Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 8, issue 12
Geosci. Model Dev., 8, 3999–4025, 2015
https://doi.org/10.5194/gmd-8-3999-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 3999–4025, 2015
https://doi.org/10.5194/gmd-8-3999-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 16 Dec 2015

Development and technical paper | 16 Dec 2015

CESM/CAM5 improvement and application: comparison and evaluation of updated CB05_GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate

J. He et al.

Related authors

Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1
Jian He, Vaishali Naik, Larry W. Horowitz, Ed Dlugokencky, and Kirk Thoning
Atmos. Chem. Phys., 20, 805–827, https://doi.org/10.5194/acp-20-805-2020,https://doi.org/10.5194/acp-20-805-2020, 2020
Short summary
Decadal evaluation of regional climate, air quality, and their interactions over the continental US and their interactions using WRF/Chem version 3.6.1
Khairunnisa Yahya, Kai Wang, Patrick Campbell, Timothy Glotfelty, Jian He, and Yang Zhang
Geosci. Model Dev., 9, 671–695, https://doi.org/10.5194/gmd-9-671-2016,https://doi.org/10.5194/gmd-9-671-2016, 2016
Short summary
Impacts of air–sea interactions on regional air quality predictions using WRF/Chem v3.6.1 coupled with ROMS v3.7: southeastern US example
J. He, R. He, and Y. Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-9965-2015,https://doi.org/10.5194/gmdd-8-9965-2015, 2015
Revised manuscript not accepted
Short summary
Improvement and further development in CESM/CAM5: gas-phase chemistry and inorganic aerosol treatments
J. He and Y. Zhang
Atmos. Chem. Phys., 14, 9171–9200, https://doi.org/10.5194/acp-14-9171-2014,https://doi.org/10.5194/acp-14-9171-2014, 2014
Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects
B. Gantt, J. He, X. Zhang, Y. Zhang, and A. Nenes
Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014,https://doi.org/10.5194/acp-14-7485-2014, 2014

Related subject area

Atmospheric Sciences
A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 13, 4435–4442, https://doi.org/10.5194/gmd-13-4435-2020,https://doi.org/10.5194/gmd-13-4435-2020, 2020
Short summary
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020,https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020,https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary
PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020,https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2
Shin-ichiro Shima, Yousuke Sato, Akihiro Hashimoto, and Ryohei Misumi
Geosci. Model Dev., 13, 4107–4157, https://doi.org/10.5194/gmd-13-4107-2020,https://doi.org/10.5194/gmd-13-4107-2020, 2020
Short summary

Cited articles

Aghedo, A. M., Bowman, K. W., Worden, H. M., Kulawik, S. S., Shindell, D. T., Lamarque, J.-F., Faluvegi, G., Parrington, M., Jones, D. B. A., and Rast, S.: The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models, J. Geophys. Res., 116, D01305, https://doi.org/10.1029/2010JD014243, 2011.
Barahona, D., West, R. E. L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations, Atmos. Chem. Phys., 10, 2467–2473, https://doi.org/10.5194/acp-10-2467-2010, 2010.
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547, 2007.
Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, https://doi.org/10.1029/2003JD003962, 2004.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006GB002840, 2007.
Publications Copernicus
Download
Short summary
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major gases compared to aircraft measurements, with better agreement for the NOy profile by CB05_GE. The SOA concentrations of SOA at four sites in CONUS and organic carbon over the IMPROVE sites are better predicted by MOZART-4x. The two simulations result in a global average difference of 0.5W m-2 in simulated shortwave cloud radiative forcing, with up to 13.6W m-2 over subtropical regions.
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major...
Citation