Articles | Volume 9, issue 5
https://doi.org/10.5194/gmd-9-1891-2016
https://doi.org/10.5194/gmd-9-1891-2016
Model description paper
 | 
20 May 2016
Model description paper |  | 20 May 2016

An optimized treatment for algorithmic differentiation of an important glaciological fixed-point problem

Daniel N. Goldberg, Sri Hari Krishna Narayanan, Laurent Hascoet, and Jean Utke

Related authors

biogeodyn-MITgcmIS (v1): a biogeodynamical tool for exploratory climate modelling
Laure Moinat, Florian Franziskakis, Christian Vérard, Daniel N. Goldberg, and Maura Brunetti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2946,https://doi.org/10.5194/egusphere-2025-2946, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Results of the second Ice Shelf – Ocean Model Intercomparison Project (ISOMIP+)
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942,https://doi.org/10.5194/egusphere-2025-1942, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Modelling the sensitivity of ice loss to calving front retreat rates in the Amundsen Sea Embayment, West Antarctica
Jowan M. Barnes, G. Hilmar Gudmundsson, Daniel N. Goldberg, and Sainan Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-328,https://doi.org/10.5194/egusphere-2025-328, 2025
Short summary
Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024,https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams
Beatriz Recinos, Daniel Goldberg, James R. Maddison, and Joe Todd
The Cryosphere, 17, 4241–4266, https://doi.org/10.5194/tc-17-4241-2023,https://doi.org/10.5194/tc-17-4241-2023, 2023
Short summary

Related subject area

Cryosphere
Computationally efficient subglacial drainage modelling using Gaussian process emulators: GlaDS-GP v1.0
Tim Hill, Derek Bingham, Gwenn E. Flowers, and Matthew J. Hoffman
Geosci. Model Dev., 18, 4045–4074, https://doi.org/10.5194/gmd-18-4045-2025,https://doi.org/10.5194/gmd-18-4045-2025, 2025
Short summary
Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025,https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Description and validation of the ice-sheet model Nix v1.0
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
Geosci. Model Dev., 18, 3895–3919, https://doi.org/10.5194/gmd-18-3895-2025,https://doi.org/10.5194/gmd-18-3895-2025, 2025
Short summary
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM) version 2.0 – Part 1: Description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge A. Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 3635–3659, https://doi.org/10.5194/gmd-18-3635-2025,https://doi.org/10.5194/gmd-18-3635-2025, 2025
Short summary
A Flexible Snow Model (FSM 2.1.1) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
Geosci. Model Dev., 18, 3583–3605, https://doi.org/10.5194/gmd-18-3583-2025,https://doi.org/10.5194/gmd-18-3583-2025, 2025
Short summary

Cited articles

Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations, J. Geophys. Res.-Earth, 120, 1171–1188, https://doi.org/10.1002/2014JF003239, 2015.
Bartholomew-Biggs, M., Brown, S., Christianson, B., and Dixon, L.: Automatic differentiation of algorithms, J. Comput. Appl. Math., 124, 171–190, https://doi.org/10.1016/S0377-0427(00)00422-2, 2000.
Blatter, H.: Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333–344, 1995.
Christianson, B.: Reverse accumulation and attractive fixed points, Optim. Method. Softw., 3, 311–326, https://doi.org/10.1080/10556789408805572, 1994.
Christianson, B.: Reverse accumulation and implicit functions, Optim. Method. Softw., 9, 307–322, https://doi.org/10.1080/10556789808805697, 1998.
Download
Short summary
Geophysical adjoint models are powerful tools, allowing sensitivity studies that are not possible otherwise, and enabling optimized fit of models to observing data sets. The complexity involved requires the use of algorithmic differentiation (AD) software, but AD adjoint calculation for ice models can be slow, with prohibitive memory requirements. In this paper, we present a method to improve the performance of ice model adjoint generation, in terms of timing, memory load, and accuracy.
Share