Articles | Volume 7, issue 1
https://doi.org/10.5194/gmd-7-175-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-7-175-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0)
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
C. Frömming
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
S. Matthes
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
S. Brinkop
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
M. Ponater
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
S. Dietmüller
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
P. Jöckel
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
H. Garny
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
E. Tsati
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
K. Dahlmann
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
O. A. Søvde
Center for International Climate and Environmental Research Oslo (CICERO), Oslo, Norway
J. Fuglestvedt
Center for International Climate and Environmental Research Oslo (CICERO), Oslo, Norway
T. K. Berntsen
Center for International Climate and Environmental Research Oslo (CICERO), Oslo, Norway
K. P. Shine
Department of Meteorology, University of Reading, Reading, UK
E. A. Irvine
Department of Meteorology, University of Reading, Reading, UK
T. Champougny
Eurocontrol Headquarter DNM/OPL, Brussels, Belgium
P. Hullah
Eurocontrol Experimental Centre, Bretigny, France
Viewed
Total article views: 7,499 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Aug 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,054 | 3,129 | 316 | 7,499 | 288 | 231 |
- HTML: 4,054
- PDF: 3,129
- XML: 316
- Total: 7,499
- BibTeX: 288
- EndNote: 231
Total article views: 6,235 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 28 Jan 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,500 | 2,468 | 267 | 6,235 | 270 | 224 |
- HTML: 3,500
- PDF: 2,468
- XML: 267
- Total: 6,235
- BibTeX: 270
- EndNote: 224
Total article views: 1,264 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Aug 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
554 | 661 | 49 | 1,264 | 18 | 7 |
- HTML: 554
- PDF: 661
- XML: 49
- Total: 1,264
- BibTeX: 18
- EndNote: 7
Cited
47 citations as recorded by crossref.
- Climate-Compatible Air Transport System—Climate Impact Mitigation Potential for Actual and Future Aircraft K. Dahlmann et al. 10.3390/aerospace3040038
- A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories S. Matthes et al. 10.3390/aerospace4030042
- Graph-Search and Differential Equations for Time-Optimal Vessel Route Planning in Dynamic Ocean Waves G. Mannarini et al. 10.1109/TITS.2019.2935614
- Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects V. Grewe et al. 10.1038/s41467-021-24091-y
- Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0 A. Simorgh et al. 10.5194/gmd-16-3723-2023
- How to best address aviation’s full climate impact from an economic policy point of view? – Main results from AviClim research project J. Scheelhaase et al. 10.1016/j.trd.2015.09.002
- Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E S. Matthes et al. 10.3390/aerospace7110156
- Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations J. Low et al. 10.5194/amt-18-37-2025
- Impact of climate costs on airline network and trajectory optimization: a parametric study J. Rosenow et al. 10.1007/s13272-017-0239-2
- Impact of Hybrid-Electric Aircraft on Contrail Coverage F. Yin et al. 10.3390/aerospace7100147
- Alternative climate metrics to the Global Warming Potential are more suitable for assessing aviation non-CO2 effects L. Megill et al. 10.1038/s43247-024-01423-6
- The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 2: Aviation M. Righi et al. 10.5194/acp-16-4481-2016
- Transport patterns of global aviation NOx and their short-term O3 radiative forcing – a machine learning approach J. Maruhashi et al. 10.5194/acp-22-14253-2022
- Influence of weather situation on non-CO<sub>2</sub> aviation climate effects: the REACT4C climate change functions C. Frömming et al. 10.5194/acp-21-9151-2021
- Mitigating the Climate Impact from Aviation: Achievements and Results of the DLR WeCare Project V. Grewe et al. 10.3390/aerospace4030034
- A Comprehensive Survey on Climate Optimal Aircraft Trajectory Planning A. Simorgh et al. 10.3390/aerospace9030146
- Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0 F. Castino et al. 10.5194/gmd-17-4031-2024
- Cost-Benefit Assessment of Climate-Restricted Airspaces as an Interim Climate Mitigation Option M. Niklaß et al. 10.2514/1.D0045
- Impact of present and future aircraft NOxand aerosol emissions on atmospheric composition and associated direct radiative forcing of climate E. Terrenoire et al. 10.5194/acp-22-11987-2022
- Note on the Non-CO2 Mitigation Potential of Hybrid-Electric Aircraft Using “Eco-Switch” M. Niklaß et al. 10.2514/1.C036826
- Potential to reduce the climate impact of aviation by climate restricted airspaces M. Niklaß et al. 10.1016/j.tranpol.2016.12.010
