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Abstract. We apply an optimized method to the adjoint gen-

eration of a time-evolving land ice model through algorith-

mic differentiation (AD). The optimization involves a spe-

cial treatment of the fixed-point iteration required to solve

the nonlinear stress balance, which differs from a straight-

forward application of AD software, and leads to smaller

memory requirements and in some cases shorter computa-

tion times of the adjoint. The optimization is done via im-

plementation of the algorithm of Christianson (1994) for re-

verse accumulation of fixed-point problems, with the AD

tool OpenAD. For test problems, the optimized adjoint is

shown to have far lower memory requirements, potentially

enabling larger problem sizes on memory-limited machines.

In the case of the land ice model, implementation of the al-

gorithm allows further optimization by having the adjoint

model solve a sequence of linear systems with identical

(as opposed to varying) matrices, greatly improving perfor-

mance. The methods introduced here will be of value to other

efforts applying AD tools to ice models, particularly ones

which solve a hybrid shallow ice/shallow shelf approxima-

tion to the Stokes equations.

1 Introduction

In recent decades it has become clear how little we un-

derstand about the processes governing ice sheet behavior

(Vaughan and Arthern, 2007), and the complexity that is re-

quired in numerical ice sheet models in order to understand

this behavior (Little et al., 2007; Lipscomb et al., 2009). The

representation of poorly understood processes in ice sheet

models leads to large, poorly constrained parameter sets, the

size of which might potentially scale with the size of the

numerical grid. It is vital that there be a means to relate

the output of an ice sheet model back to these parameters,

both comprehensively and efficiently. However, the simplest

method of sensitivity assessment – running the model multi-

ple times while varying each parameter in isolation – quickly

becomes intractable because of the complexity of the mod-

els. Consider, for instance, a dynamic model of the Antarctic

Ice Sheet, which takes several days to run on a supercomput-

ing cluster, and contains several hundred thousand parame-

ters pertaining to the spatially varying frictional and geother-

mal properties of the bed over which it slides. Assessing the

sensitivity of the model to this parameter field by the method

described above would not be feasible.

Adjoint models provide a means to assess these sensitivi-

ties in a way which is independent of the number of param-

eters. The adjoint of an ice sheet model simultaneously cal-

culates the derivatives of a single model output (often called

a “cost function”) with respect to all model parameters – or

rather, the gradient of the cost function with respect to the

parameter set, or control variables. Note that the latter com-

putation more naturally lends itself to scientific inquiry, as

– this single output can be one of societal interest, for in-

stance the contribution of an ice sheet to sea level over

a given time window; and
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– an investigator is unlikely to solely be interested in

just one of these (potentially) several hundred thousand

poorly constrained parameters.

The adjoint model is essentially the linearization of the

model, only the information is propagated backward in time

(or rather in reverse to computational order). As such, the

original model is often referred to as the “forward model”.

Essentially, it is this backward-in-time propagation that al-

lows for simultaneous calculation of these derivatives, re-

gardless of the dimension of the parameter set.

One of the earliest instances of the use of the adjoint of an

ice sheet flow model was that of MacAyeal (1992), in which

a control method was developed to optimally fit a model to

observed velocities through adjustment of bed friction pa-

rameters. The ice flow model used in this study was a depth-

integrated approximation to the shear-thinning Stokes equa-

tions, appropriate to ice shelves and weak-bedded streams

(MacAyeal, 1989). Moreover, it was a static model, i.e., it

consisted only of the nonlinear stress balance governing ice

velocities, and did not evolve the ice geometry or temper-

ature. The method has since been used in a number of ap-

plications (e.g., MacAyeal et al., 1995; Rommelaere, 1997;

Vieli and Payne, 2003; Larour et al., 2005; Khazendar et al.,

2007; Sergienko et al., 2008; Joughin et al., 2009). Similar

methods have been applied to higher-order approximations

(Pattyn et al., 2008), or to the Stokes equations themselves

(e.g., Morlighem et al., 2010; Goldberg and Sergienko, 2011;

Petra et al., 2012; Perego et al., 2014; Isaac et al., 2015).

More recently, algorithmic differentiation (AD) tools have

been applied to ice sheet models for adjoint model genera-

tion. AD tools differentiate models by applying the chain rule

to their numerical values (e.g., Forth et al., 2012; Naumann,

2012, also see www.autodiff.org). They have been applied

extensively to atmospheric and ocean codes (Errico, 1997;

Heimbach et al., 2002; Heimbach, 2008). The use of AD of-

fers ease of differentiation of the model. For instance, the ma-

jority of the adjoint models mentioned in the previous para-

graph ignore the dependence of nonlinear ice viscosity on

strain rates, producing an approximate set of adjoint equa-

tions which have the same form as the forward model, al-

lowing for code reuse. At the same time, this approximate

adjoint ignores terms in the model gradient without know-

ing whether they are negligible. While the full adjoint model

involves equations distinct from the forward model, the use

of AD avoids having to write the code to solve them. An-

other advantage is modularity. Modifying, for example, the

specific form of strain-rate dependence of viscosity in an ice

sheet model would then require invasive changes to an an-

alytically derived set of adjoint equations. When generating

the adjoint through AD, these changes are automatic. Fur-

thermore, AD tools are invaluable when dealing with time-

dependent or multiphysics models, where model complexity

makes it very difficult to generate adjoint code by hand. In

fact, to date the only time-dependent ice sheet adjoint mod-

els have been generated through the use of AD (Heimbach

and Bugnion, 2009; McGovern et al., 2013; Goldberg and

Heimbach, 2013; Larour et al., 2014).

For clarity, we will draw a distinction between the partial

differential equations (PDEs) that comprise a mathematical

model of a physical system, and the computational model

that discretizes these equations. The PDEs represent an oper-

ator, the linearization of which has an adjoint (the continuous

adjoint), which can be discretized (Goldberg and Sergienko,

2011). Alternatively, the computational model can be differ-

entiated directly. We focus on this discrete adjoint in this

paper. As mentioned above, a discrete adjoint model can

be thought of as the reverse-order computation of the orig-

inal model (Griewank and Walther, 2008; Heimbach and

Bugnion, 2009), but an important subtlety is that this discrete

adjoint may not necessarily correspond to a discretization of

the correct adjoint, a subtlety which bears on the accuracy of

ice sheet adjoint models.

