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Abstract. A new test statistic for climate model evaluation
has been developed that potentially mitigates some of the
limitations that exist for observing and representing field
and space dependencies of climate phenomena. Traditionally
such dependencies have been ignored when climate models
have been evaluated against observational data, which makes
it difficult to assess whether any given model is simulat-
ing observed climate for the right reasons. The new statistic
uses Gaussian Markov random fields for estimating field and
space dependencies within a first-order grid point neighbor-
hood structure. We illustrate the ability of Gaussian Markov
random fields to represent empirical estimates of field and
space covariances using “witch hat” graphs. We further use
the new statistic to evaluate the tropical response of a climate
model (CAM3.1) to changes in two parameters important to
its representation of cloud and precipitation physics. Overall,
the inclusion of dependency information did not alter signif-
icantly the recognition of those regions of parameter space
that best approximated observations. However, there were
some qualitative differences in the shape of the response sur-
face that suggest how such a measure could affect estimates
of model uncertainty.

1 Introduction

Climate scientists are interested in developing new metrics
for assessing how well climate simulations reproduce ob-
served climate for purposes of comparing models, driving
model development, and evaluating model prediction uncer-
tainties (Gleckler et al., 2008; Reichler and Kim, 2008; San-

ter et al., 2009; Knutti et al., 2010; Weigel et al., 2010;
Braverman et al., 2011). Formal methods for accomplish-
ing these goals, such as Bayesian calibration, operate with
a single test statistic1 for determining likelihood measures
of different model configurations. A level of skepticism ex-
ists within the climate assessment community concerning the
sufficiency of any one metric to judge a climate model’s sci-
entific credibility. Climate phenomena involve interactions of
multiple fields (observables) on a wide range of timescales
and space scales from minutes to decades (and longer) and
from meters to planetary scales. Thus there are plenty of
challenges that exist for synthesizing the many ways that a
climate model can be tested against observational data.

The most common approach to climate model evalua-
tion among climate scientists is to display maps of long-
term means of well-known fields (e.g., temperature, sea-level
pressure, precipitation) whose distribution is familiar and
well understood in order to identify sources of model er-
ror. Taylor metrics that are often generated as part of model
evaluation are based on spatial means of squared grid point
errors for individual fields (Taylor, 2001). Such measures
neglect field and space dependencies that arise as a conse-
quence of how the physics of the climate system correlate
multiple quantities in space. Neglecting these dependencies
therefore ignores additional information that can be used to
test whether models are simulating observables for the right
reasons.

Here we present a new test statistic based on Gaussian
Markov random fields (GMRFs) that addresses some of the

1A test statistic is a metric that includes information about the
significance of modeling errors.
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challenges that currently exist for estimating the significance
of modeling errors across multiple fields that takes into ac-
count field and space dependencies that exist within obser-
vations. Perhaps one of the under-recognized challenges in
this regard is the limited number of observations available to
quantify dependencies. Data assimilation is commonly used
to fill in gaps in the observational record (Trenberth et al.,
2008). While assimilation products help address some as-
pects of the problem of how one compares point measure-
ments to the scales resolved by climate models, these prod-
ucts include the space and field dependencies of the model
that was used to assimilate observations. The imprint of the
reanalysis model is readily seen when comparing two or
more assimilation products, particularly quantities that are
directly related to parameterized physics such as precipita-
tion and radiation. One of the advantages of GMRFs is that
they only need a limited amount of data to decipher space
and field dependencies of climate phenomena. This is be-
cause GMRFs summarize relationship information as it is
expressed across fields of gridded data.

The present application of GMRFs operates on long-term
means. While it may be possible to extend GMRFs to capture
time dependencies (Cressie and Wikle, 2011), the present ap-
plication represents an advance over more traditional met-
rics.

