The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal SI)(ACP/GMD inter-journal SI)
The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal SI)(ACP/GMD inter-journal SI)
Editor(s): GMD topic editors | Coordinator: P. Jöckel Special issue jointly organized between Atmospheric Chemistry and Physics and Geoscientific Model Development
The Modular Earth Submodel System (MESSy) is a multi-institutional project providing a strategy and the software for developing Earth System Models (ESMs) with highly flexible complexity.

The strategy follows a bottom-up approach, meaning that the various processes and diagnostic tools are implemented as so-called submodels, which are technically independent of each other and strictly separated from the underlying technical model infrastructure, such as memory management, input/output, flow-control, etc.

The MESSy software provides generalized interfaces for the standardized control and interconnection (coupling) of these submodels.

The present time-unlimited Special Issue hosts scientific and technical documentation and evaluation manuscripts concerned with the Modular Earth Submodel System and the models build upon it. Moreover, it comprises manuscripts about scientific applications involving these models.

Download citations of all papers

14 Mar 2024
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024,https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
12 Feb 2024
Implementation of the ISORROPIA-lite aerosol thermodynamics model into the EMAC chemistry climate model (based on MESSy v2.55): implications for aerosol composition and acidity
Alexandros Milousis, Alexandra P. Tsimpidi, Holger Tost, Spyros N. Pandis, Athanasios Nenes, Astrid Kiendler-Scharr, and Vlassis A. Karydis
Geosci. Model Dev., 17, 1111–1131, https://doi.org/10.5194/gmd-17-1111-2024,https://doi.org/10.5194/gmd-17-1111-2024, 2024
Short summary
07 Feb 2024
Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions
Johannes Pletzer and Volker Grewe
Atmos. Chem. Phys., 24, 1743–1775, https://doi.org/10.5194/acp-24-1743-2024,https://doi.org/10.5194/acp-24-1743-2024, 2024
Short summary
05 Jan 2024
Evaluation of the coupling of EMACv2.55 and the land surface and vegetation model JSBACHv4
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3051,https://doi.org/10.5194/egusphere-2023-3051, 2024
Preprint under review for GMD (discussion: final response, 2 comments)
Short summary
15 Nov 2023
How non-equilibrium aerosol chemistry impacts particle acidity: the GMXe AERosol CHEMistry (GMXe–AERCHEM, v1.0) sub-submodel of MESSy
Simon Rosanka, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg, and Domenico Taraborrelli
EGUsphere, https://doi.org/10.5194/egusphere-2023-2587,https://doi.org/10.5194/egusphere-2023-2587, 2023
Revised manuscript accepted for GMD (discussion: final response, 4 comments)
Short summary
01 Nov 2023
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
EGUsphere, https://doi.org/10.5194/egusphere-2023-2140,https://doi.org/10.5194/egusphere-2023-2140, 2023
Revised manuscript under review for GMD (discussion: final response, 4 comments)
Short summary
19 Oct 2023
Numerical simulation and evaluation of global ultrafine particle concentrations at the Earth's surface
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023,https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
19 Oct 2023
Gobal and regional chemical influence of sprites: Reconciling modeling results and measurements
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2403,https://doi.org/10.5194/egusphere-2023-2403, 2023
Revised manuscript accepted for ACP (discussion: final response, 4 comments)
Short summary
11 Oct 2023
What controls ozone sensitivity in the upper tropical troposphere?
Clara M. Nussbaumer, Horst Fischer, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 23, 12651–12669, https://doi.org/10.5194/acp-23-12651-2023,https://doi.org/10.5194/acp-23-12651-2023, 2023
Short summary
06 Oct 2023
Emulating lateral gravity wave propagation in a global chemistry–climate model (EMAC v2.55.2) through horizontal flux redistribution
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023,https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
11 Jul 2023
Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0
Federica Castino, Feijia Yin, Volker Grewe, Hiroshi Yamashita, Sigrun Matthes, Simone Dietmüller, Sabine Baumann, Manuel Soler, Abolfazl Simorgh, Maximilian Mendiguchia Meuser, Florian Linke, and Benjamin Lührs
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-88,https://doi.org/10.5194/gmd-2023-88, 2023
Revised manuscript accepted for GMD (discussion: closed, 4 comments)
Short summary
05 Jul 2023
Ozone source attribution in polluted European areas during summer as simulated with MECO(n)
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2023-528,https://doi.org/10.5194/egusphere-2023-528, 2023
Preprint under review for ACP (discussion: final response, 3 comments)
Short summary
13 Jun 2023
Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith P. Shine, Benjamin Lührs, and Florian Linke
Geosci. Model Dev., 16, 3313–3334, https://doi.org/10.5194/gmd-16-3313-2023,https://doi.org/10.5194/gmd-16-3313-2023, 2023
Short summary
31 May 2023
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023,https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
30 May 2023
Measurement report: Hydrogen peroxide in the upper tropical troposphere over the Atlantic Ocean and western Africa during the CAFE-Africa aircraft campaign
Zaneta Hamryszczak, Dirk Dienhart, Bettina Brendel, Roland Rohloff, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Birger Bohn, Martin Zöger, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 5929–5943, https://doi.org/10.5194/acp-23-5929-2023,https://doi.org/10.5194/acp-23-5929-2023, 2023
Short summary
06 Mar 2023
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023,https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
03 Feb 2023
Isoprene and monoterpene simulations using the chemistry–climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0)
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023,https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
23 Jan 2023
Reconstructing volcanic radiative forcing since 1990, using a comprehensive emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-climate model
Jennifer Schallock, Christoph Brühl, Christine Bingen, Michael Höpfner, Landon Rieger, and Jos Lelieveld
Atmos. Chem. Phys., 23, 1169–1207, https://doi.org/10.5194/acp-23-1169-2023,https://doi.org/10.5194/acp-23-1169-2023, 2023
Short summary
12 Jan 2023
The effect of ash, water vapor, and heterogeneous chemistry on the evolution of a Pinatubo-size volcanic cloud
Mohamed Abdelkader, Georgiy Stenchikov, Andrea Pozzer, Holger Tost, and Jos Lelieveld
Atmos. Chem. Phys., 23, 471–500, https://doi.org/10.5194/acp-23-471-2023,https://doi.org/10.5194/acp-23-471-2023, 2023
Short summary
04 Jan 2023
Formaldehyde and hydroperoxide distribution around the Arabian Peninsula – evaluation of EMAC model results with ship-based measurements
Dirk Dienhart, Bettina Brendel, John N. Crowley, Philipp G. Eger, Hartwig Harder, Monica Martinez, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Sebastian Tauer, David Walter, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023,https://doi.org/10.5194/acp-23-119-2023, 2023
Short summary
19 Dec 2022
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022,https://doi.org/10.5194/acp-22-15887-2022, 2022
Short summary
08 Nov 2022
The climate impact of hydrogen-powered hypersonic transport
Johannes Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe
Atmos. Chem. Phys., 22, 14323–14354, https://doi.org/10.5194/acp-22-14323-2022,https://doi.org/10.5194/acp-22-14323-2022, 2022
Short summary
26 Aug 2022
Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022,https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
22 Jul 2022
Distribution of hydrogen peroxide over Europe during the BLUESKY aircraft campaign
Zaneta T. Hamryszczak, Andrea Pozzer, Florian Obersteiner, Birger Bohn, Benedikt Steil, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 9483–9497, https://doi.org/10.5194/acp-22-9483-2022,https://doi.org/10.5194/acp-22-9483-2022, 2022
Short summary
01 Apr 2022
Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022,https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
21 Feb 2022
A parameterization of long-continuing-current (LCC) lightning in the lightning submodel LNOX (version 3.0) of the Modular Earth Submodel System (MESSy, version 2.54)
Francisco J. Pérez-Invernón, Heidi Huntrieser, Patrick Jöckel, and Francisco J. Gordillo-Vázquez
Geosci. Model Dev., 15, 1545–1565, https://doi.org/10.5194/gmd-15-1545-2022,https://doi.org/10.5194/gmd-15-1545-2022, 2022
Short summary
24 Jan 2022
The impact of sulfur hexafluoride (SF6) sinks on age of air climatologies and trends
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022,https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
30 Nov 2021
Exploring the uncertainties in the aviation soot–cirrus effect
Mattia Righi, Johannes Hendricks, and Christof Gerhard Beer
Atmos. Chem. Phys., 21, 17267–17289, https://doi.org/10.5194/acp-21-17267-2021,https://doi.org/10.5194/acp-21-17267-2021, 2021
Short summary
15 Oct 2021
How alkaline compounds control atmospheric aerosol particle acidity
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021,https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
27 Jul 2021
The impact of organic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric composition
Simon Rosanka, Bruno Franco, Lieven Clarisse, Pierre-François Coheur, Andrea Pozzer, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 11257–11288, https://doi.org/10.5194/acp-21-11257-2021,https://doi.org/10.5194/acp-21-11257-2021, 2021
Short summary
01 Jul 2021
Oxidation of low-molecular-weight organic compounds in cloud droplets: development of the Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) in CAABA/MECCA (version 4.5.0)
