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Abstract. Differential equations posed over immersed man- UFL; Alnaes 2012 and the corresponding low-level code
ifolds are of particular importance in studying geophysi- is generated automatically by a specialised complleg§

cal flows; for instance, ocean and atmosphere simulation®t al, 20129. The impact of this approach is dramatic: mod-
crucially rely on the capability to solve equations over the els which require tens of thousands of lines of C++ or For-
sphere. This paper presents the extension of the FEniCS softran, and which take months or years to develop can be writ-
ware components to the automated solution of finite elementen in tens to hundreds of lines of high-level code and devel-
formulations of differential equations defined over general,oped in days to weeks.

immersed manifolds. We describe the implementation and, The simulation of geophysical fluids has particular fea-
in particular detail, how the required extensions essentiallytures; for instance, the solution of PDEs on the surface of the
reduce to the extension of the FEniCS form compiler to coversphere is of particular significance for the simulation of flow
this case. The resulting implementation has all the propertiesn the ocean and atmosphere. Prior to version 1.2, the FEniCS
of the FEnICS pipeline and we demonstrate its flexibility by software has only supported finite element discretisations de-
an extensive range of numerical examples covering a numfined over meshes of the same geometric and topological di-
ber of geophysical benchmark examples and test cases. Thaension. As such, the required feature (i.e. the possibility to
results are all in agreement with the expected values. The dedefine discretisations over immersed manifolds such as the
scription here relates to DOLFIN/FENICS 1.2. sphere) has been missing.

In this paper, we detail the extension of the FEnIiCS soft-
ware to enable this feature and as a consequence a multi-
tude of geophysical flow simulation scenarios. We achieve

1 Introduction this by extending the FEnICS software components to appro-
priately handle general two-dimensional manifolds in three-
The computation of approximate numerical solutions to par-gimensional space, and to general one-dimensional mani-
tial differential equations (PDESs) is an integral component offg|ds in two- and three-dimensional spaces. This extension
computational science. At the same time, the traditional de'essentially reduces to the ability to evaluate all of the rel-
velopment of software for the numerical solution of PDES gygnt integrals over an element immersed in a higher di-
is time-consuming and error-prone. However, the FENICSmensjonal space, and to giving the correct definitions to
Project {ttp:/fenicsproject.orgLogg et al, 2012H offers  the Janguage elements of UFL in the manifold context. Al-
a radical alternative to the traditional development model. IN-though the sphere is of particular significance in geoscien-
stead of writing low-level model code in a compiled languagetific modelling, choosing to solve the more general mani-

such as Fortran or C++, the discretisation of the PDE is exo|d problem provides additional flexibility and utility. This
pressed in a high level language (the Unified Form Language,
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generality enables the support of oblate spheroids, as well” = {T'}. In particular, each simplex cell in the meshZ
as a wide range of manifold geometries in other applicationwill then have topological dimensiom and geometric di-
areas across science and engineering. mensiormn.

A number of other finite element software libraries sup-
port solving equations over immersed manifolds, includ-2.1 Galerkin projection on the manifold
ing ALBERTA (Schmidt et al. 2005, DUNE-FEM (in- n _ »
cluding support for div- and curl-conforming finite element The finite element method is founded on the concept of finite

spaces) Dedner et al. 2010, Nektar++ Gherwin et al. element spaces. A finite element spatés defined to con-

2013, and deal.ll DeSimone et a).2009. In addition tain all functions that have some specified polynomial expan-
high-order discontinuous Galerkin methods have been imSion in €ach cell of the mesh, together with some specified
plemented on manifolds as part of the SLIM ocean modelcontinuity constraint between neighbouring cells. Broadly

project Bernard et al.2008. In contrast to these libraries, SP€aking, the finite element discretisation of a partial dif-
however, the FENICS software heavily relies on and draws itderéntial équation can be described as the projection of that
primary advantage from special-purpose finite element cod&auation onto some finite element space The Galerkin
generation. In our description of the implementation here,pl’OjeCtIOI’l of a functionf onto a finite element space is

we therefore focus on the extension of the code generatior_fi‘ basic finite element operation and defined as the funetion

pipeline to the immersed manifolds case. This implemental" V' Such that

tion aspect extends and differs from that of existing tools, and

constitutes a main contribution of this work. /vwdx = / fwdr, @)
This paper is organised as follows. In Segtwe sum- 7 T

marise various aspects of the mathematical formulation of o test functionss in V.. If V is N-dimensional with basis

fmn_e_glement methods over immersed maqulds, 'nCIUd'ng{qu}N_l, then we may write

definitions of pullbacks of scalar and vector fields, and dif- /=

ferential operators. The key implementation aspects of they =v;¢;, (2)

required extensions to the FEnICS software are presented in ) o _

Sect.3. Sectiond considers verification aspects and Séct. Where {v;} are the expansion coefficients ofrelative to

further describes a wide range of numerical examples andhe basis¢;}. Here, and in the rest of the paper, we follow

tests. We comment on the scope of the current implementathe Einstein summation convention in which summation oc-

tion, including limitations and natural extensions, in Séct.  Curs over an index repeated within a product. Taking: ¢;

before detailing where the implementation and the Suppledn EQ. () for i =1,..., N, we obtain a finite dimensional

ment can be found in Sectg, and8, and providing some linear system for the expansion coefficienfs

concluding remarks in Sed. M;jv; = by, 3)

having defined

2 Mathematical formulation
This section summarises the distinctive mathematical fea-M” /¢[¢de TEX; P )
tures of finite element formulations defined over computa- r
tional domains that are immersed manifolds. The mathematand
ical formulation adopted will be detailed in increasing com-
plexity, beginning with the simplest finite element projec- b; =/f¢idx = Z foidx. (5)
tion for scalar-valued quantities, and then introducing dif- T TeT
ferential operators and vector-valued functions. The material ] ]
has deliberately been kept at a minimal level of Comp|ex_M0_re0ver, for eacll” € 7, we label the local integral contri-
ity: for readers more interested in the mathematical theory ofPUtions
manifolds, we recommend for instanBarden and Thomas
(2003 or Holm (2008, Mr.ij = / ¢i¢;dx, )

Throughout this section, we leR2 be a smoothm- T
dimensional manifold immersed R, with m < n. For sim-
plicity, we also let 1< m andn < 3. We will refer tom as the
manifold dimension or topological dimension, andtasthe 5. =/f¢,~dx. 7)

T

and

physical or geometric dimension. We approximate this man-

ifold by a piecewise linear tessellation of simplices (intervals

in one topological dimension, triangles in two topological In view of Egs. &) and §6), the assemblyof the opera-
dimensions, or tetrahedra in three topological dimensions}ors M and b reduce to the evaluation of sums of certain

Geosci. Model Dev., 6, 2092119 2013 www.geosci-model-dev.net/6/2099/2013/



M. E. Rognes et al.: Manifolds in FEniCS 1.2 2101

2.1.2 The Jacobian and its pseudo-determinant

The derivation in Eq.9) applies for both the standard case
m =n and the immersed manifold case whete< n. The
only difference for the latter case is the generalised defini-
tions of the Jacobian and its determinant. In general, the Ja-
cobianJ of the transformG : R” — R” is given by the ma-
trix
aG(X), dx,
YETO8X, T 8X,

y=1..., n, =1,..., m.  (10)

_ Note thatr varies over the manifold dimensiem, which
Fig. 1. The transformGy maps the reference celp to cell T, js also the geometric and topological dimension of the ref-
which in this case approximates part of a sphere. The poiit  grence cell, whiley varies over the physical dimension
reference space is mapped to the pairin physical spacer = 14 make this concrete, the Jacobian for a two-dimensional

Gr(X). manifold immersed ifR3 is given by
9x1 oy
integrals over individual cell§” € 7. This procedure is the ,__ % % (11)
standard assembly strategy for the finite element method. — | 4%1 4%2 |
For more details on finite element assembly, the reader is X1 0X2

directed toLogg et al.(20129 or any standard text on the
finite element method (for examplgenkiewicz et al. 2005
Karniadakis and Sherwji999.

For affine transformations/r, the Jacobianly will be
constant over each cdil. For non-affine transformations, for
instance in the case of curved cells, the Jacobian will vary as
a function ofX.

The Jacobian pseudo-determinant is the transformation of
the volume of the differential integral measure. For a one-
dimensional manifold, this is the length of the single column
vector ofJ, while, for a two-dimensional manifold, this is the
volume of the parallelogram spanned by the two columns of
J. More precisely, writing the Jacobian in terms of its column
vectors) =[J1, Jo,..., Jn.], we have

2.1.1 Change of coordinates

A change of coordinates to a reference @glbffers a stan-
dard and efficient evaluation procedure for each of the lo-
cal contributions in Egs6) and (7). Recalling that each cell

T c R" is of topological dimensiom:, we define a fixed ref-
erence celllp c R™ and assume that there exists a mapping
Gr such thatT = G (Tp). We write here and throughout

X = (X1,..., X,) for the coordinates of a point in reference \J1l m=1

space andc = (x1,...,x,) for the coordinates in physical |J| = 5 (12)
space. Figurd illustrates this mapping and the notation em- [Jix Jol2 m=2,

ployed. where |-|> denotes the Euclidean norm. The pseudo-

_Similarly, we will employ lower case Greek letters for ba- geterminant employed here is the square root of the Gram
sis functions in physical space, and the corresponding UpP&fjeterminant Kuptsoy, 2011). Note that, in the: = m case,

case letters for the pullback of those functions to the referhs requces to the absolute value of the usual definition of
ence cell. For scalar-valued functions, the pullback is throughpe geterminant.

function composition:
2.2 Derivatives on the manifold
D;(X) =¢i(x) =i (Gr(X)). (8)
In order to evaluate more complicated variational forms, it
Using the definitions above and the usual change of cooris necessary to be able to evaluate derivatives of functions

dinate rules, Eq.6) becomes defined on the manifold. As before, it is sufficient only to

consider the case of a basis function defined on a single cell,
f¢i (X)¢; (x)dx = /¢i(GT(X))¢j(GT(X))dx since all integrals will be decomposed into sums of integrals
J T over basis functions on single cells.

