Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2407-2016
https://doi.org/10.5194/gmd-9-2407-2016
Methods for assessment of models
 | 
20 Jul 2016
Methods for assessment of models |  | 20 Jul 2016

A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

Alvaro Nosedal-Sanchez, Charles S. Jackson, and Gabriel Huerta

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Charles Jackson on behalf of the Authors (21 May 2016)  Author's response   Manuscript 
ED: Publish subject to minor revisions (Editor review) (08 Jun 2016) by Paul Ullrich
AR by Charles Jackson on behalf of the Authors (10 Jun 2016)  Author's response   Manuscript 
ED: Publish as is (12 Jun 2016) by Paul Ullrich
AR by Charles Jackson on behalf of the Authors (21 Jun 2016)
Download
Short summary
We have developed a new metric for climate model evaluation that quantifies the significance of modeling errors across multiple fields. Our approach dramatically reduces the amount of data that is required to evaluate field and space dependencies and increases the community's potential to make use of the extremely valuable but limited satellite observational record. Our objective is to improve the strategies that currently exist for more formal data-driven model development.