Simon Rosanka, Rolf Sander, Andreas Wahner, and Domenico Taraborrelli
Geosci. Model Dev., 14, 4103–4115, https://doi.org/10.5194/gmd-14-4103-2021,https://doi.org/10.5194/gmd-14-4103-2021, 2021
Short summary
01 Jul 2021
Oxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants
Simon Rosanka, Rolf Sander, Bruno Franco, Catherine Wespes, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 9909–9930, https://doi.org/10.5194/acp-21-9909-2021,https://doi.org/10.5194/acp-21-9909-2021, 2021
Short summary
16 Jun 2021
Influence of weather situation on non-CO2 aviation climate effects: the REACT4C climate change functions
Christine Frömming, Volker Grewe, Sabine Brinkop, Patrick Jöckel, Amund S. Haslerud, Simon Rosanka, Jesper van Manen, and Sigrun Matthes
Atmos. Chem. Phys., 21, 9151–9172, https://doi.org/10.5194/acp-21-9151-2021,https://doi.org/10.5194/acp-21-9151-2021, 2021
Short summary
27 May 2021
Pollution trace gases C2H6, C2H2, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021,https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
27 May 2021
Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa
Ivan Tadic, Clara M. Nussbaumer, Birger Bohn, Hartwig Harder, Daniel Marno, Monica Martinez, Florian Obersteiner, Uwe Parchatka, Andrea Pozzer, Roland Rohloff, Martin Zöger, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 8195–8211, https://doi.org/10.5194/acp-21-8195-2021,https://doi.org/10.5194/acp-21-8195-2021, 2021
Short summary
05 May 2021
Analysis of recent lower-stratospheric ozone trends in chemistry climate models
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021,https://doi.org/10.5194/acp-21-6811-2021, 2021
23 Feb 2021
Influence of aromatics on tropospheric gas-phase composition
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021,https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
04 Feb 2021
Cold cloud microphysical process rates in a global chemistry–climate model
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021,https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
02 Feb 2021
Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0)
Franziska Winterstein and Patrick Jöckel
Geosci. Model Dev., 14, 661–674, https://doi.org/10.5194/gmd-14-661-2021,https://doi.org/10.5194/gmd-14-661-2021, 2021
Short summary
26 Jan 2021
A revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54
Tamara Emmerichs, Astrid Kerkweg, Huug Ouwersloot, Silvano Fares, Ivan Mammarella, and Domenico Taraborrelli
Geosci. Model Dev., 14, 495–519, https://doi.org/10.5194/gmd-14-495-2021,https://doi.org/10.5194/gmd-14-495-2021, 2021
Short summary
19 Jan 2021
Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021,https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
09 Dec 2020
Weaker cooling by aerosols due to dust–pollution interactions
Klaus Klingmüller, Vlassis A. Karydis, Sara Bacer, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 20, 15285–15295, https://doi.org/10.5194/acp-20-15285-2020,https://doi.org/10.5194/acp-20-15285-2020, 2020
Short summary
03 Nov 2020
Extending the Modular Earth Submodel System (MESSy v2.54) model hierarchy: the ECHAM/MESSy IdeaLized (EMIL) model setup
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020,https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
29 Oct 2020
The impact of weather patterns and related transport processes on aviation's contribution to ozone and methane concentrations from NOx emissions
Simon Rosanka, Christine Frömming, and Volker Grewe
Atmos. Chem. Phys., 20, 12347–12361, https://doi.org/10.5194/acp-20-12347-2020,https://doi.org/10.5194/acp-20-12347-2020, 2020
Short summary
16 Oct 2020
Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere
Markus Kilian, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 20, 11697–11715, https://doi.org/10.5194/acp-20-11697-2020,https://doi.org/10.5194/acp-20-11697-2020, 2020
Short summary
12 Oct 2020
Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming
Geosci. Model Dev., 13, 4869–4890, https://doi.org/10.5194/gmd-13-4869-2020,https://doi.org/10.5194/gmd-13-4869-2020, 2020
Short summary
16 Sep 2020
Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
Christof G. Beer, Johannes Hendricks, Mattia Righi, Bernd Heinold, Ina Tegen, Silke Groß, Daniel Sauer, Adrian Walser, and Bernadett Weinzierl
Geosci. Model Dev., 13, 4287–4303, https://doi.org/10.5194/gmd-13-4287-2020,https://doi.org/10.5194/gmd-13-4287-2020, 2020
Short summary
23 Jul 2020
Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF6
Frauke Fritsch, Hella Garny, Andreas Engel, Harald Bönisch, and Roland Eichinger
Atmos. Chem. Phys., 20, 8709–8725, https://doi.org/10.5194/acp-20-8709-2020,https://doi.org/10.5194/acp-20-8709-2020, 2020
Short summary
06 Jul 2020
Attributing ozone and its precursors to land transport emissions in Europe and Germany
Mariano Mertens, Astrid Kerkweg, Volker Grewe, Patrick Jöckel, and Robert Sausen
Atmos. Chem. Phys., 20, 7843–7873, https://doi.org/10.5194/acp-20-7843-2020,https://doi.org/10.5194/acp-20-7843-2020, 2020
Short summary
18 Jun 2020
Superparameterised cloud effects in the EMAC general circulation model (v2.50) – influences of model configuration
Harald Rybka and Holger Tost
Geosci. Model Dev., 13, 2671–2694, https://doi.org/10.5194/gmd-13-2671-2020,https://doi.org/10.5194/gmd-13-2671-2020, 2020
Short summary
12 Jun 2020
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020,https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
08 Jun 2020
Atmospheric chemical loss processes of isocyanic acid (HNCO): a combined theoretical kinetic and global modelling study
Simon Rosanka, Giang H. T. Vu, Hue M. T. Nguyen, Tien V. Pham, Umar Javed, Domenico Taraborrelli, and Luc Vereecken
Atmos. Chem. Phys., 20, 6671–6686, https://doi.org/10.5194/acp-20-6671-2020,https://doi.org/10.5194/acp-20-6671-2020, 2020
Short summary
14 May 2020
Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020,https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
16 Apr 2020
Hindcasting and forecasting of regional methane from coal mine emissions in the Upper Silesian Coal Basin using the online nested global regional chemistry–climate model MECO(n) (MESSy v2.53)
Anna-Leah Nickl, Mariano Mertens, Anke Roiger, Andreas Fix, Axel Amediek, Alina Fiehn, Christoph Gerbig, Michal Galkowski, Astrid Kerkweg, Theresa Klausner, Maximilian Eckl, and Patrick Jöckel
Geosci. Model Dev., 13, 1925–1943, https://doi.org/10.5194/gmd-13-1925-2020,https://doi.org/10.5194/gmd-13-1925-2020, 2020
Short summary
06 Apr 2020
Bromine from short-lived source gases in the extratropical northern hemispheric upper troposphere and lower stratosphere (UTLS)
Timo Keber, Harald Bönisch, Carl Hartick, Marius Hauck, Fides Lefrancois, Florian Obersteiner, Akima Ringsdorf, Nils Schohl, Tanja Schuck, Ryan Hossaini, Phoebe Graf, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 20, 4105–4132, https://doi.org/10.5194/acp-20-4105-2020,https://doi.org/10.5194/acp-20-4105-2020, 2020
Short summary
30 Mar 2020
Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model
Mattia Righi, Johannes Hendricks, Ulrike Lohmann, Christof Gerhard Beer, Valerian Hahn, Bernd Heinold, Romy Heller, Martina Krämer, Michael Ponater, Christian Rolf, Ina Tegen, and Christiane Voigt
Geosci. Model Dev., 13, 1635–1661, https://doi.org/10.5194/gmd-13-1635-2020,https://doi.org/10.5194/gmd-13-1635-2020, 2020
Short summary
20 Mar 2020
Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR
Anna Novelli, Luc Vereecken, Birger Bohn, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, David Reimer, Franz Rohrer, Simon Rosanka, Domenico Taraborrelli, Ralf Tillmann, Robert Wegener, Zhujun Yu, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 20, 3333–3355, https://doi.org/10.5194/acp-20-3333-2020,https://doi.org/10.5194/acp-20-3333-2020, 2020
Short summary
18 Mar 2020
Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53)
Matthew Forrest, Holger Tost, Jos Lelieveld, and Thomas Hickler
Geosci. Model Dev., 13, 1285–1309, https://doi.org/10.5194/gmd-13-1285-2020,https://doi.org/10.5194/gmd-13-1285-2020, 2020
Short summary
16 Mar 2020
Kinetics of the OH + NO2 reaction: effect of water vapour and new parameterization for global modelling
Damien Amedro, Matias Berasategui, Arne J. C. Bunkan, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 3091–3105, https://doi.org/10.5194/acp-20-3091-2020,https://doi.org/10.5194/acp-20-3091-2020, 2020
Short summary
31 Jan 2020
Are contributions of emissions to ozone a matter of scale? – a study using MECO(n) (MESSy v2.50)
Mariano Mertens, Astrid Kerkweg, Volker Grewe, Patrick Jöckel, and Robert Sausen
Geosci. Model Dev., 13, 363–383, https://doi.org/10.5194/gmd-13-363-2020,https://doi.org/10.5194/gmd-13-363-2020, 2020
Short summary
28 Nov 2019
On the impact of future climate change on tropopause folds and tropospheric ozone
Dimitris Akritidis, Andrea Pozzer, and Prodromos Zanis
Atmos. Chem. Phys., 19, 14387–14401, https://doi.org/10.5194/acp-19-14387-2019,https://doi.org/10.5194/acp-19-14387-2019, 2019
Short summary
15 Nov 2019
Possible implications of enhanced chlorofluorocarbon-11 concentrations on ozone
Martin Dameris, Patrick Jöckel, and Matthias Nützel
Atmos. Chem. Phys., 19, 13759–13771, https://doi.org/10.5194/acp-19-13759-2019,https://doi.org/10.5194/acp-19-13759-2019, 2019
Short summary
19 Aug 2019
Global simulation of semivolatile organic compounds – development and evaluation of the MESSy submodel SVOC (v1.0)
Mega Octaviani, Holger Tost, and Gerhard Lammel
Geosci. Model Dev., 12, 3585–3607, https://doi.org/10.5194/gmd-12-3585-2019,https://doi.org/10.5194/gmd-12-3585-2019, 2019
Short summary
04 Jun 2019
Direct radiative effect of dust–pollution interactions
Klaus Klingmüller, Jos Lelieveld, Vlassis A. Karydis, and Georgiy L. Stenchikov
Atmos. Chem. Phys., 19, 7397–7408, https://doi.org/10.5194/acp-19-7397-2019,https://doi.org/10.5194/acp-19-7397-2019, 2019
Short summary
29 May 2019
Implication of strongly increased atmospheric methane concentrations for chemistry–climate connections