Suppose we have some functigiix) defined on an cell
=f<1>i(X)<I>j(X)|JT|dX, 9) T C R" with pullback ®(X) defined on the reference cell
To Cc R™. The gradient ofb in reference space is immediate:

To
whereJy is the Jacobian of the transformatiéiy and|Jr| D (X)
is the Jacobian determinant. (Vx®(X)), = X, r=1....m. (13)
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Define the tangent space of cgllas the image of the cor- 2.2.1 The weak Laplacian
responding Jacobiah over reference space; thus, amyn
the tangent space can be writtervas JV for someV in ref- To illustrate the practical implications of the above, we ex-
erence space. We define the gradienpdh physical space amine the integral form corresponding to the weak Laplacian
V. ¢ via the usual Gateaux directional derivative: over a pair of basis function and¢; on a single cell:

¢(x+ev) —p(x)

€

(14) / Vi - Vdx. (22)

T

%¢@Nv=ﬂg

for anyv in the tangent space.

Assume that the mapping is affine and non-degenerate,
such that the columns dfare linearly independent. It follows
from the definitions above that

O (X +eV)—d(X)

Applying Eg. 0) and the change of integration measure,
we immediately find that

/ Vi (x) - Vahj () =

Vx®(X) -V = lim - 7
_ T . . T )
i PO g e [ (@D vx@i0) - (@hTvxe,c0)pidx. @)
e— To

Next, letJ" denote the Moore—Penrose pseudo-inverse of So, as before, the integrals over cells in the mesh may be

J (Penrosg1955, given in this case by evaluated on the reference cell using the Jacobian and, in this
case, its pseudo-inverse. Observe (ﬂ’é}TVXQJ- (X) has di-
T Ty 14T i i i i i
=00 "I, (16)  mensiom, and that the index in the inner product in E2GY

. therefore runs from 1 te.
where the superscript T denotes the transpose. Then clearly,

forv=JV, 2.3 Constructing vector-valued fields on the manifold

Jh= (JTJ)_l(JTJ) V=V. (17)  Recall that, in our implementation, vector quantities are al-
ways represented as elements of ikdimensional space in
Inserting Eq. {7) into Eq. (L5), and rearranging, we find which the manifold is immersed. In this representation, there

that are two distinct forms of finite element space for vector-
- valued quantities employed in the finite element method. In
Vi (x)-v=0")" Vx®(X)-v. (18)  the most simple case, the finite element space is the Carte-

. . " sian product of scalar-valued spaces: each component of the
In our implementation, ve_ctor qgantmes are.always FePre-yector varies independently as a piecewise polynomial over
sentgd as glements of thajlmensmnal space in Wh'?h the each cell. The finite element space may be continuous at cell
manl_fold is immersed. In this representation, we add't'ona"yboundaries, in which case all components will be continuous,
require that or discontinuous, in which case no continuity is enforced at
cell boundaries for any component of the vector value. As
a matter of notation, we will write C5for the space of

wherek is the unit normal vector to the céfl, and hence we continuousz-dimensional vector fields with polynomial de-

Vi¢(x) -k =0, (19)

obtain then-dimensional vector greek, and D@ for the corresponding space with no inter-
element continuity constraint.
Voo (x) = ANHTVxd(X). (20) Recall that 7 ={T} is the tessellation of them-

dimensional manifold iR" by m-simplices. A vector field

From Eg. (6), it follows immediately that the column represented in this way hascomponents, wherneis the di-
space ofJ")T coincides with that od. We therefore observe mension of the space in which the manifold is immersed. For
that V¢ (x) is in the tangent space of cdllas expected. In  instance, a vector field of this type on a tessellation of the
the special case of a one-dimensional manifeld< 1), the  surface of the sphere will have three components, not two.

pseudo-inverse reduces to This has the natural consequence that the vector field is not
T constrained to be tangent to the manifold. Where this is re-

Jt= J_ (21) quired, it will have to be imposed as an additional constraint
NE in the equations to be solved. There is an example illustrating

this in Sect5.1.2
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Since these finite element spaces are the Cartesian prodlux and circulation integrals,

ucts of scalar-valued component spaces, the basis functions 1

for the vector field can be written with respect to the scalardiv u(x) = lim . ?gu -ndx, (28)

basis functions. For example, {f;bj}l;’zl is the basis for 0] E|C€

a scalar-valued space, the basis for the corresponding two- 1

dimensional vector space is given by curlu(x) = lim %u - dx, (29)

e—0|C¢|
N N Ce
2N b 0 , ,

{$i}i21= 0 U o . (24) whereC. is a loop centred on that approaches a circle of

j=1 k1T k=1 radiuse ase — 0, and|C,| is the area on the manifold en-
closed byCe.

The pullback through the map from the reference &all

. ) . Vector fields # from divergence-conforming div-
is applied separately to each Cartesian component:

conforming finite element spaces (such as the Raviart-—
Thomas finite element space) are constrained so that the
normal component -n is continuous across each facet of the

Consequently. the mass intearal over a sinale cell transtessellation, where is the normal vector on the facet. The
Seq Y 9 9 tangential component(s) are not required to be continuous.
forms in the same manner as the scalar case:

There is sufficient continuity for the divergence operator to

®;(X) =¢i(x) =i (Gr(X)). (25)

be globally defined, hence the term “div-conforming”. For
/¢i(X) ¢ (x)de = / ®;(X)  @;(X)JIr|dX. (26)  such element spaces, vector fields are naturally mapped from
T To a reference cell to each physical cell via ttentravariant

Piola transform Brezzi and Fortin 1991 Rognes et al.
The Cartesian product vector spaces are, in fact, a speci@009: letting ® be a vector field defined on the reference
case of a more general class of mixed finite element spacesell Ty, we define the fielgh on the physical cell” as
which can be composed of any other finite element spaces.

If U andV are finite element spaces of any type with basesg (x) = Jr & (X). (30)
{¢j}’;’:1 and{xpk},ﬁil, thenW = U x V is the Cartesian prod- 7|
uct of these spaces with basis given by We remark that, in the case ofradimensional manifold
immersed inR”, ® is a vector field withm components
vim | [¢) N o™ and Eqg. 80) defines¢ as ann-vector field. Moreover, ob-
loiliz” = ”0“/_1 U {[I/,J }k_l' @7 serve thate is in the tangent space df by construction.

The sign of Eq. 30) is positive if the current element has the

This definition is fu”y recursive so any number of spaces same orientation as the manifold and negative if the orienta-
of any type can be combined in this way. Mixed spaces re_tions differ. On a non-orientable manifold, the Sign is inde-
quire no special handling in the manifold case beyond that€rminant and the contravariant Piola transformation cannot
required by the component spaces. That is to say, withoube employed. The implementation of manifold orientation is
loss of generality, ifv is a basis function oW of the form ~ discussed in Secs.3.2
o= [¢ O]T then its pullbacke is given by = [q) O]T, pqnversechurl-conformlngfm|te element spaces,_such as
where® is the pullback of. Nédélec spaces, are defined such that for each field in this

Vector-valued finite element spaces can, as we have justPace the component of the field tangent to each facet is con-
seen, be constructed via Cartesian products of scalar stinuous across that facet, while the normal component to the

nite element spaces. However, there are also a collectioffc€t may be discontinuous. The desired tangential continu-
of highly useful finite element families that are inherently Iy iS enabled if the fields are mapped from a reference cell
vector-valued. In the geoscientific context, the most com-{0 €ach physical cell via theovariant Piolatransform:
mon example_ of such is the lowest order Raviart—Tthas¢(x) _ (J;)T ®(X). (31)
element Raviart and Thomas1977, known to the fi-
nite volume community as the C-grid velocity discretisa- We note that the covariant Piola transform also maps
tion (Arakawa and Lamj1977). Other examples include the vector fields ton-vector fields, and that its image is in the
Nédélec edge and face elemeritg&délec 198Q 1986. In tangent space df, by definition, since the column space of
both cases we compute in Cartesian coordinates, with theJ;)T coincides with the column space &f as previously
metric terms being formed implicitly through the transfor- noted in Sect2.2
mation from the reference element. A third approach to obtaining vector fields on manifolds
We have already defined the grad operator on a maniis the approach to high-order discontinuous Galerkin meth-
fold. The vector calculus operators div and curl on a two-ods on manifolds iBernard et al(2008, under which vec-
dimensional manifold/ are most easily defined as limits of tor fields are expanded using a local tangent basis on each

www.geosci-model-dev.net/6/2099/2013/ Geosci. Model Dev., 6, 2@499 2013
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Problem.ufl (UFL) | —~— | Problem.h (UFC) _—

Fig. 2. The FEnICS pipeline viewed from the C++ interface. In the Python interface, the components UFL, FFC, UFC and DOLFIN are more
closely integrated.

element, but the surface fluxes are resolved into three dimerat the automated solution of differential equations using finite
sions. We did not implement this approach since it would element methodd.6gg et al, 20120. The FEniCS Project

require more invasive changes in UFC. software consists of a number of interoperable software com-
ponents which define a full computational pipeline when
2.4 Facetintegrals used together.

. i ] The core of the FEnICS pipeline is the following
Suppose: = u;; is a scalar field and = v;¢; is avector (¢t Fig. 2). Consider the common use case where a finite ele-
field. A commonly occurring integral form (for example for - ment formulation of a partial differential equation is given in
the pressure gradient in a mixed finite element fluid simula-mathematical form and the numerical solution is the desired

tion) is output. The simplest such example is the Galerkin projection
problem Eq. {) over, for instance, the space of piecewise lin-

/ Vu - vdx. (32) ear functions, defined relative to the tessellaffarto obtain

T the discrete solution.

