, L., Andreadis, K. M., Durand, M., Alsdorf, D. E., and Shum, C. K.: Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin, Hydrol. Process., 25, 3216–3229, https://doi.org/10.1002/hyp.8045, 2011. a
Beven, K.: Rainfall-Runoff Modelling: The Primer, Wiley-Blackwell, Chichester, UK, 2012. a, b
Boone, A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev, Y., Haddeland, I., Koster, R., Lohmann, D., Mahanama, S., Mitchell, K., Nasonova, O., Niu, G. Y., Pitman, A., Polcher, J., Shmakin, A. B., Tanaka, K., Van den Hurk, B., Vérant, S., Verseghy, D., Viterbo, P., and Yang, Z. L.: The Rhône-Aggregation land surface scheme intercomparison project: An overview, J. Climate, 17, 187–208, https://doi.org/10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2, 2004. a
Download
Short summary
We present a model that aggregates simulated runoff along a river (i.e. a routing model). The unique feature of the model is that it can be run at multiple resolutions without any modifications to the input data. The model internally (dis-)aggregates all input data to the resolution given by the user. The model performance does not depend on the chosen resolution. This allows efficient model calibration at coarse resolution and subsequent model application at fine resolution.