Franziska Winterstein, Fabian Tanalski, Patrick Jöckel, Martin Dameris, and Michael Ponater
Atmos. Chem. Phys., 19, 7151–7163, https://doi.org/10.5194/acp-19-7151-2019,https://doi.org/10.5194/acp-19-7151-2019, 2019
Short summary
29 May 2019
Non-methane hydrocarbon (C2–C8) sources and sinks around the Arabian Peninsula
Efstratios Bourtsoukidis, Lisa Ernle, John N. Crowley, Jos Lelieveld, Jean-Daniel Paris, Andrea Pozzer, David Walter, and Jonathan Williams
Atmos. Chem. Phys., 19, 7209–7232, https://doi.org/10.5194/acp-19-7209-2019,https://doi.org/10.5194/acp-19-7209-2019, 2019
Short summary
22 May 2019
ATTILA 4.0: Lagrangian advective and convective transport of passive tracers within the ECHAM5/MESSy (2.53.0) chemistry–climate model
Sabine Brinkop and Patrick Jöckel
Geosci. Model Dev., 12, 1991–2008, https://doi.org/10.5194/gmd-12-1991-2019,https://doi.org/10.5194/gmd-12-1991-2019, 2019
Short summary
05 Apr 2019
The community atmospheric chemistry box model CAABA/MECCA-4.0
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019,https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
13 Feb 2019
Upper tropospheric CH4 and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission
Laura Tomsche, Andrea Pozzer, Narendra Ojha, Uwe Parchatka, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 19, 1915–1939, https://doi.org/10.5194/acp-19-1915-2019,https://doi.org/10.5194/acp-19-1915-2019, 2019
Short summary
01 Feb 2019
Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation
J. Christopher Kaiser, Johannes Hendricks, Mattia Righi, Patrick Jöckel, Holger Tost, Konrad Kandler, Bernadett Weinzierl, Daniel Sauer, Katharina Heimerl, Joshua P. Schwarz, Anne E. Perring, and Thomas Popp
Geosci. Model Dev., 12, 541–579, https://doi.org/10.5194/gmd-12-541-2019,https://doi.org/10.5194/gmd-12-541-2019, 2019
Short summary
07 Dec 2018
Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0
Sebastian Ehrhart, Eimear M. Dunne, Hanna E. Manninen, Tuomo Nieminen, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4987–5001, https://doi.org/10.5194/gmd-11-4987-2018,https://doi.org/10.5194/gmd-11-4987-2018, 2018
27 Nov 2018
Aerosol water parameterization: long-term evaluation and importance for climate studies
Swen Metzger, Mohamed Abdelkader, Benedikt Steil, and Klaus Klingmüller
Atmos. Chem. Phys., 18, 16747–16774, https://doi.org/10.5194/acp-18-16747-2018,https://doi.org/10.5194/acp-18-16747-2018, 2018
Short summary
05 Oct 2018
Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018,https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary
06 Sep 2018
Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845–12857, https://doi.org/10.5194/acp-18-12845-2018,https://doi.org/10.5194/acp-18-12845-2018, 2018
Short summary
21 Aug 2018
ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369–3389, https://doi.org/10.5194/gmd-11-3369-2018,https://doi.org/10.5194/gmd-11-3369-2018, 2018
Short summary
13 Jul 2018
Investigating the yield of H2O and H2 from methane oxidation in the stratosphere
Franziska Frank, Patrick Jöckel, Sergey Gromov, and Martin Dameris
Atmos. Chem. Phys., 18, 9955–9973, https://doi.org/10.5194/acp-18-9955-2018,https://doi.org/10.5194/acp-18-9955-2018, 2018
Short summary
12 Jul 2018
A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 18, 9831–9843, https://doi.org/10.5194/acp-18-9831-2018,https://doi.org/10.5194/acp-18-9831-2018, 2018
Short summary
25 Jun 2018
Comparison of ECHAM5/MESSy Atmospheric Chemistry (EMAC) simulations of the Arctic winter 2009/2010 and 2010/2011 with Envisat/MIPAS and Aura/MLS observations
Farahnaz Khosrawi, Oliver Kirner, Gabriele Stiller, Michael Höpfner, Michelle L. Santee, Sylvia Kellmann, and Peter Braesicke
Atmos. Chem. Phys., 18, 8873–8892, https://doi.org/10.5194/acp-18-8873-2018,https://doi.org/10.5194/acp-18-8873-2018, 2018
Short summary
14 Jun 2018
Trend differences in lower stratospheric water vapour between Boulder and the zonal mean and their role in understanding fundamental observational discrepancies
Stefan Lossow, Dale F. Hurst, Karen H. Rosenlof, Gabriele P. Stiller, Thomas von Clarmann, Sabine Brinkop, Martin Dameris, Patrick Jöckel, Doug E. Kinnison, Johannes Plieninger, David A. Plummer, Felix Ploeger, William G. Read, Ellis E. Remsberg, James M. Russell, and Mengchu Tao
Atmos. Chem. Phys., 18, 8331–8351, https://doi.org/10.5194/acp-18-8331-2018,https://doi.org/10.5194/acp-18-8331-2018, 2018
Short summary
05 Jun 2018
An advanced method of contributing emissions to short-lived chemical species (OH and HO2): the TAGGING 1.1 submodel based on the Modular Earth Submodel System (MESSy 2.53)
Vanessa S. Rieger, Mariano Mertens, and Volker Grewe
Geosci. Model Dev., 11, 2049–2066, https://doi.org/10.5194/gmd-11-2049-2018,https://doi.org/10.5194/gmd-11-2049-2018, 2018
Short summary
01 Jun 2018
Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery
Stefanie Meul, Ulrike Langematz, Philipp Kröger, Sophie Oberländer-Hayn, and Patrick Jöckel
Atmos. Chem. Phys., 18, 7721–7738, https://doi.org/10.5194/acp-18-7721-2018,https://doi.org/10.5194/acp-18-7721-2018, 2018
Short summary
24 Apr 2018
Dynamics and composition of the Asian summer monsoon anticyclone
Klaus-Dirk Gottschaldt, Hans Schlager, Robert Baumann, Duy Sinh Cai, Veronika Eyring, Phoebe Graf, Volker Grewe, Patrick Jöckel, Tina Jurkat-Witschas, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 5655–5675, https://doi.org/10.5194/acp-18-5655-2018,https://doi.org/10.5194/acp-18-5655-2018, 2018
Short summary
24 Apr 2018
Revisiting the contribution of land transport and shipping emissions to tropospheric ozone
Mariano Mertens, Volker Grewe, Vanessa S. Rieger, and Patrick Jöckel
Atmos. Chem. Phys., 18, 5567–5588, https://doi.org/10.5194/acp-18-5567-2018,https://doi.org/10.5194/acp-18-5567-2018, 2018
Short summary
24 Apr 2018
Analysis of European ozone trends in the period 1995–2014
Yingying Yan, Andrea Pozzer, Narendra Ojha, Jintai Lin, and Jos Lelieveld
Atmos. Chem. Phys., 18, 5589–5605, https://doi.org/10.5194/acp-18-5589-2018,https://doi.org/10.5194/acp-18-5589-2018, 2018
Short summary
28 Mar 2018
Polar boundary layer bromine explosion and ozone depletion events in the chemistry–climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm
Stefanie Falk and Björn-Martin Sinnhuber
Geosci. Model Dev., 11, 1115–1131, https://doi.org/10.5194/gmd-11-1115-2018,https://doi.org/10.5194/gmd-11-1115-2018, 2018
Short summary
16 Mar 2018
The on-line coupled atmospheric chemistry model system MECO(n) – Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange including data interpolation via GRID (v1.0)
Astrid Kerkweg, Christiane Hofmann, Patrick Jöckel, Mariano Mertens, and Gregor Pante
Geosci. Model Dev., 11, 1059–1076, https://doi.org/10.5194/gmd-11-1059-2018,https://doi.org/10.5194/gmd-11-1059-2018, 2018
Short summary
16 Mar 2018
Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch)
Klaus Klingmüller, Swen Metzger, Mohamed Abdelkader, Vlassis A. Karydis, Georgiy L. Stenchikov, Andrea Pozzer, and Jos Lelieveld
Geosci. Model Dev., 11, 989–1008, https://doi.org/10.5194/gmd-11-989-2018,https://doi.org/10.5194/gmd-11-989-2018, 2018
Short summary
19 Jan 2018
A refined method for calculating equivalent effective stratospheric chlorine
Andreas Engel, Harald Bönisch, Jennifer Ostermöller, Martyn P. Chipperfield, Sandip Dhomse, and Patrick Jöckel
Atmos. Chem. Phys., 18, 601–619, https://doi.org/10.5194/acp-18-601-2018,https://doi.org/10.5194/acp-18-601-2018, 2018
Short summary
01 Nov 2017
Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017,https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
27 Oct 2017
Impact of agricultural emission reductions on fine-particulate matter and public health
Andrea Pozzer, Alexandra P. Tsimpidi, Vlassis A. Karydis, Alexander de Meij, and Jos Lelieveld
Atmos. Chem. Phys., 17, 12813–12826, https://doi.org/10.5194/acp-17-12813-2017,https://doi.org/10.5194/acp-17-12813-2017, 2017
Short summary
10 Oct 2017
GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)
Michail Alvanos and Theodoros Christoudias
Geosci. Model Dev., 10, 3679–3693, https://doi.org/10.5194/gmd-10-3679-2017,https://doi.org/10.5194/gmd-10-3679-2017, 2017
Short summary
27 Sep 2017
An “island” in the stratosphere – on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics
Stefan Lossow, Hella Garny, and Patrick Jöckel
Atmos. Chem. Phys., 17, 11521–11539, https://doi.org/10.5194/acp-17-11521-2017,https://doi.org/10.5194/acp-17-11521-2017, 2017
25 Sep 2017
Brominated VSLS and their influence on ozone under a changing climate
Stefanie Falk, Björn-Martin Sinnhuber, Gisèle Krysztofiak, Patrick Jöckel, Phoebe Graf, and Sinikka T. Lennartz
Atmos. Chem. Phys., 17, 11313–11329, https://doi.org/10.5194/acp-17-11313-2017,https://doi.org/10.5194/acp-17-11313-2017, 2017
Short summary
20 Jul 2017
Atmospheric chemistry, sources and sinks of carbon suboxide, C3O2
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017,https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
13 Jul 2017
Uncertainties of fluxes and 13C  ∕ 12C ratios of atmospheric reactive-gas emissions
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 17, 8525–8552, https://doi.org/10.5194/acp-17-8525-2017,https://doi.org/10.5194/acp-17-8525-2017, 2017
Short summary
10 Jul 2017
Contribution of emissions to concentrations: the TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52)
Volker Grewe, Eleni Tsati, Mariano Mertens, Christine Frömming, and Patrick Jöckel
Geosci. Model Dev., 10, 2615–2633, https://doi.org/10.5194/gmd-10-2615-2017,https://doi.org/10.5194/gmd-10-2615-2017, 2017
Short summary
20 Jun 2017
Global-scale combustion sources of organic aerosols: sensitivity to formation and removal mechanisms
Alexandra P. Tsimpidi, Vlassis A. Karydis, Spyros N. Pandis, and Jos Lelieveld
Atmos. Chem. Phys., 17, 7345–7364, https://doi.org/10.5194/acp-17-7345-2017,https://doi.org/10.5194/acp-17-7345-2017, 2017
Short summary
08 Jun 2017
Secondary ozone peaks in the troposphere over the Himalayas
Narendra Ojha, Andrea Pozzer, Dimitris Akritidis, and Jos Lelieveld