Most ice flow models solve a nonlinear elliptic system of

(PDEs) for ice velocity, and these equations require an it-

erative fixed-point approach. (Here “most ice flow models”

is taken to mean “all ice flow models”, except those which

make the Shallow Ice Approximation (SIA, Hutter, 1983).

The SIA strictly applies only to slow-moving ice frozen at its

base, and not the fast-flowing ice streams at the Antarctic and

Greenland margin which currently exhibit variability.) We re-

fer to this fixed-point iteration as the forward fixed-point iter-

ation (FFPI). Ice sheet models of this type, to which AD tools

have been applied previously, simply step backward through

the FFPI (Goldberg and Heimbach, 2013; Larour et al., 2014;

Martin and Monnier, 2014). This strategy is sometimes re-

ferred to as the “mechanical adjoint” (Griewank and Walther,

2008). The mechanical adjoint of a fixed-point solution is

in fact the iterative solution of a distinct fixed-point prob-

lem, whose convergence differs from that of the forward loop

(Gilbert, 1992; Christianson, 1994), and to which we refer

as the adjoint fixed-point iteration (AFPI). As such, the me-

chanical adjoint could potentially perform too many itera-

tions, thereby wasting resources; or too few iterations, re-

sulting in decreased accuracy. In fact, in some cases the me-

chanical adjoint can be inaccurate regardless, as we show

in Sect. 4.1. Additionally, the mechanical adjoint can lead

to burdensome memory and/or recomputation loads as dis-

cussed in Sect. 3. Martin and Monnier (2014) show accuracy

can be maintained by truncating the iteration in the mechani-

cal adjoint, but do not provide a robust, situation-independent

way of doing so.

It should be pointed out that some authors have imple-

mented ice model adjoint generation without any iteration

within the adjoint model. Depending on the approximation

to the Stokes momentum balance used, the adjoint stress bal-

ance can be derived directly from the equations involved

(Perego et al., 2014; Isaac et al., 2015). The result is a lin-

ear elliptic equation that can be solved without iteration, but

which leads to a linear system that is far less sparse than in
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the forward model. Additionally, the equations must poten-

tially be re-derived if the model physics are changed. More-

over, not all such approximations to the Stokes balance al-

low such an approach. Hybrid stress balances, which solve

two-dimensional approximations to the Stokes balance and

are appropriate for both fast-sliding and slow-creeping flow,

are increasing in popularity due to low computational cost

but reasonable agreement with the first-order approximation

(e.g., Goldberg, 2011; Schoof and Hindmarsh, 2010; Corn-

ford et al., 2013; Arthern et al., 2015; W. Lipscomb, personal

communication, 2015). Our ice model implements such a

hybrid stress balance. Differentiating such a balance at the

equation level is possible but very tedious, and leads to very

complicated expressions that depend strongly on discretiza-

tion (Goldberg and Sergienko, 2011), both undesirable prop-

erties.

Christianson (1994) provides a mathematical strategy for

finding the adjoint of a fixed-point problem via direct solu-

tion of a related fixed-point problem. The convergence of this

related problem can be directly evaluated, avoiding the prob-

lem of too many or two few iterations. A novelty of the ap-

proach is that only information from the converged state of

the forward loop is used for the adjoint computation, permit-

ting additional efficiency gains. In this paper, we present an

application of the AD software OpenAD (Utke et al., 2008)

to the MITgcm time-dependent glacial flow model (Goldberg

and Heimbach, 2013). A different AD tool has previously

been applied to this ice model, so here we focus on the imple-

mentation of the Christianson algorithm (henceforth called

BC94) – an innovation which is observed to yield substantial

improvements in performance.

2 Fixed-point problem

The forward model to which AD methods are applied is that

of Goldberg (2011), which is a hybrid of two low-order ap-

proximations to the nonlinear Stokes flow equations that gov-

ern ice creep over timescales longer than a day (Greve and

Blatter, 2009). These are the Shallow Ice Approximation, ap-

propriate for slow-flowing ice governed by vertical shear de-

formation, and the Shallow Shelf Approximation (SSA; Mor-

land, 1987; MacAyeal, 1989), appropriate for fast-flowing

ice governed by horizontal stretching and shear deforma-

tion. The hybrid equations have been shown appropriate in

both regimes, and represent considerable computational sav-

ings over the Blatter–Pattyn equations (Blatter, 1995; Pattyn,

2003; Greve and Blatter, 2009), as they require the solution

of a two-dimensional system of elliptic PDEs rather than a

three-dimensional one.

We do not discuss the details of the model here, as they

are given in detail in Goldberg (2011) and in Goldberg and

Heimbach (2013). Rather, we focus on its FFPI. Conceptu-

ally, the model algorithm can be divided into two compo-

nents: prognostic (time dependent) and diagnostic (time in-

dependent). In the MITgcm land ice model, the prognostic

component comprises an update to ice vertical thickness (H )

through a depth-integrated continuity equation, as well as an

update of the surface elevation and, implicitly, the portion

of the model domain where ice is floating in the ocean rather

than in contact with its bed. The diagnostic component solves

the FFPI for ice velocities based on the current thickness pro-

file. Mathematically this step can be understood as the inver-

sion of a nonlinear operator F to obtain u:

F(u,a)= f . (1)

Here u is a vector representing horizontal depth-averaged ve-

locities u and v. F is the discretization of a nonlinear elliptic

PDE in depth-averaged velocity. a represents the set of ma-

terial parameters that determine the coefficients of the PDE:

ice thickness (H ), basal friction rheological parameters (C),

and ice rheological parameters (A). f is the discretization

of driving stress (Cuffey and Paterson, 2010), or the depth-

integrated hydrostatic pressure gradient (which is determined

by ice thickness). In this model (and in many others) the non-

linear elliptic equation is solved by a sequence of solutions

of linear elliptic operators, where the operators depend on the

result of the previous linear solve:

u(m+1) = (L{u(m),a})
−1f ≡8(u(m), â), (2)

where, in the definition of 8, â represents the augmentation

of the set a to include f . L is a linear operator constructed

using u(m), the current iterate of u, and the parameters â.

