Articles | Volume 8, issue 4
Geosci. Model Dev., 8, 1233–1244, 2015
https://doi.org/10.5194/gmd-8-1233-2015
Geosci. Model Dev., 8, 1233–1244, 2015
https://doi.org/10.5194/gmd-8-1233-2015

Methods for assessment of models 29 Apr 2015

Methods for assessment of models | 29 Apr 2015

Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

S. Multsch et al.

Related authors

Monte Carlo-based calibration and uncertainty analysis of a coupled plant growth and hydrological model
T. Houska, S. Multsch, P. Kraft, H.-G. Frede, and L. Breuer
Biogeosciences, 11, 2069–2082, https://doi.org/10.5194/bg-11-2069-2014,https://doi.org/10.5194/bg-11-2069-2014, 2014
A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)
S. Multsch, Y. A. Al-Rumaikhani, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 6, 1043–1059, https://doi.org/10.5194/gmd-6-1043-2013,https://doi.org/10.5194/gmd-6-1043-2013, 2013

Related subject area

Hydrology
Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021,https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates
Marco De Lucia and Michael Kühn
Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021,https://doi.org/10.5194/gmd-14-4713-2021, 2021
Short summary
Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021,https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
LISFLOOD-FP 8.0: the new discontinuous Galerkin shallow-water solver for multi-core CPUs and GPUs
James Shaw, Georges Kesserwani, Jeffrey Neal, Paul Bates, and Mohammad Kazem Sharifian
Geosci. Model Dev., 14, 3577–3602, https://doi.org/10.5194/gmd-14-3577-2021,https://doi.org/10.5194/gmd-14-3577-2021, 2021
Short summary
InundatEd-v1.0: a height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system
Chiranjib Chaudhuri, Annie Gray, and Colin Robertson
Geosci. Model Dev., 14, 3295–3315, https://doi.org/10.5194/gmd-14-3295-2021,https://doi.org/10.5194/gmd-14-3295-2021, 2021
Short summary

Cited articles

ABARES: Land Use of Australia Version 4 2005/2006, Department of Agriculture Fisheries and Forestry, Australian Bureau of Agricultural and Resource Economics, 2010.
ABS: Water Use on Australian Farms Murray-Darling basin 2005-06, 46180DO012, 2006.
Allen, R. G.: REF-ET user's guide, University of Idaho Kimberly Research Stations, Kimberly, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, 6541, 1998.
Balkovič, J., van der Velde, M., Schmid, E., Skalský, R., Khabarov, N., Obersteiner, M., Stürmer, B., and Xiong, W.: Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation, Agr. Syst., 120, 61–75, 2013.
Download
Short summary
Irrigation agriculture is required to sustain yields that allow feeding the world population. A robust assessment of irrigation requirement (IRR) relies on a sound quantification of evapotranspiration (ET). We prepared a multi-model ensemble considering several ET methods and investigate uncertainties in simulating IRR. More generally, we provide an example of the value of investigating the uncertainty in models that may be used to inform policy-making and to elaborate best management practices.