Atmos. Chem. Phys., 17, 6743–6757, https://doi.org/10.5194/acp-17-6743-2017,https://doi.org/10.5194/acp-17-6743-2017, 2017
Short summary
16 May 2017
Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations
Klaus-D. Gottschaldt, Hans Schlager, Robert Baumann, Heiko Bozem, Veronika Eyring, Peter Hoor, Patrick Jöckel, Tina Jurkat, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017,https://doi.org/10.5194/acp-17-6091-2017, 2017
Short summary
03 May 2017
Global impact of mineral dust on cloud droplet number concentration
Vlassis A. Karydis, Alexandra P. Tsimpidi, Sara Bacer, Andrea Pozzer, Athanasios Nenes, and Jos Lelieveld
Atmos. Chem. Phys., 17, 5601–5621, https://doi.org/10.5194/acp-17-5601-2017,https://doi.org/10.5194/acp-17-5601-2017, 2017
Short summary
20 Mar 2017
Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes
Mohamed Abdelkader, Swen Metzger, Benedikt Steil, Klaus Klingmüller, Holger Tost, Andrea Pozzer, Georgiy Stenchikov, Leonard Barrie, and Jos Lelieveld
Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017,https://doi.org/10.5194/acp-17-3799-2017, 2017
Short summary
20 Mar 2017
A new time-independent formulation of fractional release
Jennifer Ostermöller, Harald Bönisch, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 17, 3785–3797, https://doi.org/10.5194/acp-17-3785-2017,https://doi.org/10.5194/acp-17-3785-2017, 2017
Short summary
24 Jan 2017
Chemistry–climate interactions of aerosol nitrate from lightning
Holger Tost
Atmos. Chem. Phys., 17, 1125–1142, https://doi.org/10.5194/acp-17-1125-2017,https://doi.org/10.5194/acp-17-1125-2017, 2017
Short summary
16 Dec 2016
Projection of North Atlantic Oscillation and its effect on tracer transport
Sara Bacer, Theodoros Christoudias, and Andrea Pozzer
Atmos. Chem. Phys., 16, 15581–15592, https://doi.org/10.5194/acp-16-15581-2016,https://doi.org/10.5194/acp-16-15581-2016, 2016
Short summary
11 Nov 2016
On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East
Dimitris Akritidis, Andrea Pozzer, Prodromos Zanis, Evangelos Tyrlis, Bojan Škerlak, Michael Sprenger, and Jos Lelieveld
Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016,https://doi.org/10.5194/acp-16-14025-2016, 2016
Short summary
13 Oct 2016
A diagnostic interface for the ICOsahedral Non-hydrostatic (ICON) modelling framework based on the Modular Earth Submodel System (MESSy v2.50)
Bastian Kern and Patrick Jöckel
Geosci. Model Dev., 9, 3639–3654, https://doi.org/10.5194/gmd-9-3639-2016,https://doi.org/10.5194/gmd-9-3639-2016, 2016
Short summary
05 Oct 2016
Global tropospheric hydroxyl distribution, budget and reactivity
Jos Lelieveld, Sergey Gromov, Andrea Pozzer, and Domenico Taraborrelli
Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016,https://doi.org/10.5194/acp-16-12477-2016, 2016
Short summary
04 Oct 2016
The 1-way on-line coupled model system MECO(n) – Part 4: Chemical evaluation (based on MESSy v2.52)
Mariano Mertens, Astrid Kerkweg, Patrick Jöckel, Holger Tost, and Christiane Hofmann
Geosci. Model Dev., 9, 3545–3567, https://doi.org/10.5194/gmd-9-3545-2016,https://doi.org/10.5194/gmd-9-3545-2016, 2016
Short summary
29 Sep 2016
Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)
Michalis Christou, Theodoros Christoudias, Julián Morillo, Damian Alvarez, and Hendrik Merx
Geosci. Model Dev., 9, 3483–3491, https://doi.org/10.5194/gmd-9-3483-2016,https://doi.org/10.5194/gmd-9-3483-2016, 2016
Short summary
21 Sep 2016
Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0
Hiroshi Yamashita, Volker Grewe, Patrick Jöckel, Florian Linke, Martin Schaefer, and Daisuke Sasaki
Geosci. Model Dev., 9, 3363–3392, https://doi.org/10.5194/gmd-9-3363-2016,https://doi.org/10.5194/gmd-9-3363-2016, 2016
Short summary
20 Jul 2016
Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets
Alexandra P. Tsimpidi, Vlassis A. Karydis, Spyros N. Pandis, and Jos Lelieveld
Atmos. Chem. Phys., 16, 8939–8962, https://doi.org/10.5194/acp-16-8939-2016,https://doi.org/10.5194/acp-16-8939-2016, 2016
Short summary
06 Jul 2016
The millennium water vapour drop in chemistry–climate model simulations
Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016,https://doi.org/10.5194/acp-16-8125-2016, 2016
Short summary
20 Jun 2016
A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51)
Simone Dietmüller, Patrick Jöckel, Holger Tost, Markus Kunze, Catrin Gellhorn, Sabine Brinkop, Christine Frömming, Michael Ponater, Benedikt Steil, Axel Lauer, and Johannes Hendricks
Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016,https://doi.org/10.5194/gmd-9-2209-2016, 2016
Short summary
10 Jun 2016
Aerosol water parameterisation: a single parameter framework
Swen Metzger, Benedikt Steil, Mohamed Abdelkader, Klaus Klingmüller, Li Xu, Joyce E. Penner, Christos Fountoukis, Athanasios Nenes, and Jos Lelieveld
Atmos. Chem. Phys., 16, 7213–7237, https://doi.org/10.5194/acp-16-7213-2016,https://doi.org/10.5194/acp-16-7213-2016, 2016
Short summary
07 Jun 2016
Global atmospheric budget of simple monocyclic aromatic compounds
David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 16, 6931–6947, https://doi.org/10.5194/acp-16-6931-2016,https://doi.org/10.5194/acp-16-6931-2016, 2016
Short summary
30 May 2016
Impact of major volcanic eruptions on stratospheric water vapour
Michael Löffler, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 16, 6547–6562, https://doi.org/10.5194/acp-16-6547-2016,https://doi.org/10.5194/acp-16-6547-2016, 2016
Short summary
11 Apr 2016
The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 2: Aviation
Mattia Righi, Johannes Hendricks, and Robert Sausen
Atmos. Chem. Phys., 16, 4481–4495, https://doi.org/10.5194/acp-16-4481-2016,https://doi.org/10.5194/acp-16-4481-2016, 2016
Short summary
31 Mar 2016
Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016,https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
10 Feb 2016
Effects of mineral dust on global atmospheric nitrate concentrations
V. A. Karydis, A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld
Atmos. Chem. Phys., 16, 1491–1509, https://doi.org/10.5194/acp-16-1491-2016,https://doi.org/10.5194/acp-16-1491-2016, 2016
Short summary
19 Jan 2016
Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework
A. J. G. Baumgaertner, P. Jöckel, A. Kerkweg, R. Sander, and H. Tost
Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016,https://doi.org/10.5194/gmd-9-125-2016, 2016
Short summary
19 Aug 2015
Dust–air pollution dynamics over the eastern Mediterranean
M. Abdelkader, S. Metzger, R. E. Mamouri, M. Astitha, L. Barrie, Z. Levin, and J. Lelieveld
Atmos. Chem. Phys., 15, 9173–9189, https://doi.org/10.5194/acp-15-9173-2015,https://doi.org/10.5194/acp-15-9173-2015, 2015
05 Aug 2015
Revision of the convective transport module CVTRANS 2.4 in the EMAC atmospheric chemistry–climate model
H. G. Ouwersloot, A. Pozzer, B. Steil, H. Tost, and J. Lelieveld
Geosci. Model Dev., 8, 2435–2445, https://doi.org/10.5194/gmd-8-2435-2015,https://doi.org/10.5194/gmd-8-2435-2015, 2015
22 Jul 2015
Partitioning and budget of inorganic and organic chlorine species observed by MIPAS-B and TELIS in the Arctic in March 2011
G. Wetzel, H. Oelhaf, M. Birk, A. de Lange, A. Engel, F. Friedl-Vallon, O. Kirner, A. Kleinert, G. Maucher, H. Nordmeyer, J. Orphal, R. Ruhnke, B.-M. Sinnhuber, and P. Vogt
Atmos. Chem. Phys., 15, 8065–8076, https://doi.org/10.5194/acp-15-8065-2015,https://doi.org/10.5194/acp-15-8065-2015, 2015
29 Jun 2015
Simulation of the isotopic composition of stratospheric water vapour – Part 2: Investigation of HDO / H2O variations
R. Eichinger, P. Jöckel, and S. Lossow
Atmos. Chem. Phys., 15, 7003–7015, https://doi.org/10.5194/acp-15-7003-2015,https://doi.org/10.5194/acp-15-7003-2015, 2015
29 Jun 2015
Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007
H. Fischer, A. Pozzer, T. Schmitt, P. Jöckel, T. Klippel, D. Taraborrelli, and J. Lelieveld
Atmos. Chem. Phys., 15, 6971–6980, https://doi.org/10.5194/acp-15-6971-2015,https://doi.org/10.5194/acp-15-6971-2015, 2015
24 Jun 2015
Nonlinear response of modelled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past
S. Meul, S. Oberländer-Hayn, J. Abalichin, and U. Langematz
Atmos. Chem. Phys., 15, 6897–6911, https://doi.org/10.5194/acp-15-6897-2015,https://doi.org/10.5194/acp-15-6897-2015, 2015
Short summary
21 May 2015
Simulation of the isotopic composition of stratospheric water vapour – Part 1: Description and evaluation of the EMAC model
R. Eichinger, P. Jöckel, S. Brinkop, M. Werner, and S. Lossow
Atmos. Chem. Phys., 15, 5537–5555, https://doi.org/10.5194/acp-15-5537-2015,https://doi.org/10.5194/acp-15-5537-2015, 2015
23 Mar 2015
Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations
M. Righi, V. Eyring, K.-D. Gottschaldt, C. Klinger, F. Frank, P. Jöckel, and I. Cionni
Geosci. Model Dev., 8, 733–768, https://doi.org/10.5194/gmd-8-733-2015,https://doi.org/10.5194/gmd-8-733-2015, 2015
04 Mar 2015
Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)
R. H. H. Janssen and A. Pozzer
Geosci. Model Dev., 8, 453–471, https://doi.org/10.5194/gmd-8-453-2015,https://doi.org/10.5194/gmd-8-453-2015, 2015
24 Feb 2015
Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring
O. Kirner, R. Müller, R. Ruhnke, and H. Fischer
Atmos. Chem. Phys., 15, 2019–2030, https://doi.org/10.5194/acp-15-2019-2015,https://doi.org/10.5194/acp-15-2019-2015, 2015
Short summary
19 Jan 2015
The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 1: Land transport and shipping
M. Righi, J. Hendricks, and R. Sausen
Atmos. Chem. Phys., 15, 633–651, https://doi.org/10.5194/acp-15-633-2015,https://doi.org/10.5194/acp-15-633-2015, 2015
21 Dec 2014
ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere
A. P. Tsimpidi, V. A. Karydis, A. Pozzer, S. N. Pandis, and J. Lelieveld
Geosci. Model Dev., 7, 3153–3172, https://doi.org/10.5194/gmd-7-3153-2014,https://doi.org/10.5194/gmd-7-3153-2014, 2014
Short summary
27 Nov 2014
Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies
L. Hoffmann, C. M. Hoppe, R. Müller, G. S. Dutton, J. C. Gille, S. Griessbach, A. Jones, C. I. Meyer, R. Spang, C. M. Volk, and K. A. Walker