Note that â will differ for each time step through the depen-

dence on ice thickness, which is updated by the prognostic

component of the model. In general, the ice rheological pa-

rameters depend on ice temperature, which is advected and

diffused over time. Our ice model does not have a thermo-

mechanical component, but once developed, it will not affect

the algorithm we present in this paper.

Equation (2) is our FFPI mentioned previously. In prac-

tice, the iteration is truncated when subsequent iterates agree

in some predefined sense, but in theory will converge to a

unique solution u∗(â). In the process of computing the ad-

joint to the ice model, ∂u∗
∂ â

must be found, either directly

or indirectly. The focus of this paper is an efficient, scalable

method of computing this object.

3 Forward model and mechanical adjoint

Here we give a brief overview of how the model and

its mechanical adjoint are constructed. For further de-

tails the reader should consult Goldberg and Heimbach

(2013). Pseudocode 1 contains a high-level pseudocode

version of the ice model time-stepping procedure. Super-

scripts denote time step indices. First the velocity solve

(CALC_DRIVING_STRESS and the following loop) finds

ice velocities based on current ice thickness and material
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FOR n = initialTimeStep TO finalTimeStep

// Constructs â from H [n] :

CALL CALC_DRIVING_STRESS(H [n]
)

m = 0

REPEAT UNTIL CONVERGENCE OF u

u = Φ(u, â)

m = m+1

store L, u and other variables

lastm[n]
= m

// Finds H [n+1] from continuity equation with u:

CALL ADVECT_THICKNESS()

Pseudocode 1. Pseudocode version of forward model time-stepping

procedure.

parameters; then the prognostic component updates thick-

ness (ADVECT_THICKNESS). The function 8 comprises

the construction of the linear system L (including the non-

linear dependence of the matrix coefficients on the previous

iterate) and its solution.

Pseudocode 2 gives an overview of our implementation

of the mechanical adjoint. Here we introduce some nota-

tion: for a given computational variable X, the adjoint to

X, which formally belongs to the dual tangent space at X,

is denoted δ∗X (e.g., Heimbach and Bugnion, 2009; see

also Bartholomew-Biggs et al., 2000; Griewank and Walther,

2008). The algorithm evolves the adjoint variables (e.g.,

δ∗H ) backward in time. These adjoint variables carry with

them the sensitivities of the model output to the correspond-

ing forward variables, and the sensitivities are eventually

propagated back to the input parameters. Note that the ad-

joints of the individual (pseudo) subroutines are given and

correspond to the (pseudo) subroutines of the forward model,

mirroring the way the adjoint is actually constructed. Just

like the forward model, the adjoint contains an inner loop

– this is a specific implementation of the AFPI, which will

be discussed in further detail below. As the computation of

8 involves the solution of a linear system of equations, the

adjoint of 8 involves the solution of the adjoint of that sys-

tem. Since the matrix L{u(m),a} is self adjoint, it is easier

to calculate this result analytically than for an AD tool to

differentiate the linear solver code (e.g., Goldberg and He-

imbach, 2013). This allows for invocation of external black

box libraries that cannot be differentiated by the tool. This

analytical approach allows invocation of AD for ice models

(e.g., Martin and Monnier, 2014).

An important point to be made is that the inner loop in

Pseudocode 2 is executed as many times as the correspond-

ing inner loop in the forward model (lastm[n]), without any

checks of convergence. This could lead to under- or overcon-

vergence, as stated previously. Another important aspect is

FOR n = finalTimeStep DOWNTO initialTimeStep

// Constructs δ∗H [n] and δ∗u[n] from δ∗H [n+1]

// via the adjoint of the continuity equation :

CALL AD_ADVECT_THICKNESS()

REPEAT lastm[n]
TIMES

restore L, u and other variables

δ∗â = δ∗â+ δ∗u
(

∂Φ
∂â

)T

δ∗u = δ∗u
(

∂Φ
∂u

)T

// Updates δ∗H [n] from δ∗â :

CALL AD_CALC_DRIVING_STRESS(δ∗H [n]
)

Pseudocode 2. Pseudocode version of mechanical adjoint.

that at each reverse time step, and, importantly, at each itera-

tion of the FFPI, the state of the forward model is required. In

particular, every matrix L{u(m),a}must be stored (or recom-

puted), along with other intermediate variables within the

fixed-point loop. The storage and recovery steps are shown

explicitly in Pseudocodes 1 and 2 – and can lead to burden-

some memory loads depending on the number of fixed-point

iterations taken at each time step.

The mechanical adjoint of our model was first generated

using TAF (Transformation of Algorithms in Fortran; Gier-

ing et al., 2005), but has subsequently been generated via

OpenAD with little further difficulty.

4 Fixed-point treatment

Christianson (1994) presents an algorithm (BC94) for calcu-

lating the adjoint of a fixed-point problem that addresses the

shortcomings given above, namely the dependence of the ter-

mination of the adjoint loop on that of the forward loop, and

the requirement to store variables at each iteration of the ad-

joint loop. Additionally, it provides the opportunity for fur-

ther optimization when applied to a higher-order ice sheet

model, as discussed below.

4.1 Mathematical basis

For a rigorous mathematical analysis of BC94, the user is

asked to consult the original paper. Here, we give a brief

overview of its mathematical basis. In terms of Eq. (2), con-

sider the converged state of the fixed-point problem:

u∗ =8(u∗, â). (3)

Consider a total differential of this equation:

δu∗ =
∂8

∂u
(u∗, â)δu∗+

∂8

∂ â
(u∗, â)δâ. (4)

Rearranging gives

δu∗ =

[
I −

∂8

∂u

]−1
∂8

∂ â
δâ. (5)
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If the operator norm of the square matrix ∂8/∂u is less than

unity then the above is equivalent to

δu∗ =
(
I + ∂8/∂u+ (∂8/∂u)2

+(∂8/∂u)3+ . . .
) ∂8
∂ â
δâ. (6)

Note that in the above series, ∂8/∂u is always evaluated at

the converged solution u∗. The above condition on the norm

of ∂8/∂u will not hold in general – but since this is one of

the conditions required to ensure convergence of8 to a fixed

point, we can expect that it will be satisfied at u∗.