. _ . _ The first step is to express the variational formulation
A routine manipulation, for example to impose boundary in the domain-specific Python-embedded language Unified
conditions or to introduce coupling between elements if theForm Language (UFL)AlInzes et al. 2013 Alnzes 2012.

spaces are discontinuous, is to integrate by parts: Continuing with Eqg. {) as an example, to express the varia-
tional formulation the user must express (i) the finite element
fvu .vdx = —/uV-vdx +/uv-nds spaceV; (ii) the basis functions:, v and coefficientf in-
P P 4 volved; and (iii) the right-hand and left-hand side variational
forms.
+/u+v+-n++u‘v‘ nds . (33) The next step in the pipeline is the processing of the
o UFL specification by a special purpose compiler: the FEn-

iCS Form Compiler (FFC)Kirby and Logg 2006 Logg
Here,I" indicates the surface af (empty if the manifold et al, 20129. FFC is targeted at generating efficient, lower-
is closed), and™ is the set of interior facets (points in one level code for the assembly of the relevant finite element ten-
dimension, edges in two dimensions and faces in three disors. FFC generates code that conforms to the Unified Form-
mensions) between cellsh. n is the outward pointing nor- assembly Code (UFC) interfacélfees et al.2009 2012).
mal to the element in question, with the superscripend— More precisely, given a set of variational forms specified in
denoting the two sides of each interior facet. In the manifoldUFL, separate classes are generated for each of the finite el-
case, there are two features of facet normals which are signifements over which the basis functions and any coefficients
icant. The first is that, as with other vector-valued guantities,are defined, for each of the variational forms, and for each
the facet normal has dimensianthat of the physical space. of the integrals appearing in the forms. The finite element
The second is that adjacent cells on a manifold are not typ<lasses then provide functions for evaluating the specific ba-
ically coplanar 2 = 2) or colinear £z = 1). Consequently, sis functions, computing the specific local-to-global degree
the identityn™ = —n—, which holds in the standanmd=m of freedom maps, evaluating the specific degrees of freedom
case, does not generally hold on a manifold. on arbitrary functions, et cetera. The integral class(es) simi-
larly provide functions for computing the specific local ele-
ment tensor.
3 Integrating manifolds into the FEniCS Project The generated code can then be used by the user directly,
pipeline or, as is more common, be used via the problem-solving
environment and finite element library DOLFIN. DOLFIN
provides high performance computing functionality for sim-
plicial meshes, automated assembly of variational forms,
lying on the generated code for each specific form as

3.1 The FENIiCS Project pipeline

The FEnIiCS Project is a collection of numerical software,r
supported by a set of novel algorithms and techniques, aimede

Geosci. Model Dev., 6, 2092119 2013 www.geosci-model-dev.net/6/2099/2013/
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# Define triangle cell embedded in R"3

cell = Cell("triangle", 3)

# Define Lagrange element over this cell

Q FiniteElement ("Lagrange", cell, 1)

# Define Lagrange vector element

V = VectorElement ("Lagrange", cell, 1)

# Arguments defined over V will have 3 components:
u = Coefficient (V)

ufl0], ulll, ul2]

Fig. 3. UFL code defining scalar and vector finite elements on a triangle embedd®®l ifhis code is included in the Supplement as
snippets/finiteelement.ufl.

detailed above, and interfaces to numerical linear algebra litopological dimensions. Such cells are in place in UFL for
braries; for more details sé®gg and Well{2010 andLogg m <n=1,2,3. Geometric quantities, such as the volume,
et al. (20129. DOLFIN provides both a C++ interface and the circumradius or facet normals, are associated with each
a Python interface. In the Python interface, the steps detailedell type. When appropriate, these are defined relative to the
above are all closely integrated; in particular, the code genertopological dimension of the cell; for instance, the volume of
ation happens seamlessly via a just-in-time (JIT) compilationa triangle cell embedded iR refers to the two-dimensional
process in which C++ code is generated, compiled and exevolume of the cell.

cuted at runtime within a single Python function call. This UFL allows Cartesian combinations (and nested combina-
process is described in more detailiogg et al.(20129. tions) of finite elements of arbitrary families and degrees to

Three implementation points crystallise as necessary in orform vector, tensor or mixed elements with an arbitrary num-
der to integrate weak formulations defined over manifoldsber of components. The number of components (the value
into the FENICS pipeline. dimension) of a vector element defaults to the geometric di-
mensiom of the cell over which the element is defined. Sim-
ilarly the shape of a tensor element defaultg7ion). The
UFL code listing in Fig.3 illustrates this. Note that UFL
mixed elements (including vector and tensor elements) are
— Extend the form compiler FFC to provide correspond- defined over a common cell. As a consequence, mixed ele-

ing support for the novel UFL finite elements and ments for which different components are defined over dif-

forms introduced. ferent cells are not supported.

We emphasise that UFL vector elements are generally
not constrained to lie in the tangent space of the manifold.
This is a deliberate choice for the sake of flexibility, appli-
cability and consistency. For applications where the vector
The extensions to the previous functionality required tofields should be restricted to the tangent space, this require-

— Extend the form language UFL to include finite el-
ements and variational forms defined over simplicial
cells of differing geometric and topological dimension.

— Support UFC and DOLFIN data structures for, and op-
erations over, meshes defined over simplicial cells with
differing geometric and topological dimension.

achieve these three aspects are described below. ment can be enforced either via an additional variational con-
_ _ _ _ straint, or, if applicable, by employing div-conforming or
3.2 Extending and interpreting UFL over manifolds curl-conforming finite elements. Note however that the ba-

. . o sis functions and coefficients defined over the latter are still
As described irAinees et al(2013, UFL is in essence cOm- iy qeved from 0. .., n—1 wheren is the geometric dimension

posed of three sublanguages for expressing (i) finite eleqs e ol and value dimension of the element.
ments; (ii) expressions, including terminal types and oper-

ators acting on them; and (iif) variational forms. 3.2.2 Differential operators over manifolds in UFL

3.2.1 Finite and mixed finite elements over manifolds

A variational form is typically defined, both mathematically
A basic UFL finite element is defined in terms of a family, and in UFL, via a set of operators acting on a set of basis
a cell and a (polynomial) degree. In order to allow finite functions or coefficients integrated over some domain. Tak-
elements to be defined over manifolds, the only modifica-ing Eq. £2) as an example, the differential operatar acts
tion required is to define a cell of differing geometric and on basis functiong; and¢;. The operators defined by UFL
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cell = Cell("triangle", 3)
V = FiniteElement ("Lagrange", cell, 1)

u = TrialFunction (V)
v = TestFunction (V)
a = inner (grad(u), grad(v)) *dx

# or equivalently

# a = sum(u.dx (i) *v.dx (i) for i in range(3))

Fig. 4. UFL code defining the weak Laplacian operator from Exp) for piecewise linear elements over a triangle embedddPinThis
code is included in the Supplement as snippets/laplacian.ufl.

include arithmetic, algebraic, indexing and differential oper- definitions for the case: = n and should only be used with
ators. The arithmetic and algebraic operators extend triviallycare for the case: < n. This is because curl is defined us-
to the case of functions defined over manifolds; on the otheling a normal vector, and sometimes the user may wish to use
hand, the precise extensions of the differential operators dethe actual (discontinuous) normal to the mesh manifold, and

serve a few comments. sometimes they may wish to use a continuous approxima-

UFL provides the differential operatorgrad , div , tion the the normal. An example using a curl operator built
curl ,androt .Inaddition, component-wise derivatives can using the mesh normal field is given in Sect. 5.5, where it
be expressed vidx(i) orDx(u, i) for some functioru is crucial that this operator produces exactly divergence-free

and index , which ranges over the Cartesian components vector fields.
of the gradient vector represented in the embedded space. . _
The UFL gradiengrad can be viewed as the base operator: 3.2.3  Integration measures over manifolds

itis defined in accordance with Ed.4), which, in particular, o i o i
definesvu as an element &&”. As such. for a scalar-valued UFL supports variational forms defined via integration of an

basis functioru defined over a cell of geometric dimension Intégrand/ over a set of predefined classes of domains de-
n, grad(u) is a vector-valued expression, indexable by an fined relative to a tessellatidh = {T'} and sums of such in-

indexi ranging from O to:. Moreover, we define tegrals. The more commonly used domains are all cél3,(
all exterior facetsds) and all interior facetsdS). More pre-
grad(u)[i] = V(u);, (34) cisely, by definition,

whereVu is_ represente_d in thedimensional physical space; | *dx = Z Idv, 1xds = Z Ids.
the extension to gradients of vector- and tensor-valued ex-

pressions, expandedsindimensional Cartesian components,
is immediate. Building on Eq3@), we define the component | , 45 .— Z Ids. (37)
derivativesdx(i) andDx(u, i) as

TeTT eeker,

ec&lis,
u.dx@i) =Dx(u, i) :=grad(u)li] . (35) Here, &€ refers to the set of all exterior facets of the tes-
In short, the component derivatives are defined as the comsellationT while & refers to the set of all interior facets.
ponents of the gradient, and components are defined in termlgecadlltthat’lf IS C(I)rg_posed_ of Ci"j 0f<geo<m§tr_|lfzhd|:cnenf|on
of the standard Euclidean orthonormal basisRér Figure4 ~ 7 @nd topological dimensiom, % =m = n = 3. The lacets
shows the UFL code corresponding to example B8).( T thergfore, have geometnc_dlmensmrand topological
On an affine triangle, the definition of the divergence op—g'mgrll_s'gnn N 1,_a?d d ?nd d in Eq. (31;)5%eferdt[§nt1hj stan-
erator Eq. 28) simplifies toZiZ:O(Vu),-, since there are no 9&'d -€bESQUE Integration measuresioh an , e

curvature terms. Therefore, in our implementation, we Sim_spectlvely. S .
For example, this implies that the integral over all cells of

ply define a mesh of the surface of a ball will equal the integral over all
n—1 exterior facets of a mesh of the ball. Figidlustrates this
diviu) =) udx() . (36)  using DOLFIN codé.
i=0

] o ] ) LUFL is not concerned with actual meshes so (Python) DOLFIN
This would need to be modified if non-affine cells were in- code, in which the variational form specification is integrated with

troduced. The UFL operatourl androt (which return  the problem solving environment, is used to illustrate here. The
identical output in UFL) have not been modified from their essence is the definitions of the forasndb.

