

Corrigendum to

“SPHY v2.0: Spatial Processes in HYdrology” published in Geosci. Model Dev., 8, 2009–2034, 2015

W. Terink^{1,2}, A. F. Lutz¹, G. W. H. Simons^{1,4}, W. W. Immerzeel^{1,3}, and P. Droogers¹

¹FutureWater, Costerweg 1V, 6702 AA Wageningen, the Netherlands

²Since 2018, Q-Hydrology, 6/31 Marriner Street, Sumner, 8081 Christchurch, New Zealand

³Utrecht University, Department of Physical Geography, Heidelberglaan 2, 3508 TC Utrecht, the Netherlands

⁴Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, Stevinweg 1, 2628 CN Delft, the Netherlands

Correspondence: W. Terink (sphymodel@gmail.com, wilco.terink@q-hydrology.co.nz)

Published: 11 February 2016

Updated information in the affiliations (15 March 2024)

The affiliations of the first author have been updated because this author now works for Q-Hydrology (<https://q-hydrology.co.nz>, last access: 11 March 2024).

Correct equation for lateral flow (Eq. 40)

In the original SPHY publication, the equation for lateral flow (Eq. 40) was written incorrectly. This is explained below.

For short travel times, the (TT_{lag}) and $\left(1 - \exp\left[\frac{-1}{TT_{lag}}\right]\right)$ part becomes more or less equal to 1. This means that, although there may not be any lateral flow generated in the current time step t , it can infinitely continue generating lateral flow from the previous time step.

The correct Eq. (40) should therefore be

$$LF_l = LF_l^* \cdot \left(1 - \exp\left[\frac{-1}{TT_{lag,l}}\right]\right) + LF_{l,t-1}^* \cdot \exp\left[\frac{-1}{TT_{lag,l}}\right]. \quad (1)$$