Atmos. Chem. Phys., 14, 12479–12497, https://doi.org/10.5194/acp-14-12479-2014,https://doi.org/10.5194/acp-14-12479-2014, 2014
Short summary
13 Nov 2014
The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP)
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014,https://doi.org/10.5194/gmd-7-2653-2014, 2014
11 Nov 2014
The implementation of the CLaMS Lagrangian transport core into the chemistry climate model EMAC 2.40.1: application on age of air and transport of long-lived trace species
C. M. Hoppe, L. Hoffmann, P. Konopka, J.-U. Grooß, F. Ploeger, G. Günther, P. Jöckel, and R. Müller
Geosci. Model Dev., 7, 2639–2651, https://doi.org/10.5194/gmd-7-2639-2014,https://doi.org/10.5194/gmd-7-2639-2014, 2014
01 Oct 2014
Model-simulated trend of surface carbon monoxide for the 2001–2010 decade
J. Yoon and A. Pozzer
Atmos. Chem. Phys., 14, 10465–10482, https://doi.org/10.5194/acp-14-10465-2014,https://doi.org/10.5194/acp-14-10465-2014, 2014
26 Aug 2014
Observation and modelling of HOx radicals in a boreal forest
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014,https://doi.org/10.5194/acp-14-8723-2014, 2014
26 Aug 2014
Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores
D. I. Haga, S. M. Burrows, R. Iannone, M. J. Wheeler, R. H. Mason, J. Chen, E. A. Polishchuk, U. Pöschl, and A. K. Bertram
Atmos. Chem. Phys., 14, 8611–8630, https://doi.org/10.5194/acp-14-8611-2014,https://doi.org/10.5194/acp-14-8611-2014, 2014
01 Jul 2014
CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud
K.-P. Heue, H. Riede, D. Walter, C. A. M. Brenninkmeijer, T. Wagner, U. Frieß, U. Platt, A. Zahn, G. Stratmann, and H. Ziereis
Atmos. Chem. Phys., 14, 6621–6642, https://doi.org/10.5194/acp-14-6621-2014,https://doi.org/10.5194/acp-14-6621-2014, 2014
17 Jun 2014
The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test
J. C. Kaiser, J. Hendricks, M. Righi, N. Riemer, R. A. Zaveri, S. Metzger, and V. Aquila
Geosci. Model Dev., 7, 1137–1157, https://doi.org/10.5194/gmd-7-1137-2014,https://doi.org/10.5194/gmd-7-1137-2014, 2014
05 Jun 2014
Uncertainties in future climate predictions due to convection parameterisations
H. Rybka and H. Tost
Atmos. Chem. Phys., 14, 5561–5576, https://doi.org/10.5194/acp-14-5561-2014,https://doi.org/10.5194/acp-14-5561-2014, 2014
13 May 2014
Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades
T. Christoudias, Y. Proestos, and J. Lelieveld
Atmos. Chem. Phys., 14, 4607–4616, https://doi.org/10.5194/acp-14-4607-2014,https://doi.org/10.5194/acp-14-4607-2014, 2014
13 May 2014
Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014,https://doi.org/10.5194/acp-14-4679-2014, 2014
31 Jul 2014
The generic MESSy submodel TENDENCY (v1.0) for process-based analyses in Earth system models
R. Eichinger and P. Jöckel
Geosci. Model Dev., 7, 1573–1582, https://doi.org/10.5194/gmd-7-1573-2014,https://doi.org/10.5194/gmd-7-1573-2014, 2014
25 Mar 2014
Chemical contribution to future tropical ozone change in the lower stratosphere
S. Meul, U. Langematz, S. Oberländer, H. Garny, and P. Jöckel
Atmos. Chem. Phys., 14, 2959–2971, https://doi.org/10.5194/acp-14-2959-2014,https://doi.org/10.5194/acp-14-2959-2014, 2014
14 Feb 2014
Profile information on CO from SCIAMACHY observations using cloud slicing and comparison with model simulations
C. Liu, S. Beirle, T. Butler, P. Hoor, C. Frankenberg, P. Jöckel, M. Penning de Vries, U. Platt, A. Pozzer, M. G. Lawrence, J. Lelieveld, H. Tost, and T. Wagner
Atmos. Chem. Phys., 14, 1717–1732, https://doi.org/10.5194/acp-14-1717-2014,https://doi.org/10.5194/acp-14-1717-2014, 2014
13 Feb 2014
Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends
P. Bohlinger, B.-M. Sinnhuber, R. Ruhnke, and O. Kirner
Atmos. Chem. Phys., 14, 1679–1688, https://doi.org/10.5194/acp-14-1679-2014,https://doi.org/10.5194/acp-14-1679-2014, 2014
03 Feb 2014
Global and regional impacts of HONO on the chemical composition of clouds and aerosols
Y. F. Elshorbany, P. J. Crutzen, B. Steil, A. Pozzer, H. Tost, and J. Lelieveld
Atmos. Chem. Phys., 14, 1167–1184, https://doi.org/10.5194/acp-14-1167-2014,https://doi.org/10.5194/acp-14-1167-2014, 2014
28 Jan 2014
Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0)
V. Grewe, C. Frömming, S. Matthes, S. Brinkop, M. Ponater, S. Dietmüller, P. Jöckel, H. Garny, E. Tsati, K. Dahlmann, O. A. Søvde, J. Fuglestvedt, T. K. Berntsen, K. P. Shine, E. A. Irvine, T. Champougny, and P. Hullah
Geosci. Model Dev., 7, 175–201, https://doi.org/10.5194/gmd-7-175-2014,https://doi.org/10.5194/gmd-7-175-2014, 2014
27 Jan 2014
Modeled global effects of airborne desert dust on air quality and premature mortality
D. Giannadaki, A. Pozzer, and J. Lelieveld
Atmos. Chem. Phys., 14, 957–968, https://doi.org/10.5194/acp-14-957-2014,https://doi.org/10.5194/acp-14-957-2014, 2014
03 Jan 2014
Summertime free-tropospheric ozone pool over the eastern Mediterranean/Middle East
P. Zanis, P. Hadjinicolaou, A. Pozzer, E. Tyrlis, S. Dafka, N. Mihalopoulos, and J. Lelieveld
Atmos. Chem. Phys., 14, 115–132, https://doi.org/10.5194/acp-14-115-2014,https://doi.org/10.5194/acp-14-115-2014, 2014
04 Nov 2013
HOx measurements in the summertime upper troposphere over Europe: a comparison of observations to a box model and a 3-D model
E. Regelin, H. Harder, M. Martinez, D. Kubistin, C. Tatum Ernest, H. Bozem, T. Klippel, Z. Hosaynali-Beygi, H. Fischer, R. Sander, P. Jöckel, R. Königstedt, and J. Lelieveld
Atmos. Chem. Phys., 13, 10703–10720, https://doi.org/10.5194/acp-13-10703-2013,https://doi.org/10.5194/acp-13-10703-2013, 2013
09 Oct 2013
The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions
M. Righi, J. Hendricks, and R. Sausen
Atmos. Chem. Phys., 13, 9939–9970, https://doi.org/10.5194/acp-13-9939-2013,https://doi.org/10.5194/acp-13-9939-2013, 2013
24 Jul 2013
Model calculated global, regional and megacity premature mortality due to air pollution
J. Lelieveld, C. Barlas, D. Giannadaki, and A. Pozzer
Atmos. Chem. Phys., 13, 7023–7037, https://doi.org/10.5194/acp-13-7023-2013,https://doi.org/10.5194/acp-13-7023-2013, 2013
04 Jun 2013
Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics
S. M. Burrows, P. J. Rayner, T. Butler, and M. G. Lawrence
Atmos. Chem. Phys., 13, 5473–5488, https://doi.org/10.5194/acp-13-5473-2013,https://doi.org/10.5194/acp-13-5473-2013, 2013
29 May 2013
Corrigendum to "Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)" published in Atmos. Chem. Phys., 13, 2063–2090, 2013
P. J. Young, A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 5401–5402, https://doi.org/10.5194/acp-13-5401-2013,https://doi.org/10.5194/acp-13-5401-2013, 2013
27 May 2013
Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
V. Naik, A. Voulgarakis, A. M. Fiore, L. W. Horowitz, J.-F. Lamarque, M. Lin, M. J. Prather, P. J. Young, D. Bergmann, P. J. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, T. P. C. van Noije, D. A. Plummer, M. Righi, S. T. Rumbold, R. Skeie, D. T. Shindell, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 5277–5298, https://doi.org/10.5194/acp-13-5277-2013,https://doi.org/10.5194/acp-13-5277-2013, 2013
19 Apr 2013
Aerosol pollution potential from major population centers
D. Kunkel, H. Tost, and M. G. Lawrence
Atmos. Chem. Phys., 13, 4203–4222, https://doi.org/10.5194/acp-13-4203-2013,https://doi.org/10.5194/acp-13-4203-2013, 2013
02 Apr 2013
Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N2O and O3 in the tropical lower stratosphere
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013,https://doi.org/10.5194/acp-13-3619-2013, 2013
15 Mar 2013
Global sensitivity of aviation NOx effects to the HNO3-forming channel of the HO2 + NO reaction
K. Gottschaldt, C. Voigt, P. Jöckel, M. Righi, R. Deckert, and S. Dietmüller
Atmos. Chem. Phys., 13, 3003–3025, https://doi.org/10.5194/acp-13-3003-2013,https://doi.org/10.5194/acp-13-3003-2013, 2013
15 Mar 2013
Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
D. S. Stevenson, P. J. Young, V. Naik, J.-F. Lamarque, D. T. Shindell, A. Voulgarakis, R. B. Skeie, S. B. Dalsoren, G. Myhre, T. K. Berntsen, G. A. Folberth, S. T. Rumbold, W. J. Collins, I. A. MacKenzie, R. M. Doherty, G. Zeng, T. P. C. van Noije, A. Strunk, D. Bergmann, P. Cameron-Smith, D. A. Plummer, S. A. Strode, L. Horowitz, Y. H. Lee, S. Szopa, K. Sudo, T. Nagashima, B. Josse, I. Cionni, M. Righi, V. Eyring, A. Conley, K. W. Bowman, O. Wild, and A. Archibald
Atmos. Chem. Phys., 13, 3063–3085, https://doi.org/10.5194/acp-13-3063-2013,https://doi.org/10.5194/acp-13-3063-2013, 2013
05 Mar 2013
Analysis of present day and future OH and methane lifetime in the ACCMIP simulations
A. Voulgarakis, V. Naik, J.-F. Lamarque, D. T. Shindell, P. J. Young, M. J. Prather, O. Wild, R. D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, L. W. Horowitz, B. Josse, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, D. S. Stevenson, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2563–2587, https://doi.org/10.5194/acp-13-2563-2013,https://doi.org/10.5194/acp-13-2563-2013, 2013
21 Feb 2013
Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
P. J. Young, A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013,https://doi.org/10.5194/acp-13-2063-2013, 2013
07 Feb 2013
The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics
J.-F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P. Cameron-Smith, W. J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S. J. Ghan, L. W. Horowitz, Y. H. Lee, I. A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S. T. Rumbold, M. Schulz, R. B. Skeie, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, A. Voulgarakis, and G. Zeng
Geosci. Model Dev., 6, 179–206, https://doi.org/10.5194/gmd-6-179-2013,https://doi.org/10.5194/gmd-6-179-2013, 2013
05 Feb 2013
Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident
T. Christoudias and J. Lelieveld
Atmos. Chem. Phys., 13, 1425–1438, https://doi.org/10.5194/acp-13-1425-2013,https://doi.org/10.5194/acp-13-1425-2013, 2013
11 Jan 2013
Ice nuclei in marine air: biogenic particles or dust?
