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Abstract. Differential equations posed over immersed man-
ifolds are of particular importance in studying geophysi-
cal flows; for instance, ocean and atmosphere simulations
crucially rely on the capability to solve equations over the
sphere. This paper presents the extension of the FEniCS soft-
ware components to the automated solution of finite element
formulations of differential equations defined over general,
immersed manifolds. We describe the implementation and,
in particular detail, how the required extensions essentially
reduce to the extension of the FEniCS form compiler to cover
this case. The resulting implementation has all the properties
of the FEniCS pipeline and we demonstrate its flexibility by
an extensive range of numerical examples covering a num-
ber of geophysical benchmark examples and test cases. The
results are all in agreement with the expected values. The de-
scription here relates to DOLFIN/FEniCS 1.2.

1 Introduction

The computation of approximate numerical solutions to par-
tial differential equations (PDEs) is an integral component of
computational science. At the same time, the traditional de-
velopment of software for the numerical solution of PDEs
is time-consuming and error-prone. However, the FEniCS
Project (http://fenicsproject.org, Logg et al., 2012b) offers
a radical alternative to the traditional development model. In-
stead of writing low-level model code in a compiled language
such as Fortran or C++, the discretisation of the PDE is ex-
pressed in a high level language (the Unified Form Language,

UFL; Alnæs, 2012) and the corresponding low-level code
is generated automatically by a specialised compiler (Logg
et al., 2012d). The impact of this approach is dramatic: mod-
els which require tens of thousands of lines of C++ or For-
tran, and which take months or years to develop can be writ-
ten in tens to hundreds of lines of high-level code and devel-
oped in days to weeks.

The simulation of geophysical fluids has particular fea-
tures; for instance, the solution of PDEs on the surface of the
sphere is of particular significance for the simulation of flow
in the ocean and atmosphere. Prior to version 1.2, the FEniCS
software has only supported finite element discretisations de-
fined over meshes of the same geometric and topological di-
mension. As such, the required feature (i.e. the possibility to
define discretisations over immersed manifolds such as the
sphere) has been missing.

In this paper, we detail the extension of the FEniCS soft-
ware to enable this feature and as a consequence a multi-
tude of geophysical flow simulation scenarios. We achieve
this by extending the FEniCS software components to appro-
priately handle general two-dimensional manifolds in three-
dimensional space, and to general one-dimensional mani-
folds in two- and three-dimensional spaces. This extension
essentially reduces to the ability to evaluate all of the rel-
evant integrals over an element immersed in a higher di-
mensional space, and to giving the correct definitions to
the language elements of UFL in the manifold context. Al-
though the sphere is of particular significance in geoscien-
tific modelling, choosing to solve the more general mani-
fold problem provides additional flexibility and utility. This
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generality enables the support of oblate spheroids, as well
as a wide range of manifold geometries in other application
areas across science and engineering.

A number of other finite element software libraries sup-
port solving equations over immersed manifolds, includ-
ing ALBERTA (Schmidt et al., 2005), DUNE-FEM (in-
cluding support for div- and curl-conforming finite element
spaces) (Dedner et al., 2010), Nektar++ (Sherwin et al.,
2013), and deal.II (DeSimone et al., 2009). In addition,
high-order discontinuous Galerkin methods have been im-
plemented on manifolds as part of the SLIM ocean model
project (Bernard et al., 2008). In contrast to these libraries,
however, the FEniCS software heavily relies on and draws its
primary advantage from special-purpose finite element code
generation. In our description of the implementation here,
we therefore focus on the extension of the code generation
pipeline to the immersed manifolds case. This implementa-
tion aspect extends and differs from that of existing tools, and
constitutes a main contribution of this work.

This paper is organised as follows. In Sect.2, we sum-
marise various aspects of the mathematical formulation of
finite element methods over immersed manifolds, including
definitions of pullbacks of scalar and vector fields, and dif-
ferential operators. The key implementation aspects of the
required extensions to the FEniCS software are presented in
Sect.3. Section4 considers verification aspects and Sect.5
further describes a wide range of numerical examples and
tests. We comment on the scope of the current implementa-
tion, including limitations and natural extensions, in Sect.6,
before detailing where the implementation and the Supple-
ment can be found in Sects.7, and8, and providing some
concluding remarks in Sect.9.

2 Mathematical formulation

This section summarises the distinctive mathematical fea-
tures of finite element formulations defined over computa-
tional domains that are immersed manifolds. The mathemat-
ical formulation adopted will be detailed in increasing com-
plexity, beginning with the simplest finite element projec-
tion for scalar-valued quantities, and then introducing dif-
ferential operators and vector-valued functions. The material
has deliberately been kept at a minimal level of complex-
ity; for readers more interested in the mathematical theory of
manifolds, we recommend for instanceBarden and Thomas
(2003) or Holm (2008).