Geosci. Model Dev., 6, 2092119 2013 www.geosci-model-dev.net/6/2099/2013/



M. E. Rognes et al.: Manifolds in FEniCS 1.2 2107

from dolfin import =

# Define a mesh of a sphere (ball) with radius 1 and a mesh of its
# surface
mesh = Mesh (Sphere (Point (0.0, 0.0, 0.0), 1.0), 8)

surface BoundaryMesh (mesh, "exterior"

B

Integrate 1 over the exterior facets of the mesh of the ball
I = Constant (1.0)
a = Ixds

A = assemble (a, mesh=mesh)

# Integrate 1 over the cells of mesh of the surface of the ball
b = Ixdx

B = assemble (b, mesh=surface)

# Confirm that A == B to within numerical precision

eps = l.e-14

assert (abs (A B) < eps)

Fig. 5.DOLFIN Python code illustrating that an integral over the surface facets of a meshed ball is equivalent to the integral over the manifold
mesh of the ball's surface. This example is included in the Supplement as snippets/measures.py.

3.3 Extending the FEniCS Form Compiler (FFC) onto  back to the reference eleménif both topological and ge-
manifolds ometric dimensiomn. FFC uses FIAT Kirby, 20049 to pre-
evaluate the reference basis functions on the reference cell.
) ] ) Since FIAT only operates on the reference cell, it requires no
The interface of the form compiler FFC has two main entry yqdification for our purposes.
points: one for compiling a (set of) UFL form(s) and one for A5 demonstrated in Se@, the mathematical representa-
compiling a separate UFL finite element. tion of the variational forms supported by FFC differs be-
tween the standard and immerse manifolds cases only in the
N o ) definition of the Jacobian and its pseudo-determinant and in-
3.3.1 Compiling variational forms and integrals over  \erse FFC's internal representation follows the mathematics,
manifolds with the consequence that only the final, code generation,
stage requires modification for the immersed manifold case.
The code generation stage of FFC relies on predefined
ecode snippets or kernels for computing the Jacobians, the

of FFC is to generate UFC-compliant code for the form Jacobian (pseudo-)determinants and the Jacobian (pseudo-
and for each of the integrals. The main part of the inte-)INVerses. Compiling forms over cells with differing topolog-
gral code is the computation of the local element tensorfCal @nd geometric dimension is therefore simply enabled by
over a given physical mesh entity for the specific integral. providing implementations based on the definition E48) (

This functionality is provided by the generated code body2nd @) for the (remaining) casesdm < n < 3. This light-
of theufc:: * _integral:tabulate_tensor func- touch modification is compatible with the full range of opti-

tions. The UFC specification allows mesh entities and in par_misations which FFC can insert in the generated form code.

ticular physical cells with differing topological and geomet- We show an example of the generated code correspond-

ric dimensions. The extension of FFC to immersed manifoldsing to Eq. @3 in Fig. 6. The geometrically defined UFL

is therefore restricted to extending the generation of the locaPPerands such as facet normal are likewise extended to im-

element tensor code body to this case. mersed manifolds by corresponding modified code snippets.
For all integral types, the generated code computes the lo-

cal element tensors by pulling the integral back to a suitable

reference cell as shown in E®)(for the local mass matrix

and in Eq. 23) for the local stiffness matrix. For an integral ~ 2The definition of the UFC reference cells for dimension 8

over a cell of topological dimension, the integral is pulled  are given inAlnzes et al(2012.

A UFL form is a sum of UFL integrals each of prede-
fined type determined by the measure symbol. The rol
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/// Tabulate the tensor for the contribution from a local cell
virtual void tabulate_tensor (doublex A,

const double * const =« w,

const doublex vertex_coordinates,

int cell_orientation) const

// Compute Jacobian
double J[6];

compute_jacobian_triangle_3d(J, vertex_coordinates);

// Compute Jacobian inverse and determinant
double K[6];
double detdJ;

compute_jacobian_inverse_triangle_3d (K, detJd, J);

// Set scale factor

const double det = std::abs(detd);

// Compute geometry tensor

const double GO_0_0 det* (K[0]+K[0] + K[1]+K[1] K[2]*K[2]);
const double GO_0_1 det* (K[0]+xK[3] + K[1]*K[4] K[2]*K[5]);
const double GO_1_0 det* (K[3]*K[0] + K[4]*K[1] K[5]*K[2]);
const double GO_1_1 det* (K[3]*K[3] + K[4]*K[4] K[5]*K[5]);

// Compute element tensor

A0 0.5%G0_0_0 + 0.5+#G0_0_1 + 0.5%xG0_1_0 + 0.5+G0_1_1;
All 0.5%xG0_0_0 0.5%G0_1_0;

Al2 0.5+«G0_0_1 0.5+G0_1_1;

A3 0.5+«G0_0_0 0.5+G0_0_1;

Al4] 0.5+«G0_0_0;

A5 0.5+«G0_0_1;

Al6 0.5+«G0_1_0 0.5+G0_1_1;

A7 0.5+«G0_1_0;

Al8 0.5+«G0_1_1;

Fig. 6. Generated code for the bilinear form corresponding to the weak Laplacian. This code is extracted from snippets/laplacian.h in the
Supplement, which was obtained by running FFC on the code imFithe array A represents the<3 local element tensor for the discrete
Laplacian. For a full explanation of FFC and the code it generates, the reader is dirdobed tet al.(20129.

3.3.2 Compiling finite elements and dofmaps over In the cases of scalar basis functions B).qr Cartesian
manifolds products of these Eq29), the implementation of the pull-

backs and push-forwards extend trivially from the case with
In addition to the code for integrals and forms, FFC gen-matching topological and geometric dimension to that of dif-
erates UFC finite element and dofmap (degree-of-freedomering topological and geometric dimension. For div- and
map) classes for all finite elements encountered in a formeyri-conforming elements, the implementation of the pull-
and when compiling a separate finite element. The primaryback is based on the Piola contravariant and covariant trans-
non-trivial functionality provided by these generated classeSorms Eqs. 80) and @1). As for forms, the intermediate com-
are evaluating degrees of freedom on arbitrary coefficientspiler representation preserves the semi-symbolic representa-
evaluating basis functions at arbitrary points, and interpolat+ion given by the mathematical expressions, and so the gen-
ing vertex values. As for forms and integrals, the FFC codeerated code again simply calls out to the redefined Jacobians,
generation strategy for these operations relies on pulling thgyseudo-determinants and pseudo-inverses.
finite element basis functions back to the appropriate refer- However, the finite element families mapped via the con-
ence cell or, in some cases, pushing the degrees of freedofravariant Piola transform present one additional novel as-
forward from the reference to the physical cell. pect: the choice of sign in Eq3Q). As detailed inRognes

et al.(2009 for the case of matching topological and geomet-
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ric dimensions, using the signed determinant of the Jacobiamumerical properties of certain test cases against theoreti-
in combination with the UFC numbering of mesh entities re- cally established values. We make some comments on verifi-
sultin the desired normal component continuity. However, ascation via the first class of tests here. To illustrate the use of

the generalised Jacobian determinant does not carry a sigthe implementation and to provide some further evidence to-

the choice of sign in Eq.30) must be determined by alter- wards its correctness, we provide some examples of the sec-
native means. In fact, it is not possible to determine the sigrond class of tests in Se&below.

based on the geometry of the physical cell only. Therefore, The FFC implementation is tested through a series of sam-
the code generation assumes that the choice of sign is deteple forms and elements aiming at covering the scope of forms

mined via an additional input argument to the relevant UFCand elements supported by FFC. The compilation of forms

functions. and elements are tested in multiple ways, primarily via re-
. _ gression testing. In particular, the generated code is directly
3.4 Extending DOLFIN onto manifolds compared to previously established references, it is verified

] ] _ that the generated code compiles and runs, and finally the

DOLFIN natively supports meshes defined over cells with o,tyt of the generated code when run with a set of sam-
differing topological and geometric dimension. Therefore, e input is compared with previously established references.
the extensions to the form compiler FFC detailed above esThese tests are carried out for the different representations
sentially yield a fully functional FEniCS pipeline for these 4y4ijaple in FFC, with and without optimisations. Moreover,
meshes. , _ _ since the different representations must provide equal results,

In view of the previous remarks regarding the contravari- the results from running the generated code are compared
ant Piola finite element families, the DOLFIN meshes have,cross representations. This procedure thoroughly tests the
been extended to keep track of cell orientations defined relaéample forms and elements included in the test suite. How-
tive to a global normal direction. More precisely, for a tri- eyer, we remark that the quality of this verification strongly
angle cell with vertex coordinatesy, v, v2 embedded in depends on the coverage of the test suite

3 - . - . _ _ . s R .
R*, we identify its first two edges byo = v1 — vo andey = In DOLFIN, in addition to regression tests as for FFC
v2 — vo. The local cell normak is defined byn; =eo X e1.  gpove, unit tests are emphasised: separate functionality is
Given a global (potentially spatially) varying normal field  tested on cases of reduced complexity for which the com-
the cell is identified as “up™-oriented if; andr are aligned;  ,ted answer can be compared to a known, exact value. In
that s, ifm xn(v,,) > Oforn evaluated atthe cell barycentre hanicyjar, for the extensions of the FEICS functionality de-
vm and “down-oriented ife) x n(v,,) < 0. This orientation  g¢ribed in this manuscript, unit tests were added ensuring that
information is then propagated through the UFC interfaceqg| orientations are correctly computed and that all geome-

to the code generated by FFC. As an ultimate consequencgy, computations relating to cell volumes, circumradius, facet
the contravariant Piola element families are not available fornormals and facet area, for all combinations of geometric and

non-orientable manifolds. topological dimensions £ m < n < 3, are correct. A series
of tests verifying the correctness of the results from the auto-
mated assembly of simple forms defined over finite elements

