Articles | Volume 9, issue 5
https://doi.org/10.5194/gmd-9-1891-2016
https://doi.org/10.5194/gmd-9-1891-2016
Model description paper
 | 
20 May 2016
Model description paper |  | 20 May 2016

An optimized treatment for algorithmic differentiation of an important glaciological fixed-point problem

Daniel N. Goldberg, Sri Hari Krishna Narayanan, Laurent Hascoet, and Jean Utke

Related authors

Modelling the sensitivity of ice loss to calving front retreat rates in the Amundsen Sea Embayment, West Antarctica
Jowan M. Barnes, G. Hilmar Gudmundsson, Daniel N. Goldberg, and Sainan Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-328,https://doi.org/10.5194/egusphere-2025-328, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024,https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams
Beatriz Recinos, Daniel Goldberg, James R. Maddison, and Joe Todd
The Cryosphere, 17, 4241–4266, https://doi.org/10.5194/tc-17-4241-2023,https://doi.org/10.5194/tc-17-4241-2023, 2023
Short summary
Inverting ice surface elevation and velocity for bed topography and slipperiness beneath Thwaites Glacier
Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg
The Cryosphere, 16, 3867–3887, https://doi.org/10.5194/tc-16-3867-2022,https://doi.org/10.5194/tc-16-3867-2022, 2022
Short summary
A comparison of the stability and performance of depth-integrated ice-dynamics solvers
Alexander Robinson, Daniel Goldberg, and William H. Lipscomb
The Cryosphere, 16, 689–709, https://doi.org/10.5194/tc-16-689-2022,https://doi.org/10.5194/tc-16-689-2022, 2022
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations, J. Geophys. Res.-Earth, 120, 1171–1188, https://doi.org/10.1002/2014JF003239, 2015.
Bartholomew-Biggs, M., Brown, S., Christianson, B., and Dixon, L.: Automatic differentiation of algorithms, J. Comput. Appl. Math., 124, 171–190, https://doi.org/10.1016/S0377-0427(00)00422-2, 2000.
Blatter, H.: Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333–344, 1995.
Christianson, B.: Reverse accumulation and attractive fixed points, Optim. Method. Softw., 3, 311–326, https://doi.org/10.1080/10556789408805572, 1994.
Christianson, B.: Reverse accumulation and implicit functions, Optim. Method. Softw., 9, 307–322, https://doi.org/10.1080/10556789808805697, 1998.
Download
Short summary
Geophysical adjoint models are powerful tools, allowing sensitivity studies that are not possible otherwise, and enabling optimized fit of models to observing data sets. The complexity involved requires the use of algorithmic differentiation (AD) software, but AD adjoint calculation for ice models can be slow, with prohibitive memory requirements. In this paper, we present a method to improve the performance of ice model adjoint generation, in terms of timing, memory load, and accuracy.
Share