Articles | Volume 6, issue 6
https://doi.org/10.5194/gmd-6-2099-2013
https://doi.org/10.5194/gmd-6-2099-2013
Development and technical paper
 | 
17 Dec 2013
Development and technical paper |  | 17 Dec 2013

Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2

M. E. Rognes, D. A. Ham, C. J. Cotter, and A. T. T. McRae

Related authors

Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022,https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Slate: extending Firedrake's domain-specific abstraction to hybridized solvers for geoscience and beyond
Thomas H. Gibson, Lawrence Mitchell, David A. Ham, and Colin J. Cotter
Geosci. Model Dev., 13, 735–761, https://doi.org/10.5194/gmd-13-735-2020,https://doi.org/10.5194/gmd-13-735-2020, 2020
Short summary
Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations
Tuomas Kärnä, Stephan C. Kramer, Lawrence Mitchell, David A. Ham, Matthew D. Piggott, and António M. Baptista
Geosci. Model Dev., 11, 4359–4382, https://doi.org/10.5194/gmd-11-4359-2018,https://doi.org/10.5194/gmd-11-4359-2018, 2018
Short summary

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Alnæs, M. S.: UFL: a finite element form language, in: Automated Solution of Differential Equations by the Finite Element Method, vol. 84 of Lecture Notes in Computational Science and Engineering, edited by: Logg, A., Mardal, K.-A., and Wells, G. N., chap. 17, Springer, 2012.
Alnæs, M. S., Logg, A., Mardal, K.-A., Skavhaug, O., and Langtangen, H. P.: Unified Framework for Finite Element Assembly, Int. J. Computat. Sci. Eng., 4, 231–244, https://doi.org/10.1504/IJCSE.2009.029160, 2009.
Alnæs, M. S., Logg, A., and Mardal, K.-A.: UFC: a finite element code generation interface, in: Automated Solution of Differential Equations by the Finite Element Method, Volume 84 of Lecture Notes in Computational Science and Engineering, edited by: Logg, A., Mardal, K.-A., and Wells, G. N., chap. 16, Springer, 2012.
Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified Form Language: a domain-specific language for weak formulations of partial differential equations, ACM Trans. Mathe. Softw., available at: http://arxiv.org/abs/1211.4047 (last access: 13 December 2013), 2013.
Arakawa, A. and Hsu, Y.-J. G.: Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations, Mon. Weather Rev., 118, 1960–1969, 1990.