Articles | Volume 6, issue 3
Geosci. Model Dev., 6, 837–848, 2013
https://doi.org/10.5194/gmd-6-837-2013
Geosci. Model Dev., 6, 837–848, 2013
https://doi.org/10.5194/gmd-6-837-2013
Model description paper
22 Jun 2013
Model description paper | 22 Jun 2013

PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.1.0)

S. Härer et al.

Related authors

On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales
Stefan Härer, Matthias Bernhardt, Matthias Siebers, and Karsten Schulz
The Cryosphere, 12, 1629–1642, https://doi.org/10.5194/tc-12-1629-2018,https://doi.org/10.5194/tc-12-1629-2018, 2018
Short summary
PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.2.1)
S. Härer, M. Bernhardt, and K. Schulz
Geosci. Model Dev., 9, 307–321, https://doi.org/10.5194/gmd-9-307-2016,https://doi.org/10.5194/gmd-9-307-2016, 2016
Short summary

Related subject area

Cryosphere
Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022,https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022,https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022,https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
SnowClim v1.0: high-resolution snow model and data for the western United States
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022,https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022,https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary

Cited articles

Ahrends, H. E., Brügger, R., Stöckli, R., Schenk, J., Michna, P., Jeanneret, F., Wanner, H., and Eugster, W.: Quantitative phenological observations of a~mixed beech forest in northern Switzerland with digital photography, J. Geophys. Res., 113, G04004, https://doi.org/10.1029/2007jg000650, 2008.
Aschenwald, J., Leichter, K., Tasser, E., and Tappeiner, U.: Spatio-temporal landscape analysis in mountainous terrain by means of small format photography: a~methodological approach, IEEE T. Geosci. Remote, 39, 885–893, https://doi.org/10.1109/36.917917, 2001.
Bernhardt, M. and Schulz, K.: SnowSlide: a~simple routine for calculating gravitational snow transport, Geophys. Res. Lett., 37, L11502, https://doi.org/10.1029/2010gl043086, 2010.
Clark, P. E. and Hardegree, S. P.: Quantifying vegetation change by point sampling landscape photography time series, Rangeland Ecol. Manage., 58, 588–597, https://doi.org/10.2111/04-111R2.1, 2005.
Corripio, J. G.: Snow surface albedo estimation using terrestrial photography, Int. J. Remote Sens., 25, 5705–5729, https://doi.org/10.1080/01431160410001709002, 2004.