From Eq. (6) we obtain the desired adjoint operator, ap-

proximated by a truncated series of length n:

δ∗â =

(
∂8

∂ â

)T I +(∂8
∂u

)T
+

((
∂8

∂u

)T)2

+ . . .

+

((
∂8

∂u

)T)n]
δ∗u∗. (7)

The algorithm of Christianson (1994) essentially con-

structs the operator within brackets in Eq. (7) via a fixed-

point loop, the convergence criterion of which determines

the truncation length n. This loop represents an implemen-

tation of the AFPI, distinct from the one implemented by the

mechanical adjoint. In order to make this distinction explicit,

the operator in Eq. (7) can be written

n∑
i=0

(
∂8

∂ â

)T n∏
k=n+1−i

(
∂8

∂u

)T
, (8)

where it is understood that in the i = 0 term the product se-

quence evaluates to the identity. It is straightforward to check

that the mechanical adjoint (cf. Pseudocode 2) effectively

computes the operator

n∑
i=0

(
∂8(n−i)

∂ â

)T n∏
k=n+1−i

(
∂8(k)

∂u

)T
, (9)

where ∂8(k)/∂u and similar terms indicate that the gradient

is calculated using the variables that have been stored at for-

ward iteration k, rather than at the converged solution. It is

apparent that this expression can differ from Eq. (7) if some

iterates are far from the fixed point, or if the gradient of 8 is

sensitive to u. In fact, it has been observed in certain cases

that a poor choice of initial iterate can lead to inaccurate ad-

joint calculation. Furthermore, in the mechanical adjoint, the

truncation length depends on the number of forward itera-

tions, which may not be related to the convergence of this se-

ries. A scheme which truncates this series based on the size

of the truncated terms will be more robust.

4.2 Implementation in OpenAD

Pseudocodes 3 and 4 give an overview of our implemen-

tation of BC94 in the MITgcm ice model using OpenAD.

FOR n = initialTimeStep TO finalTimeStep

// Constructs â from H [n] :

CALL CALC_DRIVING_STRESS(H [n]
)

u = initial guess

CALL PHISTAGE(PRELOOP, w, u, â)

REPEAT UNTIL CONVERGENCE OF u

CALL PHISTAGE(INLOOP, w, u, â)

CALL PHISTAGE(POSTLOOP, w, u, â)

// Finds H [n+1] from continuity equation with u:

CALL ADVECT_THICKNESS()

SUBROUTINE PHISTAGE(phase, w, u, â)

IF (phase==PRELOOP)

// do nothing

ELSE IF (phase==INLOOP)

save tape pointer

u = Φ(u, â)

// Makes sure no storage is done :

restore tape pointer

ELSE IF (phase==POSTLOOP)

u = Φ(u, â)

store L, u and other variables

Pseudocode 3. Pseudocode version of modified forward model for

BC94.

High-level changes to the code were necessary, but the sub-

routines that comprise the action of the operator 8 were left

unchanged. As shown in Pseudocode 3, rather than calling

8 directly, the loop implementing the FFPI calls a subrou-

tine called PHISTAGE with an argument phase which has

values PRELOOP, INLOOP, or POSTLOOP. Just before the

fixed-point loop PHISTAGE is called with PRELOOP, which

does nothing (that is, nothing in forward mode). Within the

loop, PHISTAGE is called with argument INLOOP, which

essentially has the same effect as the call to 8 in the orig-

inal ice model time-stepping algorithm. After the loop is

converged, PHISTAGE is called with argument POSTLOOP,

which calls 8 one more time (which, if the iteration is con-

verged, should have negligible effect). Of key importance is

that any storing of variables that takes place within the call

to 8 in the INLOOP phase is undone at the end of each it-

eration. Once convergence is reached, storing takes place as

normal in the POSTLOOP phase.

The reason for the addition of this layer PHISTAGE is

rooted in the nature of OpenAD source transformation. To

implement BC94 using this tool, it was found to be sim-
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FOR n = finalTimeStep DOWNTO initialTimeStep

// Constructs δ∗H [n] and δ∗u from δ∗H [n+1]

// via the adjoint of the continuity equation :

CALL AD_ADVECT_THICKNESS()

CALL AD_PHISTAGE(POSTLOOP, δ∗w, δ∗u, δ∗â)

REPEAT UNTIL CONVERGENCE OF δ∗w

CALL AD_PHISTAGE(INLOOP, δ∗w, δ∗u, δ∗â)

CALL AD_PHISTAGE(PRELOOP, δ∗w, δ∗u, δ∗â)

δ∗u = 0.0

// Updates δ∗H [n] from δ∗â :

CALL AD_CALC_DRIVING_STRESS(δ∗H [n]
)

SUBROUTINE AD_PHISTAGE(phase, δ∗w, δ∗u, δ∗â)

IF (phase==POSTLOOP)

δ∗w = δ∗u

ELSE IF (phase==INLOOP)

save tape pointer

restore L, u and other variables

δ∗w = δ∗w
(

∂Φ
∂u

)T
+ δ∗u

// Makes sure converged state is reused :

restore tape pointer

ELSE IF (phase==PRELOOP)

δ∗â = δ∗w
(

∂Φ
∂â

)T

Pseudocode 4. Pseudocode version of fixed-point (BC94) adjoint.

plest to apply the template mechanism provided by OpenAD,

that lets the end-user provide a customized differentiation of

specific sections of the code by means of a template, hand-

written once and for all. Such a template was written for

PHISTAGE in order to implement the pseudocode in Pseu-

docodes 3 and 4. The subroutine thus serves as a layer which

does not affect the diagnostic ice physics represented by the

function8 or the prognostic physics implemented outside of

the FFPI loop. Thus, the modularity offered by the AD ap-

proach is not lost.

Pseudocode 4 shows how the adjoint model is constructed,

making use of the OpenAD-generated adjoint code for 8.