One of the key advantages of the FEniCS pipeline is the Sep(_)ver cells of varying geometric and topological dimension

aration it achieves between different aspects of the softward” ertehalso mI(t: qudedl. £ ts'n:rl? le, but U?IUI’ examplz 'S compar-
and algorithms of the finite element method. In particular, the'Md fke result off 0 the area ok for varying domains
implementation of parallel execution is completely separatedK of known area.

from the specification of the numerical method. DOLFIN For the manifolds case, a much used tgchnlque for. cor
supports MPI and OpenMP parallelism, including hybrids roborating the correctness of the extended implementation is

of the two Richardson and Well2013. The extension of comparing the case of an immersed smooth surface with van-
FENICS to support immersed manifolds therefore requirec]jshing curvature to the equivalent standard, and hence thor-
no modifications to the existing parallel support, and con-0ughly tested, flat case. For example, a known test case on

versely, simulations over manifolds are naturally supported_the gmt square can be.r.epeated for the unit square immersed
in parallel. in R® and the result verified. Further tests may be constructed

by subjecting the unit square mesh to rigid body transforma-

tions inR3 and solving the problem on the transformed mesh.

4 Verification All of these tests are available as a part of the FEnIiCS dis-
tribution and automatically run nightly (or more frequently)

The FEniCS components, including the extension to im-by the FEnICS buildbots. Their status is publicly available at

mersed manifolds presented here, are primarily tested antttp://fenicsproject.org/buildbot/

verified via the following means: firstly, automated unit,

system, and regression tests; and secondly, numerical ex-

periments testing the observed convergence rates or other

3.5 Execution in parallel
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5 Examples

In this section we provide some examples that cover the main(/ o-tdx + / divzudx =0, (41)
aspects of solving PDEs on manifolds, and test results tha A
demonstrate that our approach works. We have concentrate

on the spherical case since that is the main surface of interesy divovdx + / rotx = /gvdx, (42)
in geoscientific models. The example code is provided in they, o o
Supplement.

/ tudx =0, (43)

5.1 Two mixed formulations of Poisson’s equation o

In this section we discuss two different approaches to the disfor all r and suitabl (z, v). Sincer, v andr are independent

cretisation of the gradient of the scalar solutionf a Pois- e may combine these into a single equation:

son equation on the sphere. In the first approach, we use div-

conforming finite element spaces for the vector fiele Vu (0, 7) + (dive, v) + (divt, u) + (r, v) + {t,u) = (g, v), (44)

and rely upon the contravariant Piola transform to enforce

tangency to the mesh used to approximate the sphere. In théhere we have adopted the angle bracket notation

second approach, we use Cartesian products of scalar finite

element spaces (in this case discontinuous, piecewise polygv) = /gvdx, (45)

nomial spaces), and enforce approximate tangency through 5

the introduction of Lagrange multipliers. This approach was

advocated for fluid models on the sphereliaté (1989 and ~ for scalar variablegg, v) and

used in conjunction with discontinuous Galerkin methods

in Giraldo (2008. (o, 1) =/(T~1:dx, (46)
In both of the following examples, we take to be the

surface of a unit sphere centred at the origin, an@jdie an

affine tessellation of this surface. For a given scalar functionfor vector variablego, 7).

g, we seek the solution of the Poisson equation written in To obtain a finite element discretisation of this discrete

Q

dual form form, we simply restrict- andz to a (vector-valued) finite el-
ement spac¥, andu andv to a different finite element space

o —Vu=0, (38) Q. It follows from inspection of Eq.44) thatV must be div-

dive +r =g, (39) conforming, but thatQ has no continuity constraints. It is

well known in the literature, for example iuricchio et al.
where r is the domain average of. Given a solution (2004, that stable discretisations can be obtained Wliee
(u, o, r), another solution can be obtained by adding an arbi-div operator maps fronV onto Q; the loss of continuity

trary constant ta; hence, we impose the condition means tha) may be a discontinuous finite element space.
In this example we consider a number of such pairs of spaces
/udx =0, (40) that are available in FEnIiCS, presented in Tdble
The problem was solved on a sequence of icosahedral

= meshes of the sphere, takipg= x1x2x3. Example solutions

which fixes the value of this constant, leading to a uniqueand convergence plots are shown in Fig.with the error
solution. measured using the,; norm|| - ||o defined by

5.1.1 Div-conforming spaces ||M||0='/u2dx. (47)

To obtain a weak form of Eqs38) and 39), we consider the @

dot product of Eq.38) with a vector-valued test function, As expected, we obtain first order convergence for
integrated over the domain. Similarly, we multiply E§9( RT1 — DG and BDM, — DGg, and second order conver-
by a scalar test functiomand integrate over the domain, and gence for BDFM —DG; and BDM, — DG;. This exam-
multiply Eq. @0) by an arbitrary constant We apply inte-  ple corroborates the veracity of the implementation of
gration by parts to transfer the derivative framo 7 inthe  the contravariant Piola transformation on manifold meshes.
first equation. We obtain The example code is provided in the Supplement in
examples/mixed-poisson/hdiv-12/mixed-poisson-sphere.py.

3«guitable” meaning that the integrals are finite.
4Together with some easily satisfied technical conditions.
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~— RT, x DG,
e-s BDM, x DG,
= BDFM, x DG,

e-e BDM, x DG,

10° /
— h 7
e p?

h

Fig. 7. Left: plot of the solution to the div-conforming discretisation of the Poisson Ed) (vith V = RT1 andQ = DGg. Right: |lu —uy|lo
versus mesh sizke (whereu is the exact solution ang, is the numerical solution) for series of discretisations of B4).(

Table 1. Triples (E, V, Q) of finite element spaces. Only the wherel is the Lagrange multiplier, anklis the unit outward
pairs (V, Q) are used in Sect$.1.1and5.2, while Sect5.5also  normal to the manifold2. On a two-dimensional manifold,
requiresk. RT refers to the Raviart-Thomas spa&ayiart and e introduce a Lagrange multiplier fields DGy; the finite

Thomas 1977, BDM to the Brezzi-Douglas—Marini spacBrezzi element problemisto fintb, u,l,r) e W = DG? X CGp41X
et al, 1985, and BDFM to the Brezzi-Douglas—Fortin—Marini DG; x R such that

space Brezzi and Fortin1991). Note that we have used the FEnIiCS
numbering convention, in which the number refers to the highest
order of polynomials appearing in the space, rather than the normaio’ T)— (. Vu)+ (0. Vo) —{l.7 k)

convention, in which the number reflects the order of numerical ap- +{y,0-k)—(r,v)+ (t,u) = —(g,v) (51)
proximation; sed.ogg et al.(20123 for further details. For exam-

ple, in this numbering, the lowest order Raviart-Thomas space ior all (z, v, v, 1) eW.

denoted RT, rather than R{, whilst the BDFM space discussed in Code for this examp|e is provided in the Supp'ement

i i - ._case, we observe second order convergence ik sh@orm
ble” functions that are nonzero only on a single element, and vanish

on element boundaries. and first order convergence in ti#g-norm || - |1 defined by

£ v fulls = [+ 1V, (52)
CGy RTy DG Q
CGy BDM; DGy
CG,®B3z BDFM, DGy in accordance with theoryptter et al.2009.
CGg BDM; DGy We would usually expect these convergence rates to in-

crease by one order when we change the spaces ﬁ)—DG

CG;. However, as discussed iBérnard et a].2008, higher-

5.1.2 Cartesian product space with Lagrange order convergence can only be achieved if higher-order ap-

multipliers proximations to the manifold itself are used, and in our im-

plementation we use affine triangles. Hence, fo@DCG:Gz,

An alternative approach is to work with a Cartesian prod-we also observe second and first order convergencé for

uct finite element space, where each Cartesian component éd H1 norms, respectively. This example tests the use of

the three-dimensional vector fiesdis expanded in the same three-dimensional vector fields on a two-dimensional mani-

finite element space, and to enforce tangency dhrough  fold mesh.

a Lagrange multiplier, also expanded in the same space. With

this approach, Eqs38) and 89) become 5.2 Linear shallow water equations on the sphere

o —Vu—1k=0, (48) In this section, we use the framework to solve the linear shal-
. . low water equations in a rotating frame on the sphere. The

dive +7 =g, (49) unknowns are the depth of the shallow lay2rand the ve-

o-k=0, (50)

locity u, assumed tangential to the sphere. They are related

www.geosci-model-dev.net/6/2099/2013/ Geosci. Model Dev., 6, 2G499 2013



2112 M. E. Rognes et al.: Manifolds in FEniCS 1.2

10° 107
[[u=wpllo
[lu—slly

h

h?

AN
[Ju—wplly

h

h?

111

107}

_—
/ / 10°
.