- A multi-method assessment of the regional sensitivities between flight altitude and short-term O3 climate warming from aircraft NO x emissions J. Maruhashi et al. 10.1088/1748-9326/ad376a
- A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight E. A Irvine et al. 10.1088/1748-9326/9/6/064021
- Assessment of stratospheric fuel burn by civil commercial aviation H. Sheng et al. 10.1016/j.trd.2014.10.008
- Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories P. Rao et al. 10.3390/aerospace9050231
- The importance of an informed choice of CO2-equivalence metrics for contrail avoidance A. Borella et al. 10.5194/acp-24-9401-2024
- Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions J. Pletzer & V. Grewe 10.5194/acp-24-1743-2024
- ATTILA 4.0: Lagrangian advective and convective transport of passive tracers within the ECHAM5/MESSy (2.53.0) chemistry–climate model S. Brinkop & P. Jöckel 10.5194/gmd-12-1991-2019
- Impact of optimised trajectories on air traffic flow management J. Rosenow et al. 10.1017/aer.2018.155
- The ozone radiative forcing of nitrogen oxide emissions from aviation can be estimated using a probabilistic approach P. Rao et al. 10.1038/s43247-024-01691-2
- Concept of climate-charged airspaces: a potential policy instrument for internalizing aviation's climate impact of non-CO2 effects M. Niklaß et al. 10.1080/14693062.2021.1950602
- Climate-Optimised Intermediate Stop Operations: Mitigation Potential and Differences from Fuel-Optimised Configuration Z. Zengerling et al. 10.3390/app122312499
- The importance of contrail ice formation for mitigating the climate impact of aviation B. Kärcher 10.1002/2015JD024696
- Reduction of the air traffic's contribution to climate change: A REACT4C case study V. Grewe et al. 10.1016/j.atmosenv.2014.05.059
- Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53 F. Yin et al. 10.5194/gmd-16-3313-2023
- Contribution of emissions to concentrations: the TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52) V. Grewe et al. 10.5194/gmd-10-2615-2017
- Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0 H. Yamashita et al. 10.5194/gmd-13-4869-2020
- Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0 H. Yamashita et al. 10.5194/gmd-9-3363-2016
- The impact of weather patterns and related transport processes on aviation's contribution to ozone and methane concentrations from NO<sub><i>x</i></sub> emissions S. Rosanka et al. 10.5194/acp-20-12347-2020
- Algorithmic climate change functions for the use in eco-efficient flight planning J. van Manen & V. Grewe 10.1016/j.trd.2018.12.016
- Operational Improvements to Reduce the Climate Impact of Aviation—A Comparative Study from EU Project ClimOP Z. Zengerling et al. 10.3390/app13169083
- On the Life Cycle of Individual Contrails and Contrail Cirrus U. Schumann & A. Heymsfield 10.1175/AMSMONOGRAPHS-D-16-0005.1
- Analysis of Aircraft Routing Strategies for North Atlantic Flights by Using AirTraf 2.0 H. Yamashita et al. 10.3390/aerospace8020033
- Climate Impact Mitigation Potential of European Air Traffic in a Weather Situation with Strong Contrail Formation B. Lührs et al. 10.3390/aerospace8020050
- Impact on flight trajectory characteristics when avoiding the formation of persistent contrails for transatlantic flights F. Yin et al. 10.1016/j.trd.2018.09.017
- A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0 S. Dietmüller et al. 10.5194/gmd-16-4405-2023
- Impact of climate variabilities on trans-oceanic flight times and emissions during strong NAO and ENSO phases J. Kim et al. 10.1088/1748-9326/abaa77
47 citations as recorded by crossref.
- Climate-Compatible Air Transport System—Climate Impact Mitigation Potential for Actual and Future Aircraft K. Dahlmann et al. 10.3390/aerospace3040038
- A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories S. Matthes et al. 10.3390/aerospace4030042
- Graph-Search and Differential Equations for Time-Optimal Vessel Route Planning in Dynamic Ocean Waves G. Mannarini et al. 10.1109/TITS.2019.2935614
- Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects V. Grewe et al. 10.1038/s41467-021-24091-y
- Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0 A. Simorgh et al. 10.5194/gmd-16-3723-2023
- How to best address aviation’s full climate impact from an economic policy point of view? – Main results from AviClim research project J. Scheelhaase et al. 10.1016/j.trd.2015.09.002
- Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E S. Matthes et al. 10.3390/aerospace7110156
- Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations J. Low et al. 10.5194/amt-18-37-2025
- Impact of climate costs on airline network and trajectory optimization: a parametric study J. Rosenow et al. 10.1007/s13272-017-0239-2
- Impact of Hybrid-Electric Aircraft on Contrail Coverage F. Yin et al. 10.3390/aerospace7100147
- Alternative climate metrics to the Global Warming Potential are more suitable for assessing aviation non-CO2 effects L. Megill et al. 10.1038/s43247-024-01423-6