In adjoint mode, the calls to PHISTAGE happen in reverse

order. The variable w is a placeholder with no real role

in the forward computation, but the adjoint of the call to

PHISTAGE in the POSTLOOP phase assigns to δ∗w the ad-

joint of velocity resulting from AD_ADVECT_THICKNESS,

in other words δ∗u∗. In the INLOOP phase, δ∗w is updated

according to the equation

δ∗w(m+1) = δ
∗w(m)

(
∂8

∂u

)T
+ δ∗u, (10)

where m indicates the AFPI iteration step. (In the table the

subscript indices are left off for clarity). This assignment is

equivalent to step 9 of Algorithm 9.1 of Christianson (1994).

Given that δ∗w is initialized to δ∗u∗, it can be seen that

δ∗w(n) is equivalent to the argument of
(
∂8
∂ â

)T
in Eq. (7).

Christianson (1994) observes furthermore that if the conver-

gence criteria are met, any other initial δ∗w(0) will converge

to δ∗â for a sufficient n. This property can be used to imple-

ment a warm start of the algorithm when a good initial guess

of δ∗w is available. We did not test this idea for our present

experiments. Finally, the adjoint-mode call to PHISTAGE

with PRELOOP represents the operation of
(
∂8
∂ â

)T
on the re-

sult.

The introduction of the variable w represents the bulk of

the modifications that were necessary to implement the al-

gorithm using OpenAD. The only additional modification is

a handwritten evaluation of convergence of δ∗w: we termi-

nate when the relative reduction in the norm of the change in

δ∗w is below a fixed tolerance. The norm in which conver-

gence is evaluated is the conjugate norm to that used in the

forward iteration: that is, if forward convergence is evaluated

in the Lp norm, then adjoint convergence is evaluated in the

Lq norm, where 1
p
+

1
q
= 1 (and the L1 norm is conjugate to

the sup norm). Though all norms are equivalent in a finite-

dimensional vector space, this feature is added for complete-

ness, motivated by the fact that the error in the derivative is

bounded by the inner product of the error in the forward it-

eration and the error in the reverse iteration (Christianson,

1998). In the results presented in this paper, convergence of

the forward iteration is evaluated in the sup norm (thus ad-

joint convergence is evaluated in the L1 norm).

We emphasize that all of these modifications are at the

level of the wrapper PHISTAGE, which does not contain any

representation of model physics (and hence changes to the

model physics would not require changes to this subroutine

nor to its adjoint template).

4.3 Optimization of linear solver

As mentioned previously, evaluating 8 involves the solution

of a large (self-adjoint) linear system, and thus the adjoint

of 8 involves the solution of a linear system with the same

matrix (assuming the same values of u and â). In the me-

chanical adjoint model, within a given time step, this matrix

differs with each iteration of the adjoint loop; however, in

BC94, only the right-hand side differs. This invariance sug-

gests the use of a linear solver whose cost can be amortized

over a number of solves, such as an LU decomposition or

an algebraic multigrid preconditioner, the internal data struc-

tures of which only need be constructed once. In this study,

we consider only an LU solver.

5 Test experiment

A simple experimental setup was developed to test the ac-

curacy, performance, and convergence properties of the im-

plementation of BC94. The setup consists of an advanc-
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Figure 1. (a) Surface speed (shading) in the test experiment. The flow direction is from right to left, and the white portion of the figure is

where the ice shelf has not advanced to the end of the domain. Black contours give thickness spaced every 200 m and the white contour is

the grounding line. (b) Adjoint sensitivities of ice speed to basal melt rates. (c) The (log) relative discrepancy between adjoint sensitivities

and the gradient calculated via finite differencing. (d) The (log) second-order differencing of cost function J (see Eq. 17).

ing ice stream and shelf in a rectangular domain (x,y) ∈

[0,80 km]× [0,40 km]. We prescribe an idealized bedrock

topography R and initial thickness h0. R does not vary in the

along-flow (x) direction and forms a channel through which

the ice flows, prescribed by

R(x,y)=−600− 300× sin
( πy

40 km

)
, (11)

while initial thickness is given by

h0(x,y)=


300 m+min

(
1,
(
x−50 km

62 km

)2
)

×1000 m 0≤ x < 50 km

300 m 50 km≤ x ≤ 70 km.

(12)

Where x > 70 km, there is open ocean (until the ice shelf

front advances past this point). Where ice is grounded, a lin-

ear sliding governs basal stress:

τ b =−Cu, (13)

where C = 25 Pa (a−1 m). The Glen’s law coefficient (which

controls the ice stiffness) is given by 8.5× 10−18 Pa−3 a−1,

corresponding to ice with a uniform temperature of

∼−34 ◦C. At the upstream boundary, ice flows into the do-

main at x = 0 at a constant volume flux per meter width of

1.5×106 m2 a−1. At y = 0 and y = 40 km no-flow conditions

are applied. Velocity, thickness, and grounding line are plot-

ted in Fig. 1a. Further details of the equations are given in

Goldberg and Heimbach (2013).

In the experiment, a cost function J is defined by running

the model forward in time for 8 years, and evaluating the

summed square velocity at the end of the run. That is,

J =
∑
i,j

u(i,j)2+ v(i,j)2, (14)

where i and j indicate cell indices in the x and y directions,

respectively, and u and v are cell-centered surface veloci-

ties. Unless specified otherwise, the time step is 0.2 years

and grid resolution is 2000 m, so 1≤ i ≤ 40 and 1≤ j ≤ 20.

The control variable consists of basal melt rate m, defined

for each cell and considered constant over a cell and in time

(and nonzero only where ice is floating), and set uniformly

to zero in the forward run, even under floating ice (in real-

ity, there would be background melting to be perturbed, and

changes to these melt rates would elicit responses of similar

magnitudes, but background melting is zero for the sake of

simplicity). Figure 1b plots the adjoint sensitivities of m, or

alternatively ∂J/∂mij , where mij is melt rate in cell (i,j).

The field shows broad-scale patterns that are physically sen-

sible: in the margins of the ice shelf toward its front, thinning

through basal melting will weaken the restrictive force on the

shelf arising from tangential stresses at the no-slip bound-

aries. The driving force for flow is proportional to ice shelf
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thickness, and so in the center of the shelf, thinning leads to

deceleration. Meanwhile, ice shelf velocities are very insen-

sitive to melting at the center of the ice shelf front.