S. M. Burrows, C. Hoose, U. Pöschl, and M. G. Lawrence
Atmos. Chem. Phys., 13, 245–267, https://doi.org/10.5194/acp-13-245-2013,https://doi.org/10.5194/acp-13-245-2013, 2013
06 Dec 2012
A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number
K. J. Pringle, K. S. Carslaw, T. Fan, G.W. Mann, A. Hill, P. Stier, K. Zhang, and H. Tost
Atmos. Chem. Phys., 12, 11647–11663, https://doi.org/10.5194/acp-12-11647-2012,https://doi.org/10.5194/acp-12-11647-2012, 2012
22 Nov 2012
Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties
M. Astitha, J. Lelieveld, M. Abdel Kader, A. Pozzer, and A. de Meij
Atmos. Chem. Phys., 12, 11057–11083, https://doi.org/10.5194/acp-12-11057-2012,https://doi.org/10.5194/acp-12-11057-2012, 2012
30 Oct 2012
Impact of HONO on global atmospheric chemistry calculated with an empirical parameterization in the EMAC model
Y. F. Elshorbany, B. Steil, C. Brühl, and J. Lelieveld
Atmos. Chem. Phys., 12, 9977–10000, https://doi.org/10.5194/acp-12-9977-2012,https://doi.org/10.5194/acp-12-9977-2012, 2012
26 Sep 2012
Improvements of organic aerosol representations and their effects in large-scale atmospheric models
H. Tost and K. J. Pringle
Atmos. Chem. Phys., 12, 8687–8709, https://doi.org/10.5194/acp-12-8687-2012,https://doi.org/10.5194/acp-12-8687-2012, 2012
01 Aug 2012
Effects of business-as-usual anthropogenic emissions on air quality
A. Pozzer, P. Zimmermann, U.M. Doering, J. van Aardenne, H. Tost, F. Dentener, G. Janssens-Maenhout, and J. Lelieveld
Atmos. Chem. Phys., 12, 6915–6937, https://doi.org/10.5194/acp-12-6915-2012,https://doi.org/10.5194/acp-12-6915-2012, 2012
25 Jul 2012
Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex
G. Wetzel, H. Oelhaf, O. Kirner, F. Friedl-Vallon, R. Ruhnke, A. Ebersoldt, A. Kleinert, G. Maucher, H. Nordmeyer, and J. Orphal
Atmos. Chem. Phys., 12, 6581–6592, https://doi.org/10.5194/acp-12-6581-2012,https://doi.org/10.5194/acp-12-6581-2012, 2012
12 May 2012
Global risk of radioactive fallout after major nuclear reactor accidents
J. Lelieveld, D. Kunkel, and M. G. Lawrence
Atmos. Chem. Phys., 12, 4245–4258, https://doi.org/10.5194/acp-12-4245-2012,https://doi.org/10.5194/acp-12-4245-2012, 2012
12 Apr 2012
Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances
R. Kohlhepp, R. Ruhnke, M. P. Chipperfield, M. De Mazière, J. Notholt, S. Barthlott, R. L. Batchelor, R. D. Blatherwick, Th. Blumenstock, M. T. Coffey, P. Demoulin, H. Fast, W. Feng, A. Goldman, D. W. T. Griffith, K. Hamann, J. W. Hannigan, F. Hase, N. B. Jones, A. Kagawa, I. Kaiser, Y. Kasai, O. Kirner, W. Kouker, R. Lindenmaier, E. Mahieu, R. L. Mittermeier, B. Monge-Sanz, I. Morino, I. Murata, H. Nakajima, M. Palm, C. Paton-Walsh, U. Raffalski, Th. Reddmann, M. Rettinger, C. P. Rinsland, E. Rozanov, M. Schneider, C. Senten, C. Servais, B.-M. Sinnhuber, D. Smale, K. Strong, R. Sussmann, J. R. Taylor, G. Vanhaelewyn, T. Warneke, C. Whaley, M. Wiehle, and S. W. Wood
Atmos. Chem. Phys., 12, 3527–3556, https://doi.org/10.5194/acp-12-3527-2012,https://doi.org/10.5194/acp-12-3527-2012, 2012
20 Feb 2012
The MIPAS HOCl climatology
T. von Clarmann, B. Funke, N. Glatthor, S. Kellmann, M. Kiefer, O. Kirner, B.-M. Sinnhuber, and G. P. Stiller
Atmos. Chem. Phys., 12, 1965–1977, https://doi.org/10.5194/acp-12-1965-2012,https://doi.org/10.5194/acp-12-1965-2012, 2012
14 Feb 2012
The Mineral Dust Cycle in EMAC 2.40: sensitivity to the spectral resolution and the dust emission scheme
G. Gläser, A. Kerkweg, and H. Wernli
Atmos. Chem. Phys., 12, 1611–1627, https://doi.org/10.5194/acp-12-1611-2012,https://doi.org/10.5194/acp-12-1611-2012, 2012
02 Feb 2012
Does acetone react with HO2 in the upper-troposphere?
T. J. Dillon, A. Pozzer, L. Vereecken, J. N. Crowley, and J. Lelieveld
Atmos. Chem. Phys., 12, 1339–1351, https://doi.org/10.5194/acp-12-1339-2012,https://doi.org/10.5194/acp-12-1339-2012, 2012
01 Feb 2012
The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate
C. Brühl, J. Lelieveld, P. J. Crutzen, and H. Tost
Atmos. Chem. Phys., 12, 1239–1253, https://doi.org/10.5194/acp-12-1239-2012,https://doi.org/10.5194/acp-12-1239-2012, 2012
19 Jan 2012
The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy
A. Kerkweg and P. Jöckel
Geosci. Model Dev., 5, 87–110, https://doi.org/10.5194/gmd-5-87-2012,https://doi.org/10.5194/gmd-5-87-2012, 2012
19 Jan 2012
The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 2: On-line coupling with the Multi-Model-Driver (MMD)
A. Kerkweg and P. Jöckel
Geosci. Model Dev., 5, 111–128, https://doi.org/10.5194/gmd-5-111-2012,https://doi.org/10.5194/gmd-5-111-2012, 2012
19 Jan 2012
The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 3: Meteorological evaluation of the on-line coupled system
C. Hofmann, A. Kerkweg, H. Wernli, and P. Jöckel
Geosci. Model Dev., 5, 129–147, https://doi.org/10.5194/gmd-5-129-2012,https://doi.org/10.5194/gmd-5-129-2012, 2012
19 Jan 2012
Influence of the North Atlantic Oscillation on air pollution transport
T. Christoudias, A. Pozzer, and J. Lelieveld
Atmos. Chem. Phys., 12, 869–877, https://doi.org/10.5194/acp-12-869-2012,https://doi.org/10.5194/acp-12-869-2012, 2012
19 Jan 2012
Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model
A. Pozzer, A. de Meij, K. J. Pringle, H. Tost, U. M. Doering, J. van Aardenne, and J. Lelieveld
Atmos. Chem. Phys., 12, 961–987, https://doi.org/10.5194/acp-12-961-2012,https://doi.org/10.5194/acp-12-961-2012, 2012
09 Sep 2011
The Atmosphere-Ocean General Circulation Model EMAC-MPIOM
A. Pozzer, P. Jöckel, B. Kern, and H. Haak
Geosci. Model Dev., 4, 771–784, https://doi.org/10.5194/gmd-4-771-2011,https://doi.org/10.5194/gmd-4-771-2011, 2011
05 Sep 2011
Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study
B. Funke, A. Baumgaertner, M. Calisto, T. Egorova, C. H. Jackman, J. Kieser, A. Krivolutsky, M. López-Puertas, D. R. Marsh, T. Reddmann, E. Rozanov, S.-M. Salmi, M. Sinnhuber, G. P. Stiller, P. T. Verronen, S. Versick, T. von Clarmann, T. Y. Vyushkova, N. Wieters, and J. M. Wissing
Atmos. Chem. Phys., 11, 9089–9139, https://doi.org/10.5194/acp-11-9089-2011,https://doi.org/10.5194/acp-11-9089-2011, 2011
31 Aug 2011
Corrigendum to "Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state" published in Atmos. Chem. Phys., 11, 8497–8513, 2011
Z. Hosaynali Beygi, H. Fischer, H. D. Harder, M. Martinez, R. Sander, J. Williams, D. M. Brookes, P. S. Monks, and J. Lelieveld
Atmos. Chem. Phys., 11, 8825–8826, https://doi.org/10.5194/acp-11-8825-2011,https://doi.org/10.5194/acp-11-8825-2011, 2011
22 Aug 2011
Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state
Z. Hosaynali Beygi, H. Fischer, H. D. Harder, M. Martinez, R. Sander, J. Williams, D. M. Brookes, P. S. Monks, and J. Lelieveld
Atmos. Chem. Phys., 11, 8497–8513, https://doi.org/10.5194/acp-11-8497-2011,https://doi.org/10.5194/acp-11-8497-2011, 2011
17 Aug 2011
Estimating fusion properties for functionalised acids
S. Compernolle, K. Ceulemans, and J.-F. Müller
Atmos. Chem. Phys., 11, 8385–8394, https://doi.org/10.5194/acp-11-8385-2011,https://doi.org/10.5194/acp-11-8385-2011, 2011
01 Aug 2011
Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects
A. F. Bais, K. Tourpali, A. Kazantzidis, H. Akiyoshi, S. Bekki, P. Braesicke, M. P. Chipperfield, M. Dameris, V. Eyring, H. Garny, D. Iachetti, P. Jöckel, A. Kubin, U. Langematz, E. Mancini, M. Michou, O. Morgenstern, T. Nakamura, P. A. Newman, G. Pitari, D. A. Plummer, E. Rozanov, T. G. Shepherd, K. Shibata, W. Tian, and Y. Yamashita
Atmos. Chem. Phys., 11, 7533–7545, https://doi.org/10.5194/acp-11-7533-2011,https://doi.org/10.5194/acp-11-7533-2011, 2011
29 Jun 2011
Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China
C. Liu, S. Beirle, T. Butler, J. Liu, P. Hoor, P. Jöckel, M. Penning de Vries, A. Pozzer, C. Frankenberg, M. G. Lawrence, J. Lelieveld, U. Platt, and T. Wagner