The sections of this paper explain, test, and provide exam-
ples of how various components of GMRFs work. Section 2
gives a brief introduction to GMRFs and the use of a neigh-
borhood structure for estimating dependency information us-
ing a precision operator Q. In this section we also define and
discuss the Kronecker product and how it is used to gener-
alize GMRFs to deal with more than one field. Section 3
introduces a graph for testing the extent to which GMRFs
represent observed variance–covariances of tropical temper-
ature, precipitation, sea level pressure, and upper level winds.
Finally, in Sect. 4, we consider the field and space depen-
dencies that are captured by the GMRF-based metric within
the response of an atmospheric general circulation model
(CAM3.1) to two model parameters important to cloud and
precipitation physics. What we learned in general is that in-
cluding the space and field dependencies provides some qual-
itatively different perspectives about which model configura-
tions are more similar to what is observed. For the example
we consider, the effects of space dependencies turn out to be
more critical than field dependencies.

2 Gaussian Markov random fields (GMRFs)

A Gaussian Markov random field (GMRF) is a special case
of a multivariate normal distribution. The density of a nor-
mal random vector x = (x1,x2, . . .,xn)

T (where T denotes
the operation of transposing a column to a row), with mean
µ (n× 1 vector) and covariance matrix 6 (n× n matrix), is

f (x)= (1)

(2π)−n/2|6|−
1
2 exp

{
−

1
2
(x−µ)T6−1(x−µ)

}
.

Here, µi = E(xi), 6ij = Cov(xi,xj ), 6ii = Var(xi) > 0,
and |6| is the determinant of 6. Estimating 6 can be quite
challenging in many contexts, especially for climate mod-
els where there are only limited data. All eigenvalues of 6
must be greater than zero, otherwise 6−1 becomes a singu-
lar matrix and it does not define a valid multivariate normal
distribution. It can also be shown that if all eigenvalues of
6 are positive, then all eigenvalues of 6−1 are also greater
than zero. Rather than estimating 6 and ensuring all eigen-
values of6−1 are positive, GMRFs make use of the precision
matrix P=6−1. We denote x ∼ N(µ,P) to represent x as a
multivariate normal distribution with vector mean µ and pre-
cision matrix P. GMRFs approximate f (x) using a sparse
representation for P by setting all precisions outside a neigh-
borhood structure to zero. Thus GMRFs make the assump-
tion that points outside a neighborhood structure are condi-
tionally independent. As we shall show below, this limitation
does not prevent GMRFs from capturing covariances outside
the neighborhood structure used to define precisions.

The GMRF-based expression that we have developed for
quantifying the significance of differences between model
output and observations is

vT S−1
⊗ (αI+ (1−α)Q)v, (2)

where v is the vector of differences between model output
and observations with a length given by the product of the
number of observational fields and number of grid points,
nobsnpts, α is a scalar with a value close to zero, I stands
for an identity matrix (a diagonal matrix of ones) of dimen-
sion npts corresponding to v, and Q is a precision operator
of dimension npts× npts from a GMRF induced by a first-
order neighborhood structure. This cost function captures
field dependencies through S−1, which is a matrix of dimen-
sion nobs× nobs where each of its elements represents a spa-
tial average of grid point variances and covariances between
fields. The spatial dependency between grids is approximated
through Q. The quantity α could be interpreted as a weight
of the spatial relationship between grid cells. The Kronecker
product ⊗ provides a means of associating the different ma-
trix dimensions of the metric, essentially combining its field
and space components. Each of the following subsections
provides additional information about the derivation and ap-
plication of Eq. (2).

2.1 Precision operator of a GMRF

The precision operator of a GMRF Q provides a way to es-
timate dependencies among neighboring grid cells. Q needs
to be constructed such that it
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Figure 1. Graphical representation of a 2× 2 lattice and elements
of x.

– reflects the kind of spatial dependency we assume our
data has, and

– yields a legitimate covariance matrix, 6, i.e. symmetric
and positive definite, so that it can be used to compute a
likelihood function.

Consider x, a vector of measurements on a 2× 2 lattice,
as represented in Fig. 1. Assume a neighborhood structure
between the four elements of x. In Fig. 2, the neighbors for
each element of x are defined graphically. Given the neigh-
borhood structure shown in Fig. 2, the precision matrix that
works for this problem is

Q=


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1

0 −1 −1 2

 ,
which follows these rules:

– Qij =−1, if xi and xj are neighbors.

– Qij = 0, if xi and xj are not neighbors.