We find that the results of the mechanical adjoint and of

the adjoint model implementing BC94 (which we henceforth

refer to as the “fixed-point adjoint”) are almost identical,

with a relative difference no larger than 10−6 over the do-

main (not shown). However, the adjoint sensitivities should

also be compared against a direct computation of the gradi-

ent, i.e., one which does not involve the adjoint model. In

this case ∂J/∂mij is approximated through finite differenc-

ing, by perturbing mij by a finite amount and running the

forward model again. This calculation is carried out for each

cell (i,j ). Figure 1c plots discfd, given by

discfd =
δ∗m

fp

ij − δ
∗mcd

ij

δ∗m
fp

ij

, (15)

where δ∗m
fp

ij is obtained through the BC94 algorithm, while

δ∗mcd
ij is a centered-difference approximation:

δ∗mcd
ij =

1

2ε
(J (mij + ε)− J (mij − ε)), (16)

and J (mij + ε) indicates that the melt rate at cell (i,j) only

is perturbed by ε. ε is set to 0.01 m a−1 uniformly.

discfd is seen to become quite large, on the order of ∼ 1 %

in some parts of the domain, warranting further examination.

An implicit assumption in the discrepancy measure discfd is

that the finite difference approximation has negligible error,

which may not be the case. We can estimate where this finite-

difference error will be large: from a Taylor series expansion,

and ignoring round-off error (which we do not attempt to

estimate), the error in approximating the adjoint sensitivity of

mij by finite difference is roughly proportional to the second

derivative ∂2J/∂(mij )
2. As a proxy for this quantity we plot

in Fig. 1d the second-order difference of J :

12Jij = J (mij + ε)+ J (mij − ε)− 2J. (17)

This measure appears to correlate well with discfd, aside

from the central part of the ice shelf front. Here, the large

relative errors are likely due to the small magnitude of the

adjoint sensitivities. We emphasize that Eq. (17) is not an

accurate measure of the second derivative – which is obvi-

ously not achievable through finite differencing if first-order

derivatives are inaccurate – but is simply meant to give an

indication of its magnitude.

5.1 Truncation errors

The analysis of Christianson (1994) suggests the error of the

calculated adjoint depends linearly on both the reverse trun-

cation error and the forward truncation error. The reverse

truncation error is the difference between the final and penul-

timate iterates in the adjoint loop, i.e., the error associated
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Figure 2. Maximum error in fixed-point adjoint calculation versus

tolerance of forward loop. The red line indicates linear dependence.

with terminating the loop after a finite number of iterations.

That is, referring to Pseudocode 4, if m iterations are carried

out, the reverse truncation error is equal to

α‖wm−wm−1‖, (18)

where α is related to the gradient of8 at the fixed point. The

norm here is the sup norm, because this is the norm on which

our convergence criterion is based.

While a tight bound for α will vary with each time step,

it can be expected that the reverse truncation error will vary

linearly with the convergence tolerance and we do not ad-

dress it further. However, we investigate the dependence on

forward truncation error as follows. A sequence of adjoint

model runs is carried out with increasingly smaller toler-

ances (from 10−5 to 10−8) for the forward fixed-point itera-

tion loop. The tolerance of the reverse loop is kept at a small

value (10−8). The adjoint sensitivities corresponding to the

smallest forward tolerance (10−9) are assumed to be truth;

error is estimated by comparison with these values. Figure 2

plots the maximum pointwise error in the adjoint calculation

over the domain against the forward tolerance, which is a

good measure of the forward truncation error. Within a range

of forward truncation error the dependence is nearly linear,

although this dependence appears to become weaker as for-

ward truncation error becomes smaller.

5.2 Performance

Here, we evaluate the relative performance of the mechan-

ical and fixed-point adjoint models in terms of both timing

and memory use. The results are presented in Table 1, but we

must first briefly discuss how the OpenAD-generated adjoint

computes sensitivities for a time-dependent model. As men-

tioned in the introduction, adjoint computation takes place in

reverse order relative to forward computation. This presents

an issue, because at each time step in this reverse computa-

tional mode, the adjoint model requires knowledge of the full

model state at the corresponding forward model time step. In
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Table 1. Timing performance and memory usage of mechanical and fixed-point adjoints. In the “Plain” column, “avg iter” indicates the

number of nonlinear iterations per time step. In other columns, “adj iter” indicates the total number of iterations of the adjoint loop described

by Pseudocode 4 divided by the number of time steps. “dbl tape” indicates the length of the double tape. The asterisk indicates that this

value falls anywhere between 8 and 136 MB. The highlighted text shows the memory gains of the fixed-point adjoint (bold font) and the

performance gain of the fixed-point adjoint (italic font).

Grid size Plain Mechanical BC94 BC94 algorithm

(untouched) adjoint algorithm with LU

optimization

40× 20 total 6.1 s total 32 s total 26 s total 22 s

avg iter 34 forward 11 s forward 10 s forward 9.8 s

(40 time steps, reverse 21 s reverse 16 s reverse 12 s

1 CPU) adj iter N/A adj iter 37 adj iter 37

dbl tape 392 MB dbl tape 136MB∗ dbl tape 136 MB∗

0× 40 total 69 s total 289 s total 278 s total 215 s

avg iter 37 forward 95 s forward 93 s forward 94 s

(80 time steps, reverse 193 s reverse 184 s reverse 122 s

1 CPU) adj iter N/A adj iter 37 adj iter 37

dbl tape 1.42 GB dbl tape 136 MB∗ dbl tape 136 MB∗

160× 80 total 591 s total 2149 s total 1994 s total 1553 s

avg iter 51 forward 634 s forward 615 s forward 608 s

(160 time steps, reverse 1514 s reverse 1378 s reverse 944 s

4 CPUs) adj iter N/A adj iter 39 adj iter 39

dbl tape 2.95 GB dbl tape 136 MB∗ dbl tape 136 MB∗

general, keeping the entire trajectory (including intermediate

variables) of a time-dependent model run in memory is not

tractable. Therefore, efficient adjoint computation is a bal-

ance between recomputation (beginning from intermediate

points in the run known as “checkpoints”), storage of check-

point information on disk, and keeping variables in memory

(in data structures called “tapes”). The store and restore com-

mands in Pseudocodes 1–4 refer to tape manipulation. For

further information on adjoint computation see Griewank and

Walther (2000, 2008).

