Articles | Volume 7, issue 1
Geosci. Model Dev., 7, 175–201, 2014
https://doi.org/10.5194/gmd-7-175-2014

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Geosci. Model Dev., 7, 175–201, 2014
https://doi.org/10.5194/gmd-7-175-2014
Model description paper
28 Jan 2014
Model description paper | 28 Jan 2014

Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0)

V. Grewe et al.

Related authors

Transport Patterns of Global Aviation NOx and their Short-term O3 Radiative Forcing – A Machine Learning Approach
Jin Maruhashi, Volker Grewe, Christine Frömming, Patrick Jöckel, and Irene C. Dedoussi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-348,https://doi.org/10.5194/acp-2022-348, 2022
Preprint under review for ACP
Short summary
The Climate Impact of Hypersonic Transport
Johannes Friedrich Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe
EGUsphere, https://doi.org/10.5194/egusphere-2022-285,https://doi.org/10.5194/egusphere-2022-285, 2022
Short summary
Influence of weather situation on non-CO2 aviation climate effects: the REACT4C climate change functions
Christine Frömming, Volker Grewe, Sabine Brinkop, Patrick Jöckel, Amund S. Haslerud, Simon Rosanka, Jesper van Manen, and Sigrun Matthes
Atmos. Chem. Phys., 21, 9151–9172, https://doi.org/10.5194/acp-21-9151-2021,https://doi.org/10.5194/acp-21-9151-2021, 2021
Short summary
TransClim (v1.0): A chemistry-climate response model for assessing the effect of mitigation strategies for road traffic on ozone
Vanessa Simone Rieger and Volker Grewe
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-127,https://doi.org/10.5194/gmd-2021-127, 2021
Revised manuscript accepted for GMD
Short summary
The impact of weather patterns and related transport processes on aviation's contribution to ozone and methane concentrations from NOx emissions
Simon Rosanka, Christine Frömming, and Volker Grewe
Atmos. Chem. Phys., 20, 12347–12361, https://doi.org/10.5194/acp-20-12347-2020,https://doi.org/10.5194/acp-20-12347-2020, 2020
Short summary

Related subject area

Atmospheric sciences
The Comprehensive Automobile Research System (CARS) – a Python-based automobile emissions inventory model
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022,https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Validation of turbulent heat transfer models against eddy covariance flux measurements over a seasonally ice-covered lake
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022,https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Regional evaluation of the performance of the global CAMS chemical modeling system over the United States (IFS cycle 47r1)
Jason E.​​​​​​​ Williams, Vincent Huijnen, Idir Bouarar, Mehdi Meziane, Timo Schreurs, Sophie Pelletier, Virginie Marécal, Beatrice Josse, and Johannes Flemming
Geosci. Model Dev., 15, 4657–4687, https://doi.org/10.5194/gmd-15-4657-2022,https://doi.org/10.5194/gmd-15-4657-2022, 2022
Short summary
Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR
Sudhanshu Pandey, Sander Houweling, and Arjo Segers
Geosci. Model Dev., 15, 4555–4567, https://doi.org/10.5194/gmd-15-4555-2022,https://doi.org/10.5194/gmd-15-4555-2022, 2022
Short summary
Simulated microphysical properties of winter storms from bulk-type microphysics schemes and their evaluation in the Weather Research and Forecasting (v4.1.3) model during the ICE-POP 2018 field campaign
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022,https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary

Cited articles

Berntsen, T. and Fuglestvedt, J.: Global temperature responses to current emissions from the transport sector, P. Natl. Acad. Sci. USA, 105, 19154–19159, 2008.
Burkhardt, U. and Kärcher, B.: Process-based simulation of contrail cirrus in a global climate model, J. Geophys. Res., 114, D16201, https://doi.org/10.1029/2008JD011491, 2009.
Burkhardt, U. and Kärcher, B.: Global radiative forcing from contrail cirrus, Nat. Climate Change, 1, 54–58, https://doi.org/10.1038/nclimate1068, 2011.
Burkhardt, U., Kärcher, B., Ponater, M., Gierens, K., and Gettleman, A.: Contrail cirrus supporting areas in model and observations, Geophys. Res. Lett., 35, L16808, https://doi.org/10.1029/2008GL034056, 2008.
Champougny, T., Duchene, A., Joubert, A., Lambert, J., and Minoux, M.: SOP: a decision-aid tool for Global Air Traffic Management System Optimisation, 4th ATM Seminar – Santa Fe, NM, USA, December, 2001, available at: http://atmseminar.eurocontrol.fr/past-seminars/4th-seminar-santa-fe-nm-usa-december-2001/papers/paper_132/view (last access: August 2013), 2001.