– Qii gives the total number of neighbors of xi .

While the implementation of GMRFs is simple, the theory
and mathematics are rather involved. A more full descrip-
tion of the mathematics of this example is provided in the
Supplement. It may also not be immediately clear to a phys-
ical scientist that such a simple specification, where only re-
lationships among neighboring grid cells are taken into ac-
count, would be sufficient to quantify correlated quantities
across large distances. The mathematics of working with pre-
cisions allows one to infer the net effect of long-distance rela-
tionships through relationship information that exists among
neighboring cells. While the GMRF approach does not in-
clude information about particular teleconnection structures
such as ENSO, the approach is sensitive to how changes in
large-scale conditions induce local covariances across multi-
ple fields within the entire domain. In this way teleconnec-
tions are represented through a conditional dependence.
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Figure 2. Neighbors of x1, x2, x3 and x4

A problem arises in that one of the eigenvalues of the Q
matrix is 0, which implies that this definition of the preci-
sion matrix does not induce an invertible covariance matrix.
Although Q may be inverted using the Moore–Penrose pseu-
doinverse, we have solved this problem by using αI+ (1−
α)Q, instead of Q. If α is small, the neighborhood structure
remains essentially unchanged. Section 3 describes our ap-
proach to specifying a value for α.

2.2 Generalizing concepts to deal with multiple fields

The generalization of Q to handle multiple fields involves a
Kronecker product (⊗) between S−1 and Q. For reference, a
Kronecker product of A⊗B where

A=
(

1 4
2 5

)
and B=

(
1 3
0 4

)
is given by

A⊗B=
(

1(B) 4(B)
2(B) 5(B)

)
=


1 3 4 12
0 4 0 16
2 6 5 15
0 8 0 20

 .
Consider x and y which represent observations for two

different fields of interest on a 2× 2 lattice. First, x
and y are combined to form one vector v as follows:
vT = (x1,x2,x3,x4,y1,y2,y3,y4). The average covariances
among these observations can be represented by a 2× 2 ma-
trix between the first field, x, and the second field, y:

S=
(
σ11 σ12
σ21 σ22

)
,

where Var(x)= σ11, Var(y)= σ22, and Cov(x,y)= σ12.
Recalling that the correlation between fields 1 and 2 is de-
fined as ρ = σ12√

σ11σ22
, one can show that the inverse of S is
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Figure 3. α vs. f (α).

S−1
=


1

σ11(1− ρ2)

−ρ

(1− ρ2)
√
σ11σ22

−ρ

(1− ρ2)
√
σ11σ22

1
σ22(1− ρ2)


=

(
S−1

11 S−1
12

S−1
21 S−1

22

)
.

If we consider the Kronecker product in Eq. (2) when α = 0,

S−1
⊗Q=

(
S−1

11 Q S−1
12 Q

S−1
21 Q S−1

22 Q

)
,

then

vT S−1
⊗Qv = S−1

11 x
TQx+ S−1

12 y
TQx

+ S−1
21 x

TQy+ S−1
22 y

TQy.

In this last expression, one can see that the inverse of S
in combination with the Kronecker product with Q includes
terms involving cross products between fields. The Supple-
ment carries this expression one step further by estimating
the conditional mean for the first element of v to illustrate
how this element is related to itself and its neighbors across
multiple fields.

3 A test of GMRF estimates of variance

GMRFs provide a way to approximate field and space de-
pendencies contained in the inverse covariance matrix 6−1

of Eq. (1) by its GMRF equivalent S−1
⊗ (αI+ (1−α)Q).

In this section, we will test how well GMRFs are able to re-
produce observed space and field dependencies. This may
be achieved by comparing field and spatial variance and co-
variance estimates obtained from the inverse of the GMRF
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Figure 4. “Witch hat” graphs for air temperature on a 128× 22 lat-
tice of the tropics from 30◦ S to 30◦ N. The empirical estimates are
given by the solid red line. The GMRF estimate is given by the
dashed blue line.

Table 1. Correlation matrix between four fields from CAM 3.1.

