Articles | Volume 6, issue 3
https://doi.org/10.5194/gmd-6-837-2013
https://doi.org/10.5194/gmd-6-837-2013
Model description paper
 | 
22 Jun 2013
Model description paper |  | 22 Jun 2013

PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.1.0)

S. Härer, M. Bernhardt, J. G. Corripio, and K. Schulz

Related authors

On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales
Stefan Härer, Matthias Bernhardt, Matthias Siebers, and Karsten Schulz
The Cryosphere, 12, 1629–1642, https://doi.org/10.5194/tc-12-1629-2018,https://doi.org/10.5194/tc-12-1629-2018, 2018
Short summary
PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.2.1)
S. Härer, M. Bernhardt, and K. Schulz
Geosci. Model Dev., 9, 307–321, https://doi.org/10.5194/gmd-9-307-2016,https://doi.org/10.5194/gmd-9-307-2016, 2016
Short summary

Related subject area

Cryosphere
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023,https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023,https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023,https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
SUHMO: an adaptive mesh refinement SUbglacial Hydrology MOdel v1.0
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Geosci. Model Dev., 16, 407–425, https://doi.org/10.5194/gmd-16-407-2023,https://doi.org/10.5194/gmd-16-407-2023, 2023
Short summary
Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023,https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary

Cited articles

Ahrends, H. E., Brügger, R., Stöckli, R., Schenk, J., Michna, P., Jeanneret, F., Wanner, H., and Eugster, W.: Quantitative phenological observations of a~mixed beech forest in northern Switzerland with digital photography, J. Geophys. Res., 113, G04004, https://doi.org/10.1029/2007jg000650, 2008.
Aschenwald, J., Leichter, K., Tasser, E., and Tappeiner, U.: Spatio-temporal landscape analysis in mountainous terrain by means of small format photography: a~methodological approach, IEEE T. Geosci. Remote, 39, 885–893, https://doi.org/10.1109/36.917917, 2001.
Bernhardt, M. and Schulz, K.: SnowSlide: a~simple routine for calculating gravitational snow transport, Geophys. Res. Lett., 37, L11502, https://doi.org/10.1029/2010gl043086, 2010.
Clark, P. E. and Hardegree, S. P.: Quantifying vegetation change by point sampling landscape photography time series, Rangeland Ecol. Manage., 58, 588–597, https://doi.org/10.2111/04-111R2.1, 2005.
Corripio, J. G.: Snow surface albedo estimation using terrestrial photography, Int. J. Remote Sens., 25, 5705–5729, https://doi.org/10.1080/01431160410001709002, 2004.