Atmos. Chem. Phys., 11, 6083–6114, https://doi.org/10.5194/acp-11-6083-2011,https://doi.org/10.5194/acp-11-6083-2011, 2011
28 Jun 2011
Improvement and evaluation of simulated global biogenic soil NO emissions in an AC-GCM
J. Steinkamp and M. G. Lawrence
Atmos. Chem. Phys., 11, 6063–6082, https://doi.org/10.5194/acp-11-6063-2011,https://doi.org/10.5194/acp-11-6063-2011, 2011
12 May 2011
Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index
A. J. G. Baumgaertner, A. Seppälä, P. Jöckel, and M. A. Clilverd
Atmos. Chem. Phys., 11, 4521–4531, https://doi.org/10.5194/acp-11-4521-2011,https://doi.org/10.5194/acp-11-4521-2011, 2011
11 May 2011
Distribution of hydrogen peroxide and formaldehyde over Central Europe during the HOOVER project
T. Klippel, H. Fischer, H. Bozem, M. G. Lawrence, T. Butler, P. Jöckel, H. Tost, M. Martinez, H. Harder, E. Regelin, R. Sander, C. L. Schiller, A. Stickler, and J. Lelieveld
Atmos. Chem. Phys., 11, 4391–4410, https://doi.org/10.5194/acp-11-4391-2011,https://doi.org/10.5194/acp-11-4391-2011, 2011
06 May 2011
The atmospheric chemistry box model CAABA/MECCA-3.0
R. Sander, A. Baumgaertner, S. Gromov, H. Harder, P. Jöckel, A. Kerkweg, D. Kubistin, E. Regelin, H. Riede, A. Sandu, D. Taraborrelli, H. Tost, and Z.-Q. Xie
Geosci. Model Dev., 4, 373–380, https://doi.org/10.5194/gmd-4-373-2011,https://doi.org/10.5194/gmd-4-373-2011, 2011
21 Apr 2011
MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state
V. Aquila, J. Hendricks, A. Lauer, N. Riemer, H. Vogel, D. Baumgardner, A. Minikin, A. Petzold, J. P. Schwarz, J. R. Spackman, B. Weinzierl, M. Righi, and M. Dall'Amico
Geosci. Model Dev., 4, 325–355, https://doi.org/10.5194/gmd-4-325-2011,https://doi.org/10.5194/gmd-4-325-2011, 2011
16 Mar 2011
A quasi chemistry-transport model mode for EMAC
R. Deckert, P. Jöckel, V. Grewe, K.-D. Gottschaldt, and P. Hoor
Geosci. Model Dev., 4, 195–206, https://doi.org/10.5194/gmd-4-195-2011,https://doi.org/10.5194/gmd-4-195-2011, 2011
11 Mar 2011
Simulation of polar stratospheric clouds in the chemistry-climate-model EMAC via the submodel PSC
O. Kirner, R. Ruhnke, J. Buchholz-Dietsch, P. Jöckel, C. Brühl, and B. Steil
Geosci. Model Dev., 4, 169–182, https://doi.org/10.5194/gmd-4-169-2011,https://doi.org/10.5194/gmd-4-169-2011, 2011
22 Dec 2010
Development cycle 2 of the Modular Earth Submodel System (MESSy2)
P. Jöckel, A. Kerkweg, A. Pozzer, R. Sander, H. Tost, H. Riede, A. Baumgaertner, S. Gromov, and B. Kern
Geosci. Model Dev., 3, 717–752, https://doi.org/10.5194/gmd-3-717-2010,https://doi.org/10.5194/gmd-3-717-2010, 2010
11 Oct 2010
Will climate change increase ozone depletion from low-energy-electron precipitation?
A. J. G. Baumgaertner, P. Jöckel, M. Dameris, and P. J. Crutzen
Atmos. Chem. Phys., 10, 9647–9656, https://doi.org/10.5194/acp-10-9647-2010,https://doi.org/10.5194/acp-10-9647-2010, 2010
22 Sep 2010
Corrigendum to "Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)" published in Geosci. Model Dev., 3, 391–412, 2010
K. J. Pringle, H. Tost, S. Metzger, B. Steil, D. Giannadaki, A. Nenes, C. Fountoukis, P. Stier, E. Vignati, and J. Lelieveld
Geosci. Model Dev., 3, 413–413, https://doi.org/10.5194/gmd-3-413-2010,https://doi.org/10.5194/gmd-3-413-2010, 2010
10 Sep 2010
Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)
K. J. Pringle, H. Tost, S. Message, B. Steil, D. Giannadaki, A. Nenes, C. Fountoukis, P. Stier, E. Vignati, and J. Lelieveld
Geosci. Model Dev., 3, 391–412, https://doi.org/10.5194/gmd-3-391-2010,https://doi.org/10.5194/gmd-3-391-2010, 2010
10 Aug 2010
A kinetic chemistry tagging technique and its application to modelling the stable isotopic composition of atmospheric trace gases
S. Gromov, P. Jöckel, R. Sander, and C. A. M. Brenninkmeijer
Geosci. Model Dev., 3, 337–364, https://doi.org/10.5194/gmd-3-337-2010,https://doi.org/10.5194/gmd-3-337-2010, 2010
06 Aug 2010
Energetic particle precipitation in ECHAM5/MESSy – Part 2: Solar proton events
A. J. G. Baumgaertner, P. Jöckel, H. Riede, G. Stiller, and B. Funke
Atmos. Chem. Phys., 10, 7285–7302, https://doi.org/10.5194/acp-10-7285-2010,https://doi.org/10.5194/acp-10-7285-2010, 2010
15 Jun 2010
Global distribution of the effective aerosol hygroscopicity parameter for CCN activation
K. J. Pringle, H. Tost, A. Pozzer, U. Pöschl, and J. Lelieveld
Atmos. Chem. Phys., 10, 5241–5255, https://doi.org/10.5194/acp-10-5241-2010,https://doi.org/10.5194/acp-10-5241-2010, 2010
12 May 2010
Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes
A. Pozzer, J. Pollmann, D. Taraborrelli, P. Jöckel, D. Helmig, P. Tans, J. Hueber, and J. Lelieveld
Atmos. Chem. Phys., 10, 4403–4422, https://doi.org/10.5194/acp-10-4403-2010,https://doi.org/10.5194/acp-10-4403-2010, 2010
19 Feb 2010
Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging
H. Tost, M. G. Lawrence, C. Brühl, P. Jöckel, The GABRIEL Team, and The SCOUT-O3-DARWIN/ACTIVE Team
Atmos. Chem. Phys., 10, 1931–1951, https://doi.org/10.5194/acp-10-1931-2010,https://doi.org/10.5194/acp-10-1931-2010, 2010
22 Jun 2010
A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC
A. J. G. Baumgaertner, P. Jöckel, B. Steil, H. Tost, and R. Sander
Geosci. Model Dev., 3, 321–328, https://doi.org/10.5194/gmd-3-321-2010,https://doi.org/10.5194/gmd-3-321-2010, 2010
01 Feb 2010
First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections
G. Wetzel, H. Oelhaf, O. Kirner, R. Ruhnke, F. Friedl-Vallon, A. Kleinert, G. Maucher, H. Fischer, M. Birk, G. Wagner, and A. Engel
Atmos. Chem. Phys., 10, 931–945, https://doi.org/10.5194/acp-10-931-2010,https://doi.org/10.5194/acp-10-931-2010, 2010
21 Dec 2009
Corrigendum to "Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy)" published in Atmos. Chem. Phys., 6, 4617–4632, 2006
A. Kerkweg, J. Buchholz, L. Ganzeveld, A. Pozzer, H. Tost, and P. Jöckel
Atmos. Chem. Phys., 9, 9569–9569, https://doi.org/10.5194/acp-9-9569-2009,https://doi.org/10.5194/acp-9-9569-2009, 2009
15 Dec 2009
Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM
H. Riede, P. Jöckel, and R. Sander
Geosci. Model Dev., 2, 267–280, https://doi.org/10.5194/gmd-2-267-2009,https://doi.org/10.5194/gmd-2-267-2009, 2009
15 Dec 2009
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
E. Palazzi, F. Fierli, F. Cairo, C. Cagnazzo, G. Di Donfrancesco, E. Manzini, F. Ravegnani, C. Schiller, F. D'Amato, and C. M. Volk
Atmos. Chem. Phys., 9, 9349–9367, https://doi.org/10.5194/acp-9-9349-2009,https://doi.org/10.5194/acp-9-9349-2009, 2009
15 Dec 2009
The influence of the vertical distribution of emissions on tropospheric chemistry
A. Pozzer, P. Jöckel, and J. Van Aardenne
Atmos. Chem. Phys., 9, 9417–9432, https://doi.org/10.5194/acp-9-9417-2009,https://doi.org/10.5194/acp-9-9417-2009, 2009
10 Dec 2009
Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems
S. M. Burrows, T. Butler, P. Jöckel, H. Tost, A. Kerkweg, U. Pöschl, and M. G. Lawrence
Atmos. Chem. Phys., 9, 9281–9297, https://doi.org/10.5194/acp-9-9281-2009,https://doi.org/10.5194/acp-9-9281-2009, 2009
01 Oct 2009
Ship emitted NO2 in the Indian Ocean: comparison of model results with satellite data
K. Franke, A. Richter, H. Bovensmann, V. Eyring, P. Jöckel, P. Hoor, and J. P. Burrows
Atmos. Chem. Phys., 9, 7289–7301, https://doi.org/10.5194/acp-9-7289-2009,https://doi.org/10.5194/acp-9-7289-2009, 2009
08 Sep 2009
A model study of the January 2006 low total ozone episode over Western Europe and comparison with ozone sonde data
A. Mangold, J.-U. Grooß, H. De Backer, O. Kirner, R. Ruhnke, and R. Müller
Atmos. Chem. Phys., 9, 6429–6451, https://doi.org/10.5194/acp-9-6429-2009,https://doi.org/10.5194/acp-9-6429-2009, 2009
12 Aug 2009