PRECT PSL TREFHT U

PRECT 1 −0.219 −0.047 0.015
PSL −0.219 1 −0.313 −0.112
TREFHT −0.047 −0.313 1 −0.145
U 0.015 −0.112 −0.145 1

estimate of the precision matrix with those obtained empiri-
cally from observational data. It turns out this comparison is
sensitive to the value that is selected for α. By construction,
the optimal choice of α depends only on geometric consider-
ations of the neighborhood model that is used for GMRF and
the number of grid points in the fields and not the properties
of the field data. We introduce a “witch hat” graph that pro-
vides a compact summary of variance–covariance informa-
tion between these two methods in order to show that GM-
RFs do a reasonable job approximating observed field and
space relationships.

3.1 Finding an appropriate value of α

In the effort to compare space and field dependencies ap-
proximated by GMRF with empirical estimates we need
to determine an optimal value for α. In order to carry
out this comparison, we need to find the inverse of S−1

⊗

(αI+ (1−α)Q), our proposed precision matrix based on
GMRF. Using results of Kronecker products, we have that

Geosci. Model Dev., 9, 2407–2414, 2016 www.geosci-model-dev.net/9/2407/2016/



A. Nosedal-Sanchez et al.: A new test statistic for climate models 2411

c0

0

1e4

2e4

3e4

4e4

5e4

6e4

2e−6 4e−6 6e−6 8e−6 1e−5

1e-3

2e-3

3e-3

4e-3

5e-3

Ke

(a) Field and space independence

0

1e4

2e4

3e4

4e4

5e4

6e4

2e−6 4e−6 6e−6 8e−6 1e−5

2e-3

3e-3

4e-3

5e-3

Ke

(b) Field dependencies

2e−6 4e−6 6e−6 8e−6 10e−6

1e-3

2e-3

3e-3

4e-3

5e-3

Ke

(c) Field and space dependencies

1e-3

0

2e4

4e4

6e4

8e4

10e4

12e4

Figure 5. Three versions of the GMRF-based cost as a function of two CAM3.1 parameters ke and c0 that assumes the data have (a) field
and space independence, (b) field dependencies, and (c) field and space dependencies. Each color represents ten percentiles of the cost
distribution. The cost is shown relative to the value of the default model configuration.

[
S−1
⊗ (αI+ (1−α)Q)

]−1
= S⊗(αI+(1−α)Q)−1. Letting

Q∗ = (αI+ (1−α)Q)−1, then S⊗Q∗ for two fields can be
written as(
S11Q∗ S12Q∗
S21Q∗ S22Q∗

)
.

If n is the total number of grid points of the lattice, S⊗Q∗
is a 2n× 2n covariance matrix. Note that each element of
diag(SijQ∗) contains the estimated variance or covariance at
each grid point for fields i and j using a GMRF where i can
be equal to j . If we average these estimates across the whole
lattice, we obtain Gij , the GMRF estimate of the variance or
covariance for fields i and j . Therefore,

Gij =
Sij
∑n
k=1Q

∗

kk

n
=
Sij tr(Q∗)

n
, (3)

where tr(Q∗) denotes the trace of Q∗ and Q∗kk are its diag-
onal elements. We will now select a value for α that allows
the GMRF estimate for field variances and covariances to be
equal, on average, to what has been calculated for S. In order
to achieve this, Gij needs to equal Sij . Satisfying this condi-
tion is equivalent to finding the solution for

tr(Q∗)
n
= 1. (4)

It may not be so obvious what the diagonal elements of Q∗
are. However, one can use the fact that tr(A) is equal to the
sum of its eigenvalues. In our case, if the eigenvalues of Q
are λ1,λ2, . . .,λn, the eigenvalues of αI+ (1−α)Q are α+
(1−α)λ1,α+ (1−α)λ2, . . .,α+ (1−α)λn. The eigenvalues
of Q∗ = (αI+ (1−α)Q)−1 are (α+ (1−α)λ1)

−1, (α+ (1−
α)λ2)

−1, . . ., (α+ (1−α)λn)−1. This implies that in order to
satisfy Eq. (4), we need to find α from

f (α)=

n∑
i=1

1
n(α+ (1−α)λi)

= 1. (5)

Figure 3 shows the relationship between various values of
α and f (α). The eigenvalues used to obtain this figure corre-
spond to the precision operator, Q, for a GMRF induced by a
first-order neighborhood structure and considering a 128×22
lattice (which is the dimension of our data). From the figure
we can see that the curve crosses the value of 1 when α is
close to 0. By using linear interpolation, we determine that
α is approximately 0.0026. Note that this value is indepen-
dent of fields since Eq. (5) does not contain any field-specific
information.

