Articles | Volume 7, issue 3
https://doi.org/10.5194/gmd-7-1183-2014
https://doi.org/10.5194/gmd-7-1183-2014
Development and technical paper
 | 
23 Jun 2014
Development and technical paper |  | 23 Jun 2014

A technique for generating consistent ice sheet initial conditions for coupled ice sheet/climate models

J. G. Fyke, W. J. Sacks, and W. H. Lipscomb

Related authors

Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020,https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary
LIVVkit 2.1: automated and extensible ice sheet model validation
Katherine J. Evans, Joseph H. Kennedy, Dan Lu, Mary M. Forrester, Stephen Price, Jeremy Fyke, Andrew R. Bennett, Matthew J. Hoffman, Irina Tezaur, Charles S. Zender, and Miren Vizcaíno
Geosci. Model Dev., 12, 1067–1086, https://doi.org/10.5194/gmd-12-1067-2019,https://doi.org/10.5194/gmd-12-1067-2019, 2019
Short summary
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
Jeremy Fyke, Jan T. M. Lenaerts, and Hailong Wang
The Cryosphere, 11, 2595–2609, https://doi.org/10.5194/tc-11-2595-2017,https://doi.org/10.5194/tc-11-2595-2017, 2017
Short summary

Related subject area

Cryosphere
Coupling framework (1.0) for the Úa (2023b) ice sheet model and the FESOM-1.4 z-coordinate ocean model in an Antarctic domain
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025,https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
A gradient-boosted tree framework to model the ice thickness of the world's glaciers (IceBoost v1.1)
Niccolò Maffezzoli, Eric Rignot, Carlo Barbante, Troels Petersen, and Sebastiano Vascon
Geosci. Model Dev., 18, 2545–2568, https://doi.org/10.5194/gmd-18-2545-2025,https://doi.org/10.5194/gmd-18-2545-2025, 2025
Short summary
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary

Cited articles

Applegate, P. J., Kirchner, N., Stone, E. J., Keller, K., and Greve, R.: An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior, The Cryosphere, 6, 589–606, https://doi.org/10.5194/tc-6-589-2012, 2012.
Arthern, R. and Gudmundsson, G.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, 2010.
Bamber, J. L., Layberry, R. L., and Gogineni, S.: A new ice thickness and bed data set for the Greenland ice sheet 1: Measurement, data reduction, and errors, J. Geophys. Res., 106, 33773–33780, 2001.
Bates, S. C., Fox-Kemper, B., Jayne, S. R., Large, W. G., Stevenson, S., and Yeager, S. G.: Mean biases, variability, and trends in air–sea fluxes and sea surface temperature in the CCSM4, J. Climate, 25, 7781–7801, https://doi.org/10.1175/JCLI-D-11-00442.1, 2012.
Brady, E., Otto-Bliesner, B., Kay, J., and Rosenbloom, N.: Sensitivity to glacial forcing in the CCSM4, J. Climate, 26, 1901–1925, https://doi.org/10.1175/JCLI-D-11-00416.1, 2013.
Download
Share