Articles | Volume 10, issue 9
Geosci. Model Dev., 10, 3547–3566, 2017
https://doi.org/10.5194/gmd-10-3547-2017

Special issue: The externalised surface model SURFEX

Geosci. Model Dev., 10, 3547–3566, 2017
https://doi.org/10.5194/gmd-10-3547-2017
Model description paper
26 Sep 2017
Model description paper | 26 Sep 2017

Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model

Christopher J. L. D'Amboise et al.

Related authors

A non-stationary extreme-value approach for climate projection ensembles: application to snow loads in the French Alps
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022,https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-127,https://doi.org/10.5194/gmd-2022-127, 2022
Preprint under review for GMD
Short summary
The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021)
Matthieu Vernay, Matthieu Lafaysse, Diego Monteiro, Pascal Hagenmuller, Rafife Nheili, Raphaëlle Samacoïts, Deborah Verfaillie, and Samuel Morin
Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022,https://doi.org/10.5194/essd-14-1707-2022, 2022
Short summary
Past changes in natural and managed snow reliability of French Alps ski resorts from 1961 to 2019
Lucas Berard-Chenu, Hugues François, Emmanuelle George, and Samuel Morin
The Cryosphere, 16, 863–881, https://doi.org/10.5194/tc-16-863-2022,https://doi.org/10.5194/tc-16-863-2022, 2022
Short summary
Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021,https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary

Related subject area

Cryosphere
SnowClim v1.0: high-resolution snow model and data for the western United States
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022,https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022,https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen​​​​​​​, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022,https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography)
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022,https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Geometric remapping of particle distributions in the Discrete Element Model for Sea Ice (DEMSI v0.0)
Adrian K. Turner, Kara J. Peterson, and Dan Bolintineanu
Geosci. Model Dev., 15, 1953–1970, https://doi.org/10.5194/gmd-15-1953-2022,https://doi.org/10.5194/gmd-15-1953-2022, 2022
Short summary

Cited articles

Adachia, S., Yamaguchia, S., Ozekib, T., and Kosec, K.: Hysteresis in the water retention curve of snow measured using an MRI system, available at: http://arc.lib.montana.edu/snow-science/objects/issw-2012-918-922.pdf (last access: 6 July 2016), 2012.
Ambach, W. and Howorka, F.: Avalanche Activity and Free Water Content of Snow at Obergurgl (1980 m a.s.l., Spring 1962), Assoc. Int. Hydrol. Sci., 65–72, 1966.
Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., and De Michele, C.: Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments, The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, 2016.
Bengtsson, L.: Percolation of meltwater through a snowpack, Cold Reg. Sci. Technol., 6, 73–81, doi10.1016/0165-232X(82)90046-5, 1982.
Birkeland, K. W., Hansen, K. J., and Brown, R. L.: The Spatial Variability of Snow Resistance on Potential Avalanche Slopes, J. Glaciol., 41, 183–190, 1995.
Download
Short summary
We present a new water percolation routine added to the Crocus model. The new routine is physically based, describing motion of water through a layered snowpack considering capillary-driven and gravity flow. We tested the routine on two data sets. Wet-snow layers were able to reach higher saturations than the empirical routine. Meaningful applicability is limited until new and better parameterizations of water retention are developed, and feedbacks are adjusted to handle higher saturations.