Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2407-2016
https://doi.org/10.5194/gmd-9-2407-2016
Methods for assessment of models
 | 
20 Jul 2016
Methods for assessment of models |  | 20 Jul 2016

A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

Alvaro Nosedal-Sanchez, Charles S. Jackson, and Gabriel Huerta

Related authors

Abrupt transitions in an atmospheric single-column model with weak temperature gradient approximation
Benjamin A. Stephens and Charles S. Jackson
Weather Clim. Dynam., 1, 389–404, https://doi.org/10.5194/wcd-1-389-2020,https://doi.org/10.5194/wcd-1-389-2020, 2020
Short summary
Empirical Bayes approach to climate model calibration
Charles S. Jackson and Gabriel Huerta
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-20,https://doi.org/10.5194/gmd-2016-20, 2016
Preprint withdrawn
Short summary

Related subject area

Climate and Earth system modeling
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024,https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2009.
Braverman, A., Cressie, N., and Teixeira, J.: A likelihood-based comparison of temporal models for physical processes, Statistical Analysis and Data Mining, 4, 247–258, 2011.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., and Briegleb, B. P.: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3), J. Climate, 19, 2144–2161, 2006.
Cressie, N. and Wikle, C. K.: Statistics for Spatio-Temporal Data, Wiley, Hoboken, NJ, 2011.
Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, J. Geophys. Res.-Atmos., 113, 1–20, 2008.
Download
Short summary
We have developed a new metric for climate model evaluation that quantifies the significance of modeling errors across multiple fields. Our approach dramatically reduces the amount of data that is required to evaluate field and space dependencies and increases the community's potential to make use of the extremely valuable but limited satellite observational record. Our objective is to improve the strategies that currently exist for more formal data-driven model development.