Evaluation of CLaMS, KASIMA and ECHAM5/MESSy1 simulations in the lower stratosphere using observations of Odin/SMR and ILAS/ILAS-II
F. Khosrawi, R. Müller, M. H. Proffitt, R. Ruhnke, O. Kirner, P. Jöckel, J.-U. Grooß, J. Urban, D. Murtagh, and H. Nakajima
Atmos. Chem. Phys., 9, 5759–5783, https://doi.org/10.5194/acp-9-5759-2009,https://doi.org/10.5194/acp-9-5759-2009, 2009
27 Apr 2009
Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling
D. Taraborrelli, M. G. Lawrence, T. M. Butler, R. Sander, and J. Lelieveld
Atmos. Chem. Phys., 9, 2751–2777, https://doi.org/10.5194/acp-9-2751-2009,https://doi.org/10.5194/acp-9-2751-2009, 2009
24 Apr 2009
Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons
A. J. G. Baumgaertner, P. Jöckel, and C. Brühl
Atmos. Chem. Phys., 9, 2729–2740, https://doi.org/10.5194/acp-9-2729-2009,https://doi.org/10.5194/acp-9-2729-2009, 2009
23 Apr 2009
Influence of modelled soil biogenic NO emissions on related trace gases and the atmospheric oxidizing efficiency
J. Steinkamp, L. N. Ganzeveld, W. Wilcke, and M. G. Lawrence
Atmos. Chem. Phys., 9, 2663–2677, https://doi.org/10.5194/acp-9-2663-2009,https://doi.org/10.5194/acp-9-2663-2009, 2009
20 Feb 2009
Severe ozone air pollution in the Persian Gulf region
J. Lelieveld, P. Hoor, P. Jöckel, A. Pozzer, P. Hadjinicolaou, J.-P. Cammas, and S. Beirle
Atmos. Chem. Phys., 9, 1393–1406, https://doi.org/10.5194/acp-9-1393-2009,https://doi.org/10.5194/acp-9-1393-2009, 2009
15 Oct 2008
Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 1: Model description, sea salt aerosols and pH
A. Kerkweg, P. Jöckel, A. Pozzer, H. Tost, R. Sander, M. Schulz, P. Stier, E. Vignati, J. Wilson, and J. Lelieveld
Atmos. Chem. Phys., 8, 5899–5917, https://doi.org/10.5194/acp-8-5899-2008,https://doi.org/10.5194/acp-8-5899-2008, 2008
15 Oct 2008
Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 2: Bromocarbons
A. Kerkweg, P. Jöckel, N. Warwick, S. Gebhardt, C. A. M. Brenninkmeijer, and J. Lelieveld
Atmos. Chem. Phys., 8, 5919–5939, https://doi.org/10.5194/acp-8-5919-2008,https://doi.org/10.5194/acp-8-5919-2008, 2008
05 Aug 2008
Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign
T. M. Butler, D. Taraborrelli, C. Brühl, H. Fischer, H. Harder, M. Martinez, J. Williams, M. G. Lawrence, and J. Lelieveld
Atmos. Chem. Phys., 8, 4529–4546, https://doi.org/10.5194/acp-8-4529-2008,https://doi.org/10.5194/acp-8-4529-2008, 2008
19 Mar 2008
Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER
P. Jöckel, A. Kerkweg, J. Buchholz-Dietsch, H. Tost, R. Sander, and A. Pozzer
Atmos. Chem. Phys., 8, 1677–1687, https://doi.org/10.5194/acp-8-1677-2008,https://doi.org/10.5194/acp-8-1677-2008, 2008
12 Dec 2007
A climatology of surface ozone in the extra tropics: cluster analysis of observations and model results
O. A. Tarasova, C. A. M. Brenninkmeijer, P. Jöckel, A. M. Zvyagintsev, and G. I. Kuznetsov
Atmos. Chem. Phys., 7, 6099–6117, https://doi.org/10.5194/acp-7-6099-2007,https://doi.org/10.5194/acp-7-6099-2007, 2007
12 Nov 2007
Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1
C. Brühl, B. Steil, G. Stiller, B. Funke, and P. Jöckel
Atmos. Chem. Phys., 7, 5585–5598, https://doi.org/10.5194/acp-7-5585-2007,https://doi.org/10.5194/acp-7-5585-2007, 2007
17 Oct 2007
Towards a better representation of the solar cycle in general circulation models
K. M. Nissen, K. Matthes, U. Langematz, and B. Mayer
Atmos. Chem. Phys., 7, 5391–5400, https://doi.org/10.5194/acp-7-5391-2007,https://doi.org/10.5194/acp-7-5391-2007, 2007
04 Oct 2007
Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget
A. Lauer, V. Eyring, J. Hendricks, P. Jöckel, and U. Lohmann
Atmos. Chem. Phys., 7, 5061–5079, https://doi.org/10.5194/acp-7-5061-2007,https://doi.org/10.5194/acp-7-5061-2007, 2007
05 Sep 2007
Lightning and convection parameterisations – uncertainties in global modelling
H. Tost, P. Jöckel, and J. Lelieveld
Atmos. Chem. Phys., 7, 4553–4568, https://doi.org/10.5194/acp-7-4553-2007,https://doi.org/10.5194/acp-7-4553-2007, 2007
20 Jun 2007
Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds
S. Metzger and J. Lelieveld
Atmos. Chem. Phys., 7, 3163–3193, https://doi.org/10.5194/acp-7-3163-2007,https://doi.org/10.5194/acp-7-3163-2007, 2007
12 Jun 2007
Technical Note: Simulation of detailed aerosol chemistry on the global scale using MECCA-AERO
A. Kerkweg, R. Sander, H. Tost, P. Jöckel, and J. Lelieveld
Atmos. Chem. Phys., 7, 2973–2985, https://doi.org/10.5194/acp-7-2973-2007,https://doi.org/10.5194/acp-7-2973-2007, 2007
24 May 2007
Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1
H. Tost, P. Jöckel, A. Kerkweg, A. Pozzer, R. Sander, and J. Lelieveld
Atmos. Chem. Phys., 7, 2733–2757, https://doi.org/10.5194/acp-7-2733-2007,https://doi.org/10.5194/acp-7-2733-2007, 2007
15 May 2007
Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations
A. Pozzer, P. Jöckel, H. Tost, R. Sander, L. Ganzeveld, A. Kerkweg, and J. Lelieveld
Atmos. Chem. Phys., 7, 2527–2550, https://doi.org/10.5194/acp-7-2527-2007,https://doi.org/10.5194/acp-7-2527-2007, 2007
27 Feb 2007
Stratospheric dryness: model simulations and satellite observations
J. Lelieveld, C. Brühl, P. Jöckel, B. Steil, P. J. Crutzen, H. Fischer, M. A. Giorgetta, P. Hoor, M. G. Lawrence, R. Sausen, and H. Tost
Atmos. Chem. Phys., 7, 1313–1332, https://doi.org/10.5194/acp-7-1313-2007,https://doi.org/10.5194/acp-7-1313-2007, 2007
06 Dec 2006
Influence of different convection parameterisations in a GCM
H. Tost, P. Jöckel, and J. Lelieveld
Atmos. Chem. Phys., 6, 5475–5493, https://doi.org/10.5194/acp-6-5475-2006,https://doi.org/10.5194/acp-6-5475-2006, 2006
05 Dec 2006
Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species
A. Pozzer, P. Jöckel, R. Sander, J. Williams, L. Ganzeveld, and J. Lelieveld
Atmos. Chem. Phys., 6, 5435–5444, https://doi.org/10.5194/acp-6-5435-2006,https://doi.org/10.5194/acp-6-5435-2006, 2006
07 Nov 2006
The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere
P. Jöckel, H. Tost, A. Pozzer, C. Brühl, J. Buchholz, L. Ganzeveld, P. Hoor, A. Kerkweg, M. G. Lawrence, R. Sander, B. Steil, G. Stiller, M. Tanarhte, D. Taraborrelli, J. van Aardenne, and J. Lelieveld
Atmos. Chem. Phys., 6, 5067–5104, https://doi.org/10.5194/acp-6-5067-2006,https://doi.org/10.5194/acp-6-5067-2006, 2006
12 Oct 2006
Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy)
A. Kerkweg, J. Buchholz, L. Ganzeveld, A. Pozzer, H. Tost, and P. Jöckel
Atmos. Chem. Phys., 6, 4617–4632, https://doi.org/10.5194/acp-6-4617-2006,https://doi.org/10.5194/acp-6-4617-2006, 2006
04 Sep 2006
Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy)
A. Kerkweg, R. Sander, H. Tost, and P. Jöckel
Atmos. Chem. Phys., 6, 3603–3609, https://doi.org/10.5194/acp-6-3603-2006,https://doi.org/10.5194/acp-6-3603-2006, 2006
30 Aug 2006
Technical note: Recursive rediscretisation of geo-scientific data in the Modular Earth Submodel System (MESSy)
P. Jöckel
Atmos. Chem. Phys., 6, 3557–3562, https://doi.org/10.5194/acp-6-3557-2006,https://doi.org/10.5194/acp-6-3557-2006, 2006
23 Feb 2006
Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling
H. Tost, P. Jöckel, A. Kerkweg, R. Sander, and J. Lelieveld
Atmos. Chem. Phys., 6, 565–574, https://doi.org/10.5194/acp-6-565-2006,https://doi.org/10.5194/acp-6-565-2006, 2006
11 Feb 2005
Technical note: The new comprehensive atmospheric chemistry module MECCA
R. Sander, A. Kerkweg, P. Jöckel, and J. Lelieveld
Atmos. Chem. Phys., 5, 445–450, https://doi.org/10.5194/acp-5-445-2005,https://doi.org/10.5194/acp-5-445-2005, 2005
10 Feb 2005
Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling
P. Jöckel, R. Sander, A. Kerkweg, H. Tost, and J. Lelieveld
Atmos. Chem. Phys., 5, 433–444, https://doi.org/10.5194/acp-5-433-2005,https://doi.org/10.5194/acp-5-433-2005, 2005
CC BY 4.0