Throughout this section, we let� be a smoothm-
dimensional manifold immersed inRn, withm≤ n. For sim-
plicity, we also let 1≤m andn≤ 3. We will refer tom as the
manifold dimension or topological dimension, and ton as the
physical or geometric dimension. We approximate this man-
ifold by a piecewise linear tessellation of simplices (intervals
in one topological dimension, triangles in two topological
dimensions, or tetrahedra in three topological dimensions)

T = {T }. In particular, each simplex cellT in the meshT
will then have topological dimensionm and geometric di-
mensionn.

2.1 Galerkin projection on the manifold

The finite element method is founded on the concept of finite
element spaces. A finite element spaceV is defined to con-
tain all functions that have some specified polynomial expan-
sion in each cell of the mesh, together with some specified
continuity constraint between neighbouring cells. Broadly
speaking, the finite element discretisation of a partial dif-
ferential equation can be described as the projection of that
equation onto some finite element spaceV . The Galerkin
projection of a functionf onto a finite element spaceV is
a basic finite element operation and defined as the functionv

in V such that∫
T

vwdx =

∫
T

fwdx, (1)

for all test functionsw in V . If V isN -dimensional with basis
{φj }

N
j=1, then we may write

v = vjφj , (2)

where {vj } are the expansion coefficients ofv relative to
the basis{φj }. Here, and in the rest of the paper, we follow
the Einstein summation convention in which summation oc-
curs over an index repeated within a product. Takingw = φi
in Eq. (1) for i = 1, . . . ,N , we obtain a finite dimensional
linear system for the expansion coefficientsvj :

Mijvj = bi, (3)

having defined

Mij =

∫
T

φiφjdx =

∑
T ∈T

∫
T

φiφjdx, (4)

and

bi =

∫
T

f φidx =

∑
T ∈T

∫
T

f φidx. (5)

Moreover, for eachT ∈ T , we label the local integral contri-
butions

MT ,ij =

∫
T

φiφjdx, (6)

and

bT ,i =

∫
T

f φidx. (7)

In view of Eqs. (4) and (5), the assemblyof the opera-
torsM and b reduce to the evaluation of sums of certain
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Fig. 1. The transform GT maps the reference cell T0 to cell T , which in this case approximates
part of a sphere. The point X in reference space is mapped to the point x in physical space:
x = GT (X ).

3600

Fig. 1. The transformGT maps the reference cellT0 to cell T ,
which in this case approximates part of a sphere. The pointX in
reference space is mapped to the pointx in physical space:x =

GT (X).

integrals over individual cellsT ∈ T . This procedure is the
standard assembly strategy for the finite element method.
For more details on finite element assembly, the reader is
directed toLogg et al.(2012c) or any standard text on the
finite element method (for exampleZienkiewicz et al., 2005;
Karniadakis and Sherwin, 1999).

2.1.1 Change of coordinates

A change of coordinates to a reference cellT0 offers a stan-
dard and efficient evaluation procedure for each of the lo-
cal contributions in Eqs. (6) and (7). Recalling that each cell
T ⊂ Rn is of topological dimensionm, we define a fixed ref-
erence cellT0 ⊂ Rm and assume that there exists a mapping
GT such thatT =GT (T0). We write here and throughout
X = (X1, . . . ,Xm) for the coordinates of a point in reference
space andx = (x1, . . . ,xn) for the coordinates in physical
space. Figure1 illustrates this mapping and the notation em-
ployed.

Similarly, we will employ lower case Greek letters for ba-
sis functions in physical space, and the corresponding upper
case letters for the pullback of those functions to the refer-
ence cell. For scalar-valued functions, the pullback is through
function composition:

8i(X)= φi(x)= φi (GT (X)) . (8)

Using the definitions above and the usual change of coor-
dinate rules, Eq. (6) becomes∫
T

φi(x)φj (x)dx =

∫
T

φi(GT (X))φj (GT (X))dx

=

∫
T0

8i(X)8j (X)|JT |dX, (9)

whereJT is the Jacobian of the transformationGT and|JT |

is the Jacobian determinant.

2.1.2 The Jacobian and its pseudo-determinant

The derivation in Eq. (9) applies for both the standard case
m= n and the immersed manifold case wherem< n. The
only difference for the latter case is the generalised defini-
tions of the Jacobian and its determinant. In general, the Ja-
cobianJ of the transformG : Rm → Rn is given by the ma-
trix

Jγ τ =
∂G(X)γ

∂Xτ
=
∂xγ

∂Xτ
γ = 1, . . . ,n, τ = 1, . . . ,m. (10)

Note thatτ varies over the manifold dimensionm, which
is also the geometric and topological dimension of the ref-
erence cell, whileγ varies over the physical dimensionn.
To make this concrete, the Jacobian for a two-dimensional
manifold immersed inR3 is given by

J =


∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

∂x3
∂X1

∂x3
∂X2

 . (11)

For affine transformationsGT , the JacobianJT will be
constant over each cellT . For non-affine transformations, for
instance in the case of curved cells, the Jacobian will vary as
a function ofX.