3.2 “Witch hat” comparison test

To illustrate any differences that may exist between empirical
estimates of the covariance matrix 6 and its GMRF equiva-
lent S⊗ (αI+ (1−α)Q)−1, we rely on a graph that shows
the spatial average grid point variance and covariances as a
function of distance for cells and their neighbors. We com-
pute the average entries of the covariance matrix correspond-
ing to each grid cell and the corresponding element to the
north or east (for the positive distances) or to the south or
west (for the negative distances) relative to the main diago-
nal of the matrix. The zero distance case is the average of
variances of the main diagonal. The cells corresponding to
one or more grid cells away are mostly on entries in paral-
lel with the main diagonal. On average, covariances decrease
with distance, making the graph have the shape of a witch’s
hat. This graph is symmetric because covariance matrices are
symmetric.

Figure 4 shows a “witch hat” test of estimated variances
for air temperatures simulated by the Community Atmo-
sphere Model version 3.1 (CAM3.1). The variances are esti-
mated from 15 samples of 2-year mean summertime temper-
atures. Setting α = 1 provides a solution to Eq. (5); however,
this will shut down the effect of Q and only the variances at
the reference point (lag 0) will be well represented. On the

www.geosci-model-dev.net/9/2407/2016/ Geosci. Model Dev., 9, 2407–2414, 2016
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Figure 6. Different field contributions to the GMRF-based costs for a slice of Fig. 5 where c0= 0.0035. Cost values are relative to the
default parameter setting for ke. Note that total cost (black dashed line) is a weighted sum of field contributions as given by S−1 with
contributions from sea level pressure (PSL, red line), 2 m air temperature (TREFHT, green line), 200-millibar zonal winds (U , blue line), and
total precipitation (PRECT, cyan line).

other hand, when α = 0.0026, we allow Q to play more of a
role, which results in a better representation of covariances
at neighboring points (lags different of zero).

4 Climate response to uncertain parameters

In this section we show how inclusion of field and space de-
pendencies using GMRF affects comparisons of the Commu-
nity Atmosphere Model (CAM3.1) (Collins et al., 2006) with
observations. We consider CAM3.1’s response to changes in
parameter ke, which controls raindrop evaporation rates, and
parameter c0, which controls precipitation efficiency through
conversion of cloud water to rain water. For this comparison
we only consider the response for the June, July, and August
(JJA) seasonal mean between 30◦ S and 30◦ N on four vari-
ables including 2 m air temperature (TREFHT), 200-millibar
zonal winds (U ), sea level pressure (PSL), and precipitation
(PRECT). Experiments with CAM3.1 use observed clima-
tological sea surface temperatures and sea ice extents. Each
experiment with CAM3.1 is 32 years in duration.

The observational data that are used to evaluate the model
come from a ECMWF-ERA interim reanalysis product (Up-
pala et al., 2005) for 2 m air temperature, 200-millibar zonal
winds, and sea level pressure and GPCP (Adler et al., 2009)
for precipitation. We make use of approximately 30 years of
JJA mean fields between 1979 and 2009. To construct S, we
calculate variances from 2-year means (i.e., 15 samples).

A total of 64 experiments were completed, varying each
of the two parameters within an 8×8 lattice. For each exper-
iment we calculate three versions of the GMRF test statistic
which we refer to as a “cost” (Eq. 2). The first version is the
traditional cost based on the assumption of space and field in-
dependence where the off diagonal components of S are set
to zero and setting α = 1. This approach is similar to what
has been done previously for Taylor (2001). The second ver-
sion of evaluating the cost takes field dependencies into ac-
count by including all components of S and setting α = 1.
The third version for the cost takes field and space depen-
dencies into account by including all components of S and
setting α = 0.0026.

