Articles | Volume 8, issue 4
Methods for assessment of models
29 Apr 2015
Methods for assessment of models |  | 29 Apr 2015

Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

S. Multsch, J.-F. Exbrayat, M. Kirby, N. R. Viney, H.-G. Frede, and L. Breuer

Related authors

Monte Carlo-based calibration and uncertainty analysis of a coupled plant growth and hydrological model
T. Houska, S. Multsch, P. Kraft, H.-G. Frede, and L. Breuer
Biogeosciences, 11, 2069–2082,,, 2014
A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)
S. Multsch, Y. A. Al-Rumaikhani, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 6, 1043–1059,,, 2013

Related subject area

pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514,,, 2023
Short summary
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863,,, 2023
Short summary
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701,,, 2023
Short summary
Enhancing the representation of water management in global hydrological models
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472,,, 2023
Short summary
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048,,, 2023
Short summary

Cited articles

ABARES: Land Use of Australia Version 4 2005/2006, Department of Agriculture Fisheries and Forestry, Australian Bureau of Agricultural and Resource Economics, 2010.
ABS: Water Use on Australian Farms Murray-Darling basin 2005-06, 46180DO012, 2006.
Allen, R. G.: REF-ET user's guide, University of Idaho Kimberly Research Stations, Kimberly, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, 6541, 1998.
Balkovič, J., van der Velde, M., Schmid, E., Skalský, R., Khabarov, N., Obersteiner, M., Stürmer, B., and Xiong, W.: Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation, Agr. Syst., 120, 61–75, 2013.
Short summary
Irrigation agriculture is required to sustain yields that allow feeding the world population. A robust assessment of irrigation requirement (IRR) relies on a sound quantification of evapotranspiration (ET). We prepared a multi-model ensemble considering several ET methods and investigate uncertainties in simulating IRR. More generally, we provide an example of the value of investigating the uncertainty in models that may be used to inform policy-making and to elaborate best management practices.