1T

\\

Error
=
o
Error

e
/

e
/

107 10" 10
h h

Fig. 8. |lu—upllo and|lu —uy, || 1 versus mesh size(whereu is the exact solution ang, is the numerical solution of E§1), using Lagrange
multipliers to enforce approximate tangency. Left: g)GGl. Right: DG31-CGZ.

by the equations: A direct computation shows that the total enefgyy given
b
u + fut +gVD =0, 63 d
D; + Hdivu =0, Er(t) = Ex(t) + E,(t), Ex(r) = 05H |lu()||3,
whereg is the acceleration due to gravitif: is the (constant)  E,(#) = 0.5¢||D(z) I3, (56)

reference layer depth; = Qox3/R is the Coriolis parameter,
where§g is the rotation frequency of the sphere aiis the is conserved for these spatial discretisations. It will also be
sphere radius; and = k x u, wherek is the unit normal exactly conserved by the implicit midpoint rule time dis-
vector to the sphere. The subscrigtenotes the partial time cretisation method, which conserves all quadratic invari-
derivative. ants Leimkuhler and Reich2005 for example), and so we

A weak form of these equations is obtained by taking theUSe this conservation as a diagnostic to verify our discretisa-
product with test functionw and¢, integrating over the do-  tion.
main Q and integrating the gradient by parts. Restricting to  Shapshots of the solutions using the element combi-
finite element spaceg andQ with w,u € V, andD, ¢ € Q, nation V =RTy and Q =DGo are presented in Fig9.

leads to the finite element discretisation The computed energies for the same element combination
are plotted in Fig.10. We observe that the total energy

(w,ur) + (w, fu') — (divw, gD) =0, (54) s conserved (to within machine precision) as anticipated.

(¢, D;) + (¢, Hdivu) = 0, (55) Code for this example is provided in the Supplement in

) ) ) ) examples/linear-shallow-water/linear_shallow_water.py.
forall w in V and¢ in Q. As discussed ihe Roux et al.

(2009, it is important to choose a pair of finite element 53 Linear wave equations on the torus

spaces fou and D that would be stable for the mixed Pois-

son problem (as described in Sebtl), in order to avoid The Supplement also includes an example of the solution of
having spurious solutions whe® is highly oscillatory in  the linear wave equation over a torus. The equations solved
space but that have very slow frequencies in time. For largeare Eqgs. $4) and 65) with f =0. The initial conditions
scale atmosphere and ocean modelling, it is also importanprovided are of a radially propagating wave. The results are
for the system to have exact steady state solutions irfthe qualitatively reasonable and energy conservation is observed
plane (constanyf) case corresponding to each divergence-to machine precision in a similar manner to that shown in
free vector field in the finite element space for velocity. TheseFig. 10. Since the problem solved does not have a straightfor-
solutions represent the large-scale balanced flow that slowlyvard analytic solution and is similar in character to the pre-
evolves in the nonlinear solutions, giving rise to “weather”. ceding sphere case, results are not reproduced in the paper.
It was shown inCotter and Shiptorf2012 that the stable However this section serves as a pointer to the implementa-
element pairs using div-conforming elements #iosuch as  tion in the Supplement for readers interested in simulating
those listed in Tabld also satisfy this property, and hence on manifolds other than the sphere. The code for this exam-
we will use such spaces as examples here. ple is included in examples/torus. Of particular interest may
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Fig. 9. Snapshots of the solution to the linear shallow water equations obtained using the method®23eith V = RT, andQ = DGg.
Top: D. Bottom:u.

5.4 Upwind discontinuous Galerkin transport on the
0.20 sphere

{\ (\ In this section we discuss the transport equation
0.15

D, +div(uD) =0, (57)

which is a commonly encountered equation in the geo-

vl /\/\[\ /
\ﬁ(\j\ A//\ sciences, describing the transport of a mass der3ityy

Energy

a velocity u; it appears in the shallow-water equations as
\/ V the continuity equation describing the evolution of the layer

0.05f

— B,
— E,
— Ep

depthD. This equation takes the form of a conservation law
and therefore is ideally suited for discretisation using the dis-
10 continuous Galerkin (DG) approach which uses finite ele-
ment spaces with no continuity constraints across element
boundaries, and which extends the first order upwind finite
volume method to higher order locally conservative schemes

and RT, x DGy in space discretisation of Eqs4) and 65). As by increasing the order of the polynomials in each element.

expected the total energy is conserved to machine precision (the 10 0btain the spatial discretisation, we multiply EG7X
maximum absolute conservation error id & 10~15). by a discontinuous test functiop, integrate over a single

cell T, and integrate by parts to obtain

0.00 3 s

[oe]

Fig. 10. Linear shallow water equations: kinetlf, potentialE ,,
and total energ\Er versus time for an implicit midpoint in time

the required specification of the global normal direction, and

a facility for providing expressions such as initial conditions ’

in manifold (polar) coordinates. wheredT is the boundary of ; andn7 is the outward point-
ing normal vector t@d 7'; and whereD is taken to be the value
of D on the upwind side; that is, the side away from which
the velocityu, assumed continuous, is pointing. Local con-
servation follows from choosing = 1 inside element and
¢ = 0 outside.

be torus_mesh.py which contains a torus mesh object with/(;,ptdx —/V¢ -udx +/¢Du -nrds =0, (58)
T aT
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000e

Fig. 11. Snapshots of the solution to the transport equation obtained using the method &f&ect.

To write this as a global system, we adopt an (arbitrary)where(x1, x2, x3) are the global Cartesian coordinates as be-
global convention for labelling the two elements on each sidefore, and we use the time-independent rigid rotation velocity
of an interior facet: each interior facet=7"UT~,and we field
write ¢+ for ¢|p+ andg™ for ¢|,-. We then sum Eq.58)
over all mesh elements and the problem becomes Beek ~ u = (—x2,x1,0). (64)

DG such that . . . .
This means that after integrating the equations frea0

until + = 2, we recover the initial condition. For sufficiently
small A¢, chosen so that spatial discretisation error is the
dominant error term, the difference betwaemt: = 27 and

for all ¢ € DGy, whereT is the union of all interior facets the initial conditions provides a metric for the spatial discreti-

(here we have assumed for simplicity thtis closed so ~ Sation error. , _ ,
there is no¥$2 contribution), and where we have introduced _ Snapshots of the solutions using P@re presented in
the flux F = Du -n* (recall thatu = u* by the assumption Fig. 11. More(_)ver_, plots of theLg error versus mesh size
of continuous:). Note that now an integral is performed over &€ provided in Fig12, showing the expected second-order
each facet only once, and so théntegrand contains contri- convergence. Note that higher order DG spaces would not
butions from both sides of each facet. yield a higher order convergence rate since we are using
Finally, to express the equations in a form that can be eas2 Second-order approximation to the sphere. This example
ily written in UFL, we define the following functiom over tests the construction of facet normals and facet integrals on
I manifold meshes. Code for this example is provided in the
Supplement in examples/dg-advection/dg-advection.py.

f¢>D,dx—/v¢.uDdx+/(¢>+—¢>—)Fds=o, (59)
Q Q r

_Junifun>0 1 n (60)
] 0 otherwise — 2 @-n+lu-nl). 5.5 Nonlinear shallow water equations
Then The nonlinear shallow water equations are used to model
P a single incompressible thin layer of fluid with a free surface.
F=v'D"—v D", (61) They are often used as a test bed for horizontal discretisations

for use in numerical weather prediction and ocean modelling.
A linearised version was used previously in Sécg, the
Coriolis parameterf and gravitational potentiad are un-
/¢D’dx _/V¢ ~u Ddx changed from before, but we allow spatial variations in to-
Q Q pography, denoted bk. The velocityu and fluid depthD

n /(¢+ — )T DT — v D )ds =0. (62) evolve according to
r u +@-Vyu+ fut +¢gv(D+b)=0, (65)

The block diagonal structure of the mass matrix makes ex-D: + div(Du) = 0. (66)
plicit methods attractive for DG, and strong stability preserv- ) )
ing Runge—Kutta (SSPRK) methods are typically used, since 1€ momentum qu@ can be rewritten in terms of the
they have usable Courant number restrictions for stability,/€lative vorticitys = V= u =div(u x k), wherek is again
and are shape-preserving when combined with suitable slop@® local unit normal to the sphere:
limiters (Cockburn and Shi2003). In this example, we use 1
the third-order SSPRK method, without limiting. u + @+ Hut+v (g(D +b) + > |u|2) =0. (67)
We take as initial condition foD:

and we write

Do=e (53, (63)
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Finally, defining a potential vorticity = %, we obtain
the coupled equations
1L 1 2
u,+qDu—+V g(D+b)+§|u| = (68)
D, +div(Du) = 0. (69)

We use a mixed finite element discretisation of this,
stabilised with the Anticipated Potential Vorticity Method
(APVM), which serves as a direct extension of the energy-
conserving, enstrophy-dissipating C-grid finite difference
scheme ofArakawa and Hsi(1990. We takeu € V, D € Q,
where(V, Q) are chosen from the stable pairs of finite ele-
ment spaces listed in Table The spatially discretised equa-
tions are then

(w, u;) + <w, g—t(u- V)q)Fl>
‘%/__/

APVM term

—<din,g(D+b)+%|u|2>=O, (70)

(¢, Di) + (¢, diVF) =0, (71)

forallwin V, ¢ in Q, where we have introduced a stabilisa-
tion parameter and the volume flu¥'. Note that the poten-
tial vorticity g € E and the volume flud’ € V satisfy

(72)
(73)

(v.aD) = (=VEy.u)+ (. ).
(w, F) ={(w, Du),

for all y in E andw in V. The finite element spacE is
chosen so that th€-+ operator maps fronk to V. Suitable
choices ofE, givenV andQ, are also listed in Tablg.

To discretise in time, we will use thiiemethod. Define
u'=u"+(1-0)Au", D*=D"+(1—-0)AD", (74)
whereAu" = u"1 —u", AD = D" —
crete equations then read:

D". The fully dis-

0={w, Au")+ At[{w, (g - r@* V)g) F*)

<d|vw g(D* +b)+ 1|u*|2>i|, (75)
0= (¢, AD") + At{9, dIVF) (76)
02( ’QD*> (V y,.u)— ys f)f (77)
0= (w,F)— (w,u D*) (78)

for all w,w' eV, ¢ € Q, y € E. We will take§ = 3 (im-
plicit midpoint), and choose = %At. A direct, “mono-
lithic” approach is to solve Eq.76) through Eq. 18)
with DOLFIN’s built-in nonlinear Newton-based solver. Ex-
ample code implementing this approach is presented i
examples/williamson2/auto.py.

www.geosci-model-dev.net/6/2099/2013/
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Fig. 12.||D — Dy,||o versus mesh size (whereD is the exact so-
lution and D;, is the numerical solution to the transport equation
obtained using the method of SeBt4). Second order convergence

is observed as expected. Mass is conserved to machine precision
(the maximum absolute conservation error.i& st 10~14).