Geosci. Model Dev., 9, 2407–2414, 2016 www.geosci-model-dev.net/9/2407/2016/
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The correlation matrix, R, corresponding to the S matrix
of 2-year JJA seasonal mean variances and covariances, as
estimated from 30 years of observations, is shown in Table 1.

The primary field correlations are the values of (−0.313)
and (−0.219) occurring between sea level pressure (PSL) and
2 m air temperature (TREFHT), and precipitation (PRECT)
and sea level pressure (PSL), respectively. Maps of the grid
point correlations between these fields show a lot of struc-
ture with regions of both positive and negative correlations.
Therefore, providing a mechanistic explanation of the spa-
tially averaged correlation is not particularly meaningful. De-
spite losing regional information in the S matrix summary of
field covariances, GMRF estimated field covariances as seen
within “witch hat” graphs are reasonable as compared to em-
pirical estimates (see Supplement).

Figure 5 shows a comparison of the three versions of the
GMRF-based cost for the 64 experiments within an 8× 8
lattice. All versions of cost result in qualitatively similar re-
sults with high and low cost values roughly in the same por-
tions of parameter space. The main difference among the ver-
sions of cost comes from taking space dependencies into ac-
count within the field-space version. In this case, extremely
low values of ke result in higher metric values. Figure 6 ex-
amines the reasons for this by graphing the different field
contributions to the GMRF-based costs for a slice where
c0= 0.0035, which corresponds to one of the rows of the lat-
tice. By plotting everything differenced from metric values
at ke= 3× 10−6, one can learn that the biggest qualitative
difference comes from cost values associated with 2 m air
temperature. Closer inspection of differences between model
output and observations of 2 m air temperature (not shown)
indicates that the traditional cost is likely reflecting large-
scale differences over the Southern Hemisphere oceans. In-
clusion of space dependencies places much greater signifi-
cance on smaller-scale anomalies occurring over the conti-
nents, particularly over the Andes Mountains. This finding
is a result of the mathematics of GMRF. It does not im-
ply that the large-scale errors are of lesser scientific impor-
tance. It only means that GMRFs are less sensitive to large-
scale anomalies, perhaps because they are associated with
fewer degrees of freedom than highly structured errors. Un-
derstanding whether and how these distinctions aid model
assessment needs further study. We do find it reassuring that
GMRF-based metrics of distance to observations are similar,
at least in the example provided, to a traditional metric.

5 Summary

We have developed a new test statistic as a scalar measure
of model skill or cost for evaluating the extent to which cli-
mate model output captures observed field and space rela-
tionships using Gaussian Markov random fields (GMRFs).
The challenge has been that few observations exist for es-
tablishing a meaningful observational basis for quantifying

field and space relationships of climate phenomena. Much of
the data that are typically used for model evaluation are sus-
pected of having their own relationship biases introduced by
the numerical model that is used to synthesize measurements
into gridded products. The GMRF-based metric overcomes
some of these limitations by considering field and space vari-
ations within a neighborhood structure, thereby lowering the
metric’s data requirements. The form of the metric separates
space and field dependencies using a Kronecker product that,
when multiplied out, has all the terms necessary to represent
how different points in space are tied together across mul-
tiple fields. We also include a scalar α that weights the im-
portance of spatial relationships between grid cells. Its opti-
mal value turns out to be independent of the data type, which
aids the use of GMRFs for comparing model output to data
across multiple fields. Using “witch hat” graphs, we show a
first-order (nearest neighborhood) structure does an excellent
job of capturing empirical estimates of field and space rela-
tionships for various lag windows or distances. We have ap-
plied three versions of cost that selectively turn on or off field
and space dependencies in a climate model (CAM3.1) output
against observational products for tropical JJA climatologies
for 2 m air temperature, sea level pressure, precipitation, and
200-millibar zonal winds. The results show subtle but poten-
tially important differences among these versions of the cost
which may prove beneficial for selecting models that capture
observed climate phenomena for the right reasons.

