Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 8, issue 12
Geosci. Model Dev., 8, 3999–4025, 2015
https://doi.org/10.5194/gmd-8-3999-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 3999–4025, 2015
https://doi.org/10.5194/gmd-8-3999-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 16 Dec 2015

Development and technical paper | 16 Dec 2015

CESM/CAM5 improvement and application: comparison and evaluation of updated CB05_GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate

J. He et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yang Zhang on behalf of the Authors (18 Nov 2015)  Author's response    Manuscript
ED: Publish as is (24 Nov 2015) by Jason Williams
Publications Copernicus
Download
Short summary
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major gases compared to aircraft measurements, with better agreement for the NOy profile by CB05_GE. The SOA concentrations of SOA at four sites in CONUS and organic carbon over the IMPROVE sites are better predicted by MOZART-4x. The two simulations result in a global average difference of 0.5W m-2 in simulated shortwave cloud radiative forcing, with up to 13.6W m-2 over subtropical regions.
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major...
Citation