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Mathematical details to find Q for a 2× 2 lattice.

Consider x ∼ N(04×1,Q4×4), a vector of measurements on a 2 × 2 lattice, as represented in
Figure 1 of the main manuscript. Assume a neighborhood structure between the four elements
of x. In Figure 2 of the main manuscript, the neighbors for each element of x are defined
graphically. Given this structure, one can write expressions for the conditional means that
reflect how information at each grid point might be related to its neighbors. Therefore,

E(x1|x2, x3, x4) = β12x2 + β13x3, (1)

E(x2|x1, x3, x4) = β21x1 + β24x4, (2)

E(x3|x1, x2, x4) = β31x1 + β34x4, (3)

E(x4|x1, x2, x3) = β42x2 + β43x3. (4)

These expressions are used to find a relationship between the β coefficients and the elements
of Q. Since x ∼ N(04×1,Q4×4), the joint probability distribution of x is given by,

f(x1, x2, x3, x4) ∝ exp(−1
2
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4 + 2Q12x1x2 + 2Q13x1x3 + 2Q14x1x4

+2Q23x2x3 + 2Q24x2x4 + 2Q34x3x4)).

Using this joint probability distribution, we derive the full conditional of x1 given x2, x3, x4,

f(x1|x2, x3, x4) ∝ exp
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This expression can be re-written as

f(x1|x2, x3, x4) ∝ exp
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. (6)

From matching (6) to the expression of a univariate normal distribution,

E(x1|x2, x3, x4) = −Q12

Q11

x2 −
Q13

Q11

x3 −
Q14

Q11

x4, (7)

and
Prec(x1|x2, x3, x4) = Q11. (8)

By comparing equations (1) and (7), we obtain

β12 = −Q12

Q11

, β13 = −Q13

Q11

, β14 = −Q14

Q11

= 0.

Considering the full conditionals for x2, x3 and x4 and its conditional expectations respectively,
yield similar relationships between the β coefficients and the elements of Q:

β21 = −Q21

Q22

, β23 = −Q23

Q22

= 0, β24 = −Q24

Q44
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β31 = −Q31

Q33

, β32 = −Q32

Q33

= 0, β34 = −Q34

Q33

β41 = −Q41

Q44

= 0, β42 = −Q42

Q44

, β43 = −Q43

Q44

.

These relationships hold for an n dimensional distribution as established in Rue and Held [1].
If the conditional means and precisions can be written as

E(xi|x−i) = µi +
∑
j 6=i

βij(xj − µj) and (9)

Prec(xi|x−i) = ki > 0, (10)

then x = (x1, x2, . . . , xn) follows a multivariate normal distribution with mean µ = (µ1, µ2, . . . , µn)
and precision matrix Q of entries Qij, where

Qij =

{
−kiβij i 6= j
ki i = j

(11)

provided kiβij = kjβji, i 6= j.

If we let Prec(xi|x−i) = 2 (i = 1, 2, 3, 4), β12 = β13 = β21 = β24 = β31 = β34 = β42 =
β43 = 1/2 and β14 = β23 = β32 = β41 = 0 using equations (9)-(11), x = (x1, x2, x3, x4) follows
a multivariate normal distribution with mean µ = (0, 0, 0, 0)T and precision matrix

Q =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1

0 −1 −1 2

 .

Generalizing Q to deal with multiple fields.

The generalization of Q to handle multiple fields is illustrated by a case with two fields, x
and y which represent the difference between a model and observations for these fields. These
observations are assumed to be on a 2× 2 lattice, as shown in Figure 1.
Firstly x and y are combined into one vector v so that v = (v1, v2, v3, v4, v5, v6, v7, v8)

T =
(x1, x2, x3, x4, y1, y2, y3, y4)

T . The covariance among these observations can be represented by
a 2× 2 matrix between the field 1, x, and the field 2, y,

S =

(
σ11 σ12
σ12 σ22

)
,

where V ar(x) = σ11, V ar(y) = σ22, and Cov(x,y) = σ12. Recalling that the correlation
between fields 1 and 2 is defined as: ρ = σ12√

σ11σ22
, it is easy to verify that the inverse of S is
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Figure 1: Two fields with observations x, y defined on a 2× 2 lattice.

S−1 =

(
1

σ11(1−ρ2)
−ρ

(1−ρ2)√σ11σ22
−ρ

(1−ρ2)√σ11σ22
1

σ11(1−ρ2)

)
.

Defining Q∗ as S−1 ⊗Q, the Kronecker product of S−1 and Q, then,

Q∗ = S−1 ⊗Q =

(
1

σ11(1−ρ2)Q
−ρ

(1−ρ2)√σ11σ22 Q
−ρ

(1−ρ2)√σ11σ22 Q
1

σ11(1−ρ2)Q

)
.

To see what type of relationships are imposed by Q∗ on the elements of v, consider the first
element v1 = x1. Also notice that the first row of Q∗ is,(

2
σ11(1−ρ2)

−1
(1−ρ2)σ11

−1
(1−ρ2)σ11 0 −2ρ√

σ11σ22(1−ρ2)
ρ√

σ11σ22(1−ρ2)
ρ√

σ11σ22(1−ρ2) 0
)
. (12)

Using equations (9)-(11), it can be easily checked that the value for β12 =
−Q∗

12

Q∗
11

= 1
2
. The other

β values can be determined in a similar fashion. Using these β coefficients, the equations for
the conditional mean and precision of v1 = x1 given the rest of the elements of v are

E(v1|v−1) =
1

2
x2 +

1

2
x3 +

ρσ11√
σ11σ22

y1 −
ρσ11

2
√
σ11σ22

y2 −
ρσ11

2
√
σ11σ22

y3 (13)
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Figure 2: Neighbors of x1 for a 2× 2 lattice and two fields x and y.

and

Prec(v1|v−1) =
1

σ11(1− ρ2)
. (14)

The expression for the conditional mean can be rewritten in terms of the slope b of the linear
regression between x and y, b =

ρ
√
σ11√
σ22

, with ρ equal to their correlation,

E(v1|v−1) =
1

2
x2 +

1

2
x3 + by1 −

b

2
y2 −

b

2
y3. (15)

Equation (15) implies that the neighbors of x1 are x2, x3, y1, y2 and y3. Figure 2 shows a
graphical display of all neighbors of x1 in the context of the two fields x, y and a 2×2 lattice.

Interpretation of S matrix

Reviewers raised the question about the physical interpretation of the correlation matrix R,
corresponding to the S matrix of 2-year JJA seasonal mean variances and covariances. We
noted that it is difficult to ascribe a particular interpretation to these numbers since taking
a spatial average may result in a small correlation from fields that have large but opposing
correlations. Figure 3 shows maps of the grid point correlations between JJA mean 2m air
temperature (TREFHT), sea level pressure (PSL), and precipitation (PRECT) with sea level
pressure (PSL). What is clear between all these figures is that there is a lot of structure to all
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these maps. The sign of the correlation is regionally dependent. This is the case for 2m air
temperature (TREFHT) and precipitation (PRECT) which has a near zero correlation within
the correlation matrix R but have regionally very high correlations. Figure 4 shows that the
‘witch hat’ test of the GMRF-based estimate of covariances between these two fields show
that GMRFs are doing a reasonable job.
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Figure 3: JJA correlations between 2m air temperature (TREFHT), sea level pressure (PSL),
and precipitation (PRECT).
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Figure 4: ‘Witch hat’ graphs testing GMRF approximations to empirical estimates of covari-
ances between TREFHT and PRECT.
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