Articles | Volume 9, issue 9
https://doi.org/10.5194/gmd-9-2909-2016
https://doi.org/10.5194/gmd-9-2909-2016
Model description paper
 | 
31 Aug 2016
Model description paper |  | 31 Aug 2016

DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – Part 1: Model description

Albrecht von Boetticher, Jens M. Turowski, Brian W. McArdell, Dieter Rickenmann, and James W. Kirchner

Related authors

DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – Part 2: Model validation with experiments
Albrecht von Boetticher, Jens M. Turowski, Brian W. McArdell, Dieter Rickenmann, Marcel Hürlimann, Christian Scheidl, and James W. Kirchner
Geosci. Model Dev., 10, 3963–3978, https://doi.org/10.5194/gmd-10-3963-2017,https://doi.org/10.5194/gmd-10-3963-2017, 2017
Short summary
DebrisInterMixing-2.3: a Finite Volume solver for three dimensional debris flow simulations based on a single calibration parameter – Part 2: Model validation
A. von Boetticher, J. M. Turowski, B. W. McArdell, D. Rickenmann, M. Hürlimann, C. Scheidl, and J. W. Kirchner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-6379-2015,https://doi.org/10.5194/gmdd-8-6379-2015, 2015
Preprint withdrawn

Related subject area

Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024,https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary

Cited articles

Ancey, C.: Plasticity and geophysical flows: a review, J. Non-Newton. Fluid, 142, 4–35, 2007.
Ancey, C. and Jorrot, H.: Yield stress for particle suspensions within a clay dispersion, J. Rheol., 45, 297–319, 2001.
Balmforth, N. and Frigaard, I.: Viscoplastic fluids: from theory to application, J. Non-Newton. Fluid, 142, 1–3, 2007.
Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V., and Tropea, C.: Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution, Phys. Rev. E, 79, 036306, https://doi.org/10.1103/PhysRevE.79.036306, 2009.
Berger, C., McArdell, B. W., and Schlunegger, F.: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland, J. Geophys. Res.-Earth, 116, F01002, https://doi.org/10.1029/2010JF001722, 2011.
Short summary
Debris flows are characterized by unsteady flows of water with different content of clay, silt, sand, gravel, and large particles, resulting in a dense moving mixture mass. Here we present a three-dimensional fluid dynamic solver that simulates the flow as a mixture of a pressure-dependent rheology model of the gravel mixed with a Herschel–Bulkley rheology of the fine material suspension. We link rheological parameters to the material composition. The user must specify two free model parameters.