In our implementation this amounts to an initial forward

run with no taping (aside from the final time step), but writ-

ing of checkpoints to disk. This initial run is referred to be-

low as the “forward sweep”. Afterwards the reverse sweep

begins, beginning with the final time step. The reverse sweep

consists of an initial adjoint computation for the final time

step. As reverse computation proceeds, the model is restarted

from checkpoints to recover variable values from the forward

computation, so that they can be used in the adjoint compu-

tation. The details of this process are important because they

determine how many extra forward time steps (without tap-

ing) must be taken. These plain time steps set up the com-

putation of a subsequent time step in tape mode, i.e., they

write intermediate variables to tape during computation. This

is followed immediately by a time step computation in ad-

joint mode. In the model runs we consider, only one level

of checkpoints is required. A run of 40 time steps, then, will

consist of nearly 40 time steps in plain mode (no taping, but

with checkpoint writing), 40 time steps in tape mode, and 40

time steps in adjoint mode. Even if adjoint time steps and

writing to disk and to tape are negligible, such a run will still

take about twice as long as the forward model.

In Table 1 we compare run times for the forward and re-

verse sweeps for the mechanical and fixed-point adjoints of

our test problem, at multiple grid resolutions. We also give

run times for the untouched, or plain model, i.e., code which

has not been transformed by OpenAD. The difference be-

tween this time and the forward sweep represents writing

checkpoints to disk, taping in the final time step, and any

other extra steps or changes (e.g., modified variable types)

caused by the transformation.

We additionally give the average number of iterations per

time step. In the plain runs this number is the average num-

ber of Picard iterations per time step in the forward model,

which does not change for the adjoint runs. For adjoint runs,

the average iteration count for the adjoint loop, i.e., the loop
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represented in Pseudocode 4, is given. We do not give a value

for the mechanical adjoint, as the number of adjoint iterations

is set by the number of forward iterations. Note that while the

average forward iteration count grows significantly between

the 80× 40 and 160× 80 runs, the same is not true for the

adjoint runs.

Also reported is the maximum length of the double tape

in memory. There are different tapes for different variable

types: integer, double, logical, and character. The double tape

is observed to require the most memory in our tests. How-

ever, due to storage of loop indices, the integer tape is non-

negligible, requiring between 20 % (in the largest test) and

50 % (in the smallest test) of the memory required by the

double tape. The numbers reported represent an upper bound,

as our system of reporting tape lengths has a granularity

of 16× (1024)2 elements. Thus all BC94 runs have double

memory loads between 8 and 136 MB, but more exact fig-

ures cannot be given. Memory load is per processor – which

is why, in the mechanical adjoint runs, the double tape length

increases 4-fold from the 40× 20 run to the 80× 40 run, but

not from the 80×40 run to the 160×80 run. In this case, do-

main decomposition decreases the per-processor tape length;

but on the other hand, the tape grows with the maximum for-

ward iteration count (rather than the average), which is about

twice as large for the 160× 80 run as the others.

In all cases, the forward and adjoint fixed-point tolerance

thresholds are set to 10−8. As resolution increases, stabil-

ity considerations require smaller time steps, so the number

of time steps doubles when cell dimensions are halved. The

simulations are run on Intel Xeon 2.40 GHz CPUs and the

number of cores used is displayed. Unless otherwise spec-

ified, the conjugate gradient solver from the PETSc library

(http://www.mcs.anl.gov/petsc) with ILU preconditioner is

used to invert all matrices.

The results show that without further optimization, the

BC94 algorithm does not offer large timing performance gain

over the mechanical adjoint. The forward sweep is slightly

shorter, but the reverse sweep is roughly the same. How-

ever, the memory load is far less, only going up to (at most)

136 MB in the high-resolution run where the mechanical ad-

joint uses 2.95 GB. This provides a possible explanation for

the forward sweep of the mechanical adjoint being slower:

it is overhead associated with the additional memory alloca-

tion. As even at the highest resolution this is still a modestly

sized problem, it is likely that certain setups of the model on

certain machines would quickly reach memory limits and ei-

ther crash or begin swapping memory, significantly affecting

performance.

Substantial timing performance gains are not seen until the

LU optimization described in Sect. 4.3. As discussed, this

optimization is made possible by the BC94 algorithm. At

the highest resolution tested, the reverse sweep takes 31 %

less time, and overall the model run is 22 % shorter. The per-

formance gain is due to the fact that in a time step, the di-

rect LU decomposition is only done once, and subsequent

linear solves are by forward and back substitution, which

are far less expensive operations. As indirect solvers such

as conjugate gradients are typically faster than direct matrix

solvers, it is unclear what relative performance gain would be

at even higher resolutions; but in the three resolutions tested,

as well as in the realistic experiment in Sect. 6, a noticeable

improvement was observed. Even without the LU optimiza-

tion, however, the BC94 algorithm ensures all linear solves

in the adjoint model correspond to the converged state of

the fixed-point problem. In practice, this matrix is relatively

well-conditioned, leading to better performance of the con-

jugate gradient solver.

We mention that the BC94 algorithm has recently been

implemented in the AD tool Tapenade, through a different

user interface that relies on directives inserted in the code

rather than on the OpenAD templating mechanism. It has

not been tested on an ice flow model but on two other CFD

codes, without our linear solver optimization part. Their per-

formance results are in line with ours, with a minor run-time

benefit but a major reduction of memory consumption (Taftaf

et al., 2015).