6 Code and data availability

R code and data for generating Figs. 5 and 6 can be obtained
through https://zenodo.org/record/33765 (Nosedal-Sanchez
et al., 2015).

The Supplement related to this article is available online
at doi:10.5194/gmd-9-2407-2016-supplement.

Acknowledgements. This material is based upon work supported
by the US Department of Energy Office of Science, Biolog-
ical and Environmental Research Regional & Global Climate
Modeling Program under award numbers DE-SC0006985 and
DE-SC0010843. Alvaro Nosedal-Sanchez was partially supported
by the National Council of Science and Technology of Mexico
(CONACYT).

Edited by: P. Ullrich
Reviewed by: two anonymous referees

www.geosci-model-dev.net/9/2407/2016/ Geosci. Model Dev., 9, 2407–2414, 2016

https://zenodo.org/record/33765
http://dx.doi.org/10.5194/gmd-9-2407-2016-supplement


2414 A. Nosedal-Sanchez et al.: A new test statistic for climate models

References

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie,
P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis,
S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and
Nelkin, E.: The Version-2 Global Precipitation Climatology
Project (GPCP) Monthly Precipitation Analysis (1979–
Present), J. Hydrometeorol., 1147–1167, doi:10.1175/1525-
7541(2003)004<1147:TVGPCP>2.0.CO;2, 2009.

Braverman, A., Cressie, N., and Teixeira, J.: A likelihood-based
comparison of temporal models for physical processes, Statis-
tical Analysis and Data Mining, 4, 247–258, 2011.

Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa,
J. R., Williamson, D. L., and Briegleb, B. P.: The formulation and
atmospheric simulation of the Community Atmosphere Model
version 3 (CAM3), J. Climate, 19, 2144–2161, 2006.

Cressie, N. and Wikle, C. K.: Statistics for Spatio-Temporal Data,
Wiley, Hoboken, NJ, 2011.

Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance met-
rics for climate models, J. Geophys. Res.-Atmos., 113, 1–20,
2008.

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.:
Challenges in combining projections from multiple climate mod-
els, J. Climate, 23, 2739–2758, 2010.

Nosedal-Sanchez, A., Jackson, C. S., and Huerta, G.: Code for “A
new metric for climate models that includes field and spatial de-
pendencies using Gaussian Markov Random Fields”, Zenodo,
doi:10.5281/zenodo.33765, 2015.

Reichler, T. and Kim, J.: How Well Do Coupled Models Simulate
Today’s Climate?, B. Am. Meteorol. Soc., 89, 303–311, 2008.

Santer, B. D., Taylor, K. E., Gleckler, P. J., Bonfils, C., Barnett, T. P.,
Pierce, D. W., Wigley, T. M. L., Mears, C., Wentz, F. J., Brügge-
mann, W., Gillett, N. P., Klein, S. A., Solomon, S., Stott, P. A.,
and Wehner, M. F.: Incorporating model quality information in
climate change detection and attribution studies, P. Natl. Acad.
Sci. USA, 106, 14778–14783, 2009.

Taylor, K.: Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
2001.

Trenberth, K. E., Koike, T., and Onogi, K.: Progress and Prospects
for Reanalysis for Weather and Climate, Eos T. Am. Geophys.
Un., 89, 234–235, 2008.

Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bech-
told, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez,
A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Al-
lan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars,
A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S.,
Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes,
M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen,
P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J. F., Morcrette,
J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Tren-
berth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen,
J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–
3012, 2005.

Weigel, A. P., Knutti, R., Liniger, M. A., and Appenzeller, C.: Risks
of Model Weighting in Multimodel Climate Projections, J. Cli-
mate, 23, 4175–4191, 2010.

Geosci. Model Dev., 9, 2407–2414, 2016 www.geosci-model-dev.net/9/2407/2016/

http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.5281/zenodo.33765

	Abstract
	Introduction
	Gaussian Markov random fields (GMRFs)
	Precision operator of a GMRF
	Generalizing concepts to deal with multiple fields

	A test of  GMRF estimates of variance
	Finding an appropriate value of 
	“Witch hat” comparison test

	Climate response to uncertain parameters
	Summary
	Code and data availability
	Acknowledgements
	References

