Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2009-2015
https://doi.org/10.5194/gmd-8-2009-2015
Model description paper
 | 
08 Jul 2015
Model description paper |  | 08 Jul 2015

SPHY v2.0: Spatial Processes in HYdrology

W. Terink, A. F. Lutz, G. W. H. Simons, W. W. Immerzeel, and P. Droogers

Related authors

Why increased extreme precipitation under climate change negatively affects water security
Joris P. C. Eekhout, Johannes E. Hunink, Wilco Terink, and Joris de Vente
Hydrol. Earth Syst. Sci., 22, 5935–5946, https://doi.org/10.5194/hess-22-5935-2018,https://doi.org/10.5194/hess-22-5935-2018, 2018
Short summary
Assessing the large-scale impacts of environmental change using a coupled hydrology and soil erosion model
Joris P. C. Eekhout, Wilco Terink, and Joris de Vente
Earth Surf. Dynam., 6, 687–703, https://doi.org/10.5194/esurf-6-687-2018,https://doi.org/10.5194/esurf-6-687-2018, 2018
Short summary

Related subject area

Hydrology
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Modelling rainfall with a Bartlett–Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
Geosci. Model Dev., 18, 1357–1373, https://doi.org/10.5194/gmd-18-1357-2025,https://doi.org/10.5194/gmd-18-1357-2025, 2025
Short summary
Virtual Joint Field Campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025,https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
SERGHEI v2.0: introducing a performance-portable, high-performance, three-dimensional variably saturated subsurface flow solver (SERGHEI-RE)
Zhi Li, Gregor Rickert, Na Zheng, Zhibo Zhang, Ilhan Özgen-Xian, and Daniel Caviedes-Voullième
Geosci. Model Dev., 18, 547–562, https://doi.org/10.5194/gmd-18-547-2025,https://doi.org/10.5194/gmd-18-547-2025, 2025
Short summary

Cited articles

Abbott, M., Bathurst, J., Cunge, J., O'Connell, P., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically-based, distributed modelling system, J. Hydrol., 87, 61–77, 1986.
ADB: Consultant's Report Regional Technical Assistance: Water and Adaptation Interventions in Central and West Asia, Tech. rep., 2012.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper, 56, 1998.
Andersson, E.: User guide to ECMWF forecast products. Version 1.1, Tech. rep., ECMWF, available at: http://old.ecmwf.int/products/forecasts/guide/user_guide.pdf (last access: 02 August 2014), 2013.
Bartholomeus, R. P., Witte, J.-P. M., van Bodegom, P. M., van Dam, J. C., and Aerts, R.: Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model, J. Hydrol., 360, 147–165, https://doi.org/10.1016/j.jhydrol.2008.07.029, 2008.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This paper introduces the Spatial Processes in HYdrology (SPHY) model (v2.0), its underlying concepts, and some example applications. SPHY has the flexibility to be applied in a wide range of hydrologic applications, on various scales, and can easily be implemented. The most relevant hydrologic processes integrated in the SPHY model are rainfall--runoff, cryosphere processes, evapotranspiration processes, the dynamic evolution of evolution of vegetation cover, and lake/reservoir outflow.
Share