Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 8, issue 12
Geosci. Model Dev., 8, 3999–4025, 2015
https://doi.org/10.5194/gmd-8-3999-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 3999–4025, 2015
https://doi.org/10.5194/gmd-8-3999-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 16 Dec 2015

Development and technical paper | 16 Dec 2015

CESM/CAM5 improvement and application: comparison and evaluation of updated CB05_GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate

J. He et al.

Viewed

Total article views: 2,391 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,105 1,174 112 2,391 206 141 138
  • HTML: 1,105
  • PDF: 1,174
  • XML: 112
  • Total: 2,391
  • Supplement: 206
  • BibTeX: 141
  • EndNote: 138
Views and downloads (calculated since 27 Aug 2015)
Cumulative views and downloads (calculated since 27 Aug 2015)

Cited

Saved (final revised paper)

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 29 Sep 2020
Publications Copernicus
Download
Short summary
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major gases compared to aircraft measurements, with better agreement for the NOy profile by CB05_GE. The SOA concentrations of SOA at four sites in CONUS and organic carbon over the IMPROVE sites are better predicted by MOZART-4x. The two simulations result in a global average difference of 0.5W m-2 in simulated shortwave cloud radiative forcing, with up to 13.6W m-2 over subtropical regions.
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major...
Citation