The monolithic solver approach is somewhat inefficient,
because the Newton iteration requires the solution of a large
and difficult-to-precondition linear system. We shall now de-
scribe a more practical approach. Instead of treatingd F
as prognostic variables to be solved for, we instead treat them
as implicit functions ofz and D, defined through Eqs7{)
and (78). With this definition, we then try to solve EqQF5)
and (76) for Au" and AD". The difficulty is that it is no
longer possible to use DOLFIN'’s built-in automatic differ-
entiation to generate the Jacobian for this system. However,
from physical considerations, the motion in each time step is
dominated by the propagation of fast gravity waves; the po-
tential vorticity g evolves on a much slower timescale. This
means that we can approximate the Jacobian by treatasy
if it is independent oz and D in Eq. (77) and by approxi-
mating F by Hu in the Jacobian calculation, wheFgis the
average ofD over the domain. This motivates the use of the
Jacobian from the linear shallow water equations EG4) (
and 65); this is the standard semi-implicit method for solv-
ing the shallow-water equations.

Since we have multiple Newton-like iterations within each
time step, we will drop the time-dependent superserifgr
clarity. We therefore state our problem at each time step as
follows: givenu and D, find Au, AD. Let Au* and A DF
be the approximations tau and AD obtained at theth
iteration. We aim to find @u*+1 ands D¥+1 with which to
updateAu* and A DF:

k+1 _

ARt = Auk 4 suk AD*L = AD* 4 sDFL. (79)

Let u* = u" + (1—0)Au, and similarly D*. We can then
introduceg* and F*, satisfying

(y —(VEy,u*) +{y, f)
(w’, u*D*)

(80)
(81)

Y.q*D*) =
(w', F*) =

n
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—e RT, velocity
~— RT, depth

—e BDM, velocity
~— BDM, depth
o—e BDFM, velocity
~—a BDFM, depth
o—o BDM, velocity
a—a BDM, depth
—  «h!

—  ««h?

Normalised L, error
5

$DM 4+ (1-0)ArHdivsu* ™ = —AD* — ArdivF*  (84)

holds pointwise, and not just in an integral sense. We can
therefore substitute farD**1 in the first equation and solve
two separate equations, rather than a pair of coupled equa-
tions.

We illustrate this approach using two examples from the
standard NCAR test set for shallow water equations on the
sphere Williamson et al, 1992, namely the solid rotation

(test case 2) and mountain (test case 5) cases. The solid ro-
tation case is an exact steady state solution of the nonlinear
rotating shallow water equations, for which the velocity field
is that of solid body rotation around the sphere. The met-

ric for this test case is thé, norm of the difference from
the initial conditions of the depth fielf® and the velocityu

Fig. 13. Rigid rotation nonlinear shallow water test case on the after five days. The fields were initialised by finite element
sphere:L?-error of the velocity« and depthD fields versus mesh  projection into the relevant spaces having sampled the func-

tions at quadrature points. Plots of the error for various finite
element spaces are provided in Fig, with the expected

convergence rates. The mountain test case is a similar ini-

tial condition (with slightly different magnitude), but with
a large conical mountain in the topography at mid-latitudes.
This case does not have an analytical solution; the metric for

sizeh.
10"
— RT,
~— BDM,
—  «h!
—
o
£ 10?
9]
5
°
Q
0
©
€ .
IS 10
2

this test is theL, norm of the difference between the sur-
face height fieldD + b and a high resolution reference so-
lution obtained from the spectral model provided by NCAR,
at 15 days. Plots of the error are provided in Fig, and
show the expected convergence rates. FidulFeshows il-
lustrative snapshots obtained from this simulation. Code il-
lustrating the optimised approach applied to these two ex-
amples is presented in examples/williamson2/manual.py and
examples/williamson5/w5.py. Note that energy conservation
is not an expected property of the timestepping scheme em-

H
10°

h (m)

Fig. 14. Mountain nonlinear shallow water test case on the sphere:
L2-error of surface height fiel® + b (compared to reference solu-

tion) versus mesh size

forally e E,w' e V.
The equations fosu**t1 ands D¥*1 are then

10’ ployed for these tests, so no energy results are presented. A

full analysis of the energy and enstrophy conservation prop-
erties of the spaces studied here is presentéddRae and
Cotter(2013.

6 Limitations and extensions

The scope of the current implementation leaves room for
a set of natural extensions.

k+1 k+1\L ; k+1
(w, du"" >+(1—9)At[<w,f(au H7) — (divw, g8 D" >] First, the implementation only includes simplicial finite el-

=—<w,Auk)—Az[(w,q*F*L)
: * 1 *12
—{divw, gD +§|u |

(¢, 8Dy 4+ (1—0) At (¢, Hdivsu*t1) =
— (¢, AD"Y — At (¢, diVF*) .

ement cells and basis functions; that is, finite elements de-
fined over intervals, triangles and tetrahedra. Moreover, only
affine transformations from reference to physical cells are
covered here. We remark that this is not due to a limitation in
design: support for tensor product finite elements, including
quadrilaterals and hexahedra, and curved cells is a natural ex-
(83) tension and will be considered in future work. Note that for
these cases, in contrast to the affine case, the Jacobian of the

(82)

It can be shown that, with the combinations of finite ele- geometry transformation varies over each cell.
ment spaces we employ, E@Q3j implies that the equation

Geosci. Model Dev., 6, 20922119 2013
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Fig. 15.Snapshots of the solution to test case 5 for the nonlinear shallow water equations at 15 days. These were obtained using the methoc
of Sect.5.5, with APVM stabilisation. We tookE = CG, @ B3, V = BDFMy and Q = DG;. Top: initial surface height fieldD + b, and

velocity field, #; final surface height and velocity fields. Bottom: final vorticity field,projected from a triangular mesh into latitude—
longitude coordinates.

Second, we point out that the current UFL design assume§ Copyright and access to code
that mixed finite elements are defined in terms of a number
of component elements sharing a common cell. A direct con-The FENICS Project software, including the enhancements
sequence of this is that mixed elements defined over differdocumented here, is available under version 3 of the GNU
ent cells, for instance a mixed element with two componentg_esser General Public License. The functionality described
where one component is defined over cells of geometric dihere is available in release version 1.2 and will be main-
mensiom and topological dimensiom and another compo- tained in subsequent versions. FEniCS 1.2 consists of:
nent is defined over cells of geometric dimensicand topo- ~ DOLFIN 1.2.0, FFC 1.2.0, FIAT 1.1, Instant 1.2.0, UFC
logical dimensionn — 1, is not admitted. This restriction is 2.2.0, UFL 1.2.0. Users are encouraged to employ the current
however independent of the manifolds aspect: an extensiofelease of FEniCS. This is available kitp://fenicsproject.
of UFL for the case where: = n would immediately carry ~ org/download Archive packages for version 1.2 will re-
over to the case: < n. Such an extension m|ght be useful, main available athttp://feniCSprojeCt.org/downloadlolder_
for instance, in order to enable the imposition of a Lagrangereleases.html
multiplier over the surface of a mesh while solving an equa-

tion over the mesh as a whole. 8 Supplementary material

The Supplement include the source code for the code exam-
ples given in Sect3 and for each of the numerical exam-
ples presented in Sed. In particular, scripts are provided
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to reproduce all of the graphs contained in this paper. ReleAlnaes, M. S., Logg, A., and Mardal, K.-A.: UFC: a finite element
vant references to the Supplement appear in the paper at the code generation interface, in: Automated Solution of Differen-
point at which the material is used, and further information tial Equations by the Finite Element Method, Volume 84 of Lec-

is provided in the README file. ture Notes in Computational Science and Engineering, edited by:
Logg, A., Mardal, K.-A., and Wells, G. N., chap. 16, Springer,
2012.

Alnges, M. S., Logg, A., Dlgaard, K. B., Rognes, M. E., and
Wells, G. N.: Unified Form Language: a domain-specific lan-

. . . . . . guage for weak formulations of partial differential equations,
This paper details how the solution of finite element discreti-  Acym Trans. Mathe. Softw.. available ahttp://arxiv.orglabs/

sations defined over simplicial meshes of immersed mani- 1211.4047last access: 13 December 2013), 2013.

folds can be automated via code generation. The corresponghkrakawa, A. and Hsu, Y.-J. G.: Energy conserving and potential-

ing implementation is generally available as an integral part enstrophy dissipating schemes for the shallow water equations,
of FEnIiCS 1.2. The numerical examples presented cover Mon. Weather Rev., 118, 1960-1969, 1990.

a range of different partial differential equations and a wideArakawa, A. and Lamb, V.: Computational design of the basic dy-

range of different discretisations; we hope that these illus- namical processes of the UCLA general circulation model, Meth.

trate the flexibility and the strength of the approach and im- Computat. Phys., 17, 174-267, 1977. _ .
plementation Auricchio, F., Brezzi, F., and Lovadina, C.: Mixed Finite Element

Methods, Encyclopedia of Computational Mechanics, 2004.
Barden, D. and Thomas, C.: An Introduction to Differential Mani-
folds, Imperial College Press, 2003.

9 Conclusions

Sup_plementary material related to this article is Bernard, P.-E., Remacle, J.-F., and Legat, V.: High-order Discontin-
available online athttp://www.geosci-model-dev.net/6/ uous Galerkin Methods for Solving Conservation Laws on Gen-
2099/2013/gmd-6-2099-2013-supplement.zip eral 2-D Manifolds, 2008.