- The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 2: Aviation M. Righi et al. 10.5194/acp-16-4481-2016
- Transport patterns of global aviation NOx and their short-term O3 radiative forcing – a machine learning approach J. Maruhashi et al. 10.5194/acp-22-14253-2022
- Influence of weather situation on non-CO<sub>2</sub> aviation climate effects: the REACT4C climate change functions C. Frömming et al. 10.5194/acp-21-9151-2021
- Mitigating the Climate Impact from Aviation: Achievements and Results of the DLR WeCare Project V. Grewe et al. 10.3390/aerospace4030034
- A Comprehensive Survey on Climate Optimal Aircraft Trajectory Planning A. Simorgh et al. 10.3390/aerospace9030146
- Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0 F. Castino et al. 10.5194/gmd-17-4031-2024
- Cost-Benefit Assessment of Climate-Restricted Airspaces as an Interim Climate Mitigation Option M. Niklaß et al. 10.2514/1.D0045
- Impact of present and future aircraft NOxand aerosol emissions on atmospheric composition and associated direct radiative forcing of climate E. Terrenoire et al. 10.5194/acp-22-11987-2022
- Note on the Non-CO2 Mitigation Potential of Hybrid-Electric Aircraft Using “Eco-Switch” M. Niklaß et al. 10.2514/1.C036826
- Potential to reduce the climate impact of aviation by climate restricted airspaces M. Niklaß et al. 10.1016/j.tranpol.2016.12.010
- A multi-method assessment of the regional sensitivities between flight altitude and short-term O3 climate warming from aircraft NO x emissions J. Maruhashi et al. 10.1088/1748-9326/ad376a
- A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight E. A Irvine et al. 10.1088/1748-9326/9/6/064021
- Assessment of stratospheric fuel burn by civil commercial aviation H. Sheng et al. 10.1016/j.trd.2014.10.008
- Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories P. Rao et al. 10.3390/aerospace9050231
- The importance of an informed choice of CO2-equivalence metrics for contrail avoidance A. Borella et al. 10.5194/acp-24-9401-2024
- Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions J. Pletzer & V. Grewe 10.5194/acp-24-1743-2024
- ATTILA 4.0: Lagrangian advective and convective transport of passive tracers within the ECHAM5/MESSy (2.53.0) chemistry–climate model S. Brinkop & P. Jöckel 10.5194/gmd-12-1991-2019
- Impact of optimised trajectories on air traffic flow management J. Rosenow et al. 10.1017/aer.2018.155
- The ozone radiative forcing of nitrogen oxide emissions from aviation can be estimated using a probabilistic approach P. Rao et al. 10.1038/s43247-024-01691-2
- Concept of climate-charged airspaces: a potential policy instrument for internalizing aviation's climate impact of non-CO2 effects M. Niklaß et al. 10.1080/14693062.2021.1950602
- Climate-Optimised Intermediate Stop Operations: Mitigation Potential and Differences from Fuel-Optimised Configuration Z. Zengerling et al. 10.3390/app122312499
- The importance of contrail ice formation for mitigating the climate impact of aviation B. Kärcher 10.1002/2015JD024696
- Reduction of the air traffic's contribution to climate change: A REACT4C case study V. Grewe et al. 10.1016/j.atmosenv.2014.05.059
- Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53 F. Yin et al. 10.5194/gmd-16-3313-2023
- Contribution of emissions to concentrations: the TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52) V. Grewe et al. 10.5194/gmd-10-2615-2017
- Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0 H. Yamashita et al. 10.5194/gmd-13-4869-2020
- Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0 H. Yamashita et al. 10.5194/gmd-9-3363-2016
- The impact of weather patterns and related transport processes on aviation's contribution to ozone and methane concentrations from NO<sub><i>x</i></sub> emissions S. Rosanka et al. 10.5194/acp-20-12347-2020
- Algorithmic climate change functions for the use in eco-efficient flight planning J. van Manen & V. Grewe 10.1016/j.trd.2018.12.016
- Operational Improvements to Reduce the Climate Impact of Aviation—A Comparative Study from EU Project ClimOP Z. Zengerling et al. 10.3390/app13169083
- On the Life Cycle of Individual Contrails and Contrail Cirrus U. Schumann & A. Heymsfield 10.1175/AMSMONOGRAPHS-D-16-0005.1
- Analysis of Aircraft Routing Strategies for North Atlantic Flights by Using AirTraf 2.0 H. Yamashita et al. 10.3390/aerospace8020033
- Climate Impact Mitigation Potential of European Air Traffic in a Weather Situation with Strong Contrail Formation B. Lührs et al. 10.3390/aerospace8020050
- Impact on flight trajectory characteristics when avoiding the formation of persistent contrails for transatlantic flights F. Yin et al. 10.1016/j.trd.2018.09.017
- A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0 S. Dietmüller et al. 10.5194/gmd-16-4405-2023
- Impact of climate variabilities on trans-oceanic flight times and emissions during strong NAO and ENSO phases J. Kim et al. 10.1088/1748-9326/abaa77
Saved (final revised paper)
Latest update: 15 Jan 2025