6 Realistic experiment

In addition to idealized experiments, the fixed-point adjoint

has been tested in a more realistic setting. Smith Glacier in

West Antarctica is a fast-flowing ice stream that terminates

in a floating ice shelf. In recent years, high thinning rates of

Smith have been observed (Shepherd et al., 2002; McMil-

lan et al., 2014), and this is thought to be related to, or even

caused by, thinning of the adjacent ice shelves by submarine

melting (Shepherd et al., 2004). Here we examine this mech-

anism using the fixed-point adjoint. To initialize the time-

dependent model, we choose a domain and a representation

of the bedrock elevation and ice thickness in the region from

BEDMAP2 (Fretwell et al., 2013) and constrain the hidden

parameters of the model (basal frictional coefficient field and

depth-averaged ice temperature) according to observed ve-

locity using methods that have become standard in glacio-

logical data assimilation (e.g., Joughin et al., 2009; Favier

et al., 2014). The observed velocities come from a data set of

satellite-derived velocity over all of Antarctica (Rignot et al.,

2011).

Using the bed and thickness data, and the inferred slid-

ing and temperature fields, the model is stepped forward for

10 years with 0.125-year time steps (80 time steps). The sim-

ulation is run on 60 CPUs. As with our test experiment, sub-

marine melt rate is used as the control variable. The cost

function, rather than being a measure of velocity, is the loss

of volume above floatation (VAF) in the domain at the end of

the 10 years. VAF is essentially the volume of ice that could

contribute to sea level change, and is often used to assess

the effects of ice shelf thinning on grounded ice (Dupont and

Alley, 2005). It is given by
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Figure 3. Adjoint sensitivity of loss of VAF to basal melting under

the ice shelves adjacent to Smith Glacier (location shown in inset).

Filled contours give modeled ice velocity where ice is grounded;

red–white shading gives adjoint melt rate sensitivity under ice

shelves. The thick black contour denotes the boundary of the ice

shelves.

VAF=
∑
i

HAF(i)1x1y, (19)

HAF(i)=

(
h(i)+

ρw

ρ
R(i)

)+
, (20)

where i is cell index, h is thickness, ρ and ρw are, respec-

tively, ice and ocean density, R is bedrock elevation, and the

+ superscript indicates the positive part of the number. We

use ρ = 918 kg m−3 and ρw = 1028 kg m−3. A key aspect is

that any floating ice does not contribute to VAF.

The results are shown for the ice shelves connecting to

Smith Glacier in Fig. 3, overlain on grounded ice veloc-

ities (adjoint melt rate sensitivities are zero where ice is

grounded). It is interesting to note where the sensitivities are

largest, along the margins of the ice shelves and also along

the boundary between the two main sections of the ice shelf.

The mechanism is similar to that of our test experiment: the

margins are where shear stress is exerted, and thinning here

will lessen the backforce on grounded ice. The boundary be-

tween the two sections of the ice shelf likely plays a similar

role in the ice shelf force balance, as velocity shear is large

in this area (not shown).

Regarding accuracy, the finite-difference approximation to

the gradient cannot be found for every ice shelf cell. How-

ever, we compared the adjoint sensitivity to the finite differ-

ence approximation at four arbitrary locations, and relative

discrepancy was on the order of 10−5. In terms of perfor-

mance, this is a much larger setting than even the highest

resolution examined in the test problem. The 500 m cell size

leads to approximately 200 000 ice-covered cells in the do-

main (which means the matrices involved, which incorporate

both x and y velocities, have 400 000 rows and columns).

The forward sweep has a run time of 1150 s and the reverse

sweep 1778 s. Without using the LU optimization, the reverse

sweep is 2765 s. (Multiple runs on the same cluster give sim-

ilar timing results.) The timing results are encouraging, indi-

cating that the relative forward/adjoint timing observed in the

test problem carries over to large-scale, realistic problems.

7 Discussion and conclusions

The fixed-point algorithm of Christianson (1994) has been

successfully applied to the adjoint calculation of a land ice

model. The algorithm is very relevant to the model code, as

the bulk of the model’s computational cost is the solution

of a nonlinear elliptic equation through fixed-point iteration.

As many land ice models solve a similar fixed-point problem

– particularly those intended to simulate fast-flowing outlet

glaciers in Antarctica and Greenland – the methodology in-

troduced here has potential for the application of algorithmic

differentiation techniques to other ice models. The imple-

mentation of the algorithm replaces a small portion of AD-

generated code by handwritten code. However, this is done

such that it does not interfere with the modularity offered

by AD approach, and it does not require revision as model

physics change.

The algorithm offers two advantages over the more

straightforward mechanical adjoint, i.e., the application of

AD without intervention. First, the code solves the true ad-

joint to the fixed-point iteration, rather than an approxima-

tion (cf. Eq. 9). This avoids inaccurate results arising from

bad initial guesses, and ensures proper convergence of the

fixed-point adjoint. Second, the memory requirements do not

increase with the number of adjoint iterations as they do with

the mechanical adjoint. In the case of OpenAD, the effect on

timing performance is small; but for machines with limited

memory or for larger problems, the large memory load asso-

ciated with the mechanical adjoint will be a serious issue.

In the context of our ice model, the nature of the algorithm

allows for further optimization, as it replaces the sequential

solve of linear systems with differing matrices to a sequence

of solves with the same matrix. Replacing the conjugate gra-

dient solver of the forward model with a direct LU solver in

the adjoint model leads to further performance improvement.

The ratio of the reverse sweep to forward sweep, which is

roughly the ratio of the run times of adjoint and forward mod-

els, decreases from 2.6 for the smallest problem considered

to 1.4 for the largest. In the case where only a single time

step is taken (not discussed above), no checkpoints are nec-

essary, and the duration of the reverse sweep can be as little

as 0.3 times the forward sweep. It should be noted, however,

that the performance gain depends on the amortization of the

LU decomposition over the adjoint iteration loop. If the LU

decomposition degrades in performance relative to the con-

jugate gradient solver (a potential for large problems) or the

number of iterations decreases, this gain could be lost.
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As mentioned in the introduction, it is possible to differ-

entiate the stress balance of an ice model at the differential

equation level rather than the code level. Such approaches,

however, (a) cannot make use of forward equation solvers,

(b) remove somewhat the modularity of the AD approach,

and (c) are not suitable for hybrid models, which are becom-

ing popular due to their balance between generality and com-

putational expense. Thus we argue that our application of the

Christianson fixed-point algorithm in our algorithmically dif-

ferentiated ice model framework represents a contribution to

land ice modeling in general.
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