Brezzi, F. and Fortin, M.: Mixed and Hybrid Finite Element Meth-
ods, vol. 15 of Springer Series in Computational Mathematics,
Springer-Verlag, New York, 1991.
Brezzi, F., Douglas, J., and Marini, L. D.: Two families of mixed
N finite elements for second order elliptic problems, Numer. Math.,
Acknowledgt_ements‘l’_he development work in thls paper was un- 47, 217-235. 1985.
dertaken while the first three authors were visiting fellows at the Cockburn, B. and Shu, C.-W.: Runge—Kutta discontinuous Galerkin

Isaac Newton Institute programme on Multiscale Numerics for methods for convection-dominated problems, J. Sci. Comput.,
the Atmosphere and Oceattp://www.newton.ac.uk/programmes/ 16. 173-261. 2001

AMM . The authors would like to thank the institute for its support Coté, J.: A Lagrange multiplier approach for the metric terms of
and hospitality. The authors would also like to thank Hilary Weller se’mi-Lagrangian models on the sphere, Q. J. Roy. Meteorol.
for providing reference solutions for the mountain test case. Soc.. 114. 1347-1352. 1988. '

Marie E. Rognes is supported by a Center of Excellence grantotrer ’C. e’md Shipton, J.: Mixed finite elements for numeri-
from the Research Council of Norway to the Center for Biomedical cal 'weather predictio’n J. Computat. Phys., 231, 70767091
Computing at Simula Research Laboratory. doi:lo.1016/j.jcp.2012.65.02&l012. ' ' '

Colin Cotter and David Ham acknowledge funding from the Cotter. C. J. Ham. D. A. and Pain. C. C.: A mixed dis-
NERC Next Generation Weather and Climate Programme (NERC con'tinuous/’continlljous fi’nite eIemént pair for shallow-
grants NE/I02013X/1 and NE/I021098/1). David Ham is also water ocean modelling, Ocean Modell, 26, 86-90
supported by EPSRC grant EP/I006079/1. Andrew McRae and doi:10.1016/j.ocemod.ZOOé.Og.Q09. ' ’ '
David Ham acknowledge funding from the Grantham Institute for Dedner, A., Kisfkorn, R., Nolte, M., and Ohlberger, M.: A generic

Climate Change. interface for parallel and adaptive discretization schemes: ab-

Edited by: H. Weller Sgaiggilpgénglfg and the DUNE-FEM module, Computing,
DeSimone, A., Heltai, L., and Manigrasso, C.: Tools for the Solu-
tion of PDEs Defined on Curved Manifolds with deal.ll, Interna-
References tional School for Advanced Studies (SISSA), availablehétp:
/Ihdl.handle.net/1963/370Qast access: 13 December 2013),
Alnzes, M. S.: UFL: a finite element form language, in: Automated  2009.
Solution of Differential Equations by the Finite Element Method, Giraldo, F. X.: High-order triangle-based discontinuous Galerkin
vol. 84 of Lecture Notes in Computational Science and Engi- methods for hyperbolic equations on a rotating sphere, J. Com-
neering, edited by: Logg, A., Mardal, K.-A., and Wells, G. N., putat. Phys., 214, 447-465, 2006.
chap. 17, Springer, 2012. Holm, D.: Geometric Mechanics — Part |: Dynamics and Symmetry,
Alnees, M. S., Logg, A., Mardal, K.-A., Skavhaug, O., and Imperial College Press, 2008.
Langtangen, H. P.. Unified Framework for Finite Ele- Karniadakis, G. E.and Sherwin, S. J.: Spectral/hp Element Methods
ment Assembly, Int. J. Computat. Sci. Eng., 4, 231-244, for CFD, Oxford University Press, 1999.
doi:10.1504/IJCSE.2009.029162009.

Geosci. Model Dev., 6, 2092119 2013 www.geosci-model-dev.net/6/2099/2013/


http://www.geosci-model-dev.net/6/2099/2013/gmd-6-2099-2013-supplement.zip
http://www.geosci-model-dev.net/6/2099/2013/gmd-6-2099-2013-supplement.zip
http://www.newton.ac.uk/programmes/AMM
http://www.newton.ac.uk/programmes/AMM
http://dx.doi.org/10.1504/IJCSE.2009.029160
http://arxiv.org/abs/1211.4047
http://arxiv.org/abs/1211.4047
http://dx.doi.org/10.1016/j.jcp.2012.05.020
http://dx.doi.org/10.1016/j.ocemod.2008.09.002
http://hdl.handle.net/1963/3700
http://hdl.handle.net/1963/3700

M. E. Rognes et al.: Manifolds in FEniCS 1.2

Kirby, R. C.: Algorithm 839: FIAT, a new paradigm for computing
finite element basis functions, ACM T. Math. Software, 30, 502—
516, doi10.1145/1039813.103982P004.

Kirby, R. C. and Logg, A.: A compiler for variational forms, ACM
T. Math. Software, 32, 417-444, db0.1145/1163641.1163644
2006.

Kuptsov, L.: Gram Determinant, in: Encyclopedia of Mathe-
matics, Springer, available abttp://www.encyclopediaofmath.
org/index.php/Gram_determinant?%oldid=1844ast access:
2 July 2013), 2011.

Leimkuhler, B. and Reich, S.: Simulating Hamiltonian Dynamics,
chap. 12, CUP, 2005.

Le Roux, D., Séne, A., Rostand, V., and Hanert, E.: On some spuri-

2119

McRae, A. T. T and Cotter, C. J.: Energy- and enstrophy-conserving
schemes for the shallow-water equations, based on mimetic finite
elements, Q. J. R. Meteorol. Sobttp://arxiv.org/abs/1305.4477
(last access: 13 December 2013), 2013.

Nédélec, J.-C.: Mixed finite elementsi¥, Numer. Math., 35, 315—
341, doi10.1007/BF01396413.980.

Nédélec, J.-C.: A new family of mixed finite elementsRd, Nu-
mer. Math., 50, 57-81, 1986.

Penrose, R.: A generalized inverse for matrices, Proc. Cambridge
Philos. Soc, 51, 406-413, 1955.

Raviart, P.-A. and Thomas, J. M.: A mixed finite element method

for 2nd order elliptic problems, in: Mathematical aspects of fi-

nite element methods (Proc. Conf., Consiglio Naz. delle Ricerche

ous mode issues in shallow-water models using a linear algebra (C.N.R.), Rome, 1975), 292—-315, Lecture Notes in Math., vol.

approach, Ocean Modell., 10, 83—94, 2005.

Logg, A. and Wells, G. N.: DOLFIN: automated finite ele-
ment computing, ACM T. Math. Software, 37, 20:1-20:28,
doi:10.1145/1731022.1731032010.

Logg, A., Mardal, K.-A., and Wells, G.: Automated Solution of
Differential Equations by the Finite Element Method: the Fen-
ics Book, vol. 84, Springer, 2012a.

Logg, A., Mardal, K.-A., and Wells, G. N. (Eds.): Automated So-
lution of Differential Equations by the Finite Element Method,
Springer, 2012b.

Logg, A., Mardal, K.-A., and Wells, G. N.: Finite element assembly,
in: Automated Solution of Differential Equations by the Finite
Element Method, Springer, 2012c.

Logg, A., Qlgaard, K. B., Rognes, M. E., and Wells, G. N.: FFC:
the FEnICS Form Compiler, in: Automated Solution of Differ-
ential Equations by the Finite Element Method, vol. 84 of Lec-

ture Notes in Computational Science and Engineering, edited by:

Logg, A., Mardal, K.-A., and Wells, G. N., chap. 11, Springer,
2012d.

Logg, A., Wells, G. N., and Hake, J.: DOLFIN: a C++/Python Finite
Element Library, in: Automated Solution of Differential Equa-
tions by the Finite Element Method, vol. 84 of Lecture Notes

in Computational Science and Engineering, edited by: Logg, A.,

Mardal, K.-A., and Wells, G. N., chap. 10, Springer, 2012e.

www.geosci-model-dev.net/6/2099/2013/

606, Springer, Berlin, 1977.

Richardson, C. N., and Wells, G. N.: Expressive and scalable fi-
nite element simulation beyond 1000 cores, HECToR university
distributed CSE project report, available http://www.hector.
ac.uk/cse/distributedcse/reports/UniDOLFINAst access: 23
September 2013.

Rognes, M. E., Kirby, R. C., and Logg, A.: Efficient assembly of
H (div) and H (curl) conforming finite elements, SIAM J. Sci.
Comput., 31, 4130-4151, 2009.

Schmidt, A., Barth, T. J., and Siebert, K. G.: Design of adaptive
finite element software: the finite element toolbox ALBERTA,
vol. 42, Springer, 2005.

Sherwin, S., Kirby, R. M., and the Nektar++ team, availabl&#p:
/lIwww.nektar.infq last access: 2 July 2013.

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarz-

trauber, P. N.: A standard test set for numerical approximations to

the shallow water equations in spherical geometry, J. Computat.

Phys., 102, 211-224, 1992.

Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z.: The Finite Element
Method: Its Basis and Fundamentals, Butterworth-Heinemann,
2005.

Geosci. Model Dev., 6, 23499 2013


http://dx.doi.org/10.1145/1039813.1039820
http://dx.doi.org/10.1145/1163641.1163644
http://www.encyclopediaofmath.org/index.php/Gram_determinant?%oldid=18442
http://www.encyclopediaofmath.org/index.php/Gram_determinant?%oldid=18442
http://dx.doi.org/10.1145/1731022.1731030
http://arxiv.org/abs/1305.4477
http://dx.doi.org/10.1007/BF01396415
http://www.hector.ac.uk/cse/distributedcse/reports/UniDOLFIN/
http://www.hector.ac.uk/cse/distributedcse/reports/UniDOLFIN/
http://www.nektar.info
http://www.nektar.info