The Jacobian pseudo-determinant is the transformation of
the volume of the differential integral measure. For a one-
dimensional manifold, this is the length of the single column
vector ofJ, while, for a two-dimensional manifold, this is the
volume of the parallelogram spanned by the two columns of
J. More precisely, writing the Jacobian in terms of its column
vectorsJ = [J 1,J 2, . . . ,Jm], we have

|J| =

{
|J 1|2 m= 1

|J 1 × J 2|2 m= 2,
(12)

where | · |2 denotes the Euclidean norm. The pseudo-
determinant employed here is the square root of the Gram
determinant (Kuptsov, 2011). Note that, in then=m case,
this reduces to the absolute value of the usual definition of
the determinant.

2.2 Derivatives on the manifold

In order to evaluate more complicated variational forms, it
is necessary to be able to evaluate derivatives of functions
defined on the manifold. As before, it is sufficient only to
consider the case of a basis function defined on a single cell,
since all integrals will be decomposed into sums of integrals
over basis functions on single cells.

Suppose we have some functionφ(x) defined on an cell
T ⊂ Rn with pullback8(X) defined on the reference cell
T0 ⊂ Rm. The gradient of8 in reference space is immediate:

(∇X8(X))τ =
∂8(X)

∂Xτ
τ = 1, . . . ,m. (13)
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Define the tangent space of cellT as the image of the cor-
responding JacobianJ over reference space; thus, anyv in
the tangent space can be written asv = JV for someV in ref-
erence space. We define the gradient ofφ in physical space
∇xφ via the usual Gâteaux directional derivative:

∇xφ(x) · v = lim
ε→0

φ(x+ εv)−φ(x)

ε
(14)

for anyv in the tangent space.
Assume that the mappingG is affine and non-degenerate,

such that the columns ofJ are linearly independent. It follows
from the definitions above that

∇X8(X) ·V = lim
ε→0

8(X+ εV )−8(X)

ε

= lim
ε→0

φ (x+ εv)−φ(x)

ε
= ∇xφ(x) · v. (15)

Next, letJ† denote the Moore–Penrose pseudo-inverse of
J (Penrose, 1955), given in this case by

J†
=

(
JTJ

)−1
JT, (16)

where the superscript T denotes the transpose. Then clearly,
for v = JV ,

J†v =
(
JTJ

)−1(
JTJ

)
V = V. (17)

Inserting Eq. (17) into Eq. (15), and rearranging, we find
that

∇xφ(x) · v = (J†)T∇X8(X) · v. (18)

In our implementation, vector quantities are always repre-
sented as elements of then-dimensional space in which the
manifold is immersed. In this representation, we additionally
require that

∇xφ(x) · k = 0, (19)

wherek is the unit normal vector to the cellT , and hence we
obtain then-dimensional vector

∇xφ(x)= (J†)T∇X8(X). (20)

From Eq. (16), it follows immediately that the column
space of(J†)T coincides with that ofJ. We therefore observe
that∇xφ(x) is in the tangent space of cellT as expected. In
the special case of a one-dimensional manifold (m= 1), the
pseudo-inverse reduces to

J†
=

JT

|J|2
. (21)

2.2.1 The weak Laplacian

To illustrate the practical implications of the above, we ex-
amine the integral form corresponding to the weak Laplacian
over a pair of basis functionsφi andφj on a single cellT :∫
T

∇φi · ∇φjdx. (22)

Applying Eq. (20) and the change of integration measure,
we immediately find that∫
T

∇xφi(x) · ∇xφj (x)dx =

∫
T0

(
(J†)T∇X8i(X)

)
·

(
(J†)T∇X8j (X)

)
|J|dX. (23)

So, as before, the integrals over cells in the mesh may be
evaluated on the reference cell using the Jacobian and, in this
case, its pseudo-inverse. Observe that(J†)T∇X8j (X) has di-
mensionn, and that the index in the inner product in Eq. (23)
therefore runs from 1 ton.

2.3 Constructing vector-valued fields on the manifold

Recall that, in our implementation, vector quantities are al-
ways represented as elements of then-dimensional space in
which the manifold is immersed. In this representation, there
are two distinct forms of finite element space for vector-
valued quantities employed in the finite element method. In
the most simple case, the finite element space is the Carte-
sian product of scalar-valued spaces: each component of the
vector varies independently as a piecewise polynomial over
each cell. The finite element space may be continuous at cell
boundaries, in which case all components will be continuous,
or discontinuous, in which case no continuity is enforced at
cell boundaries for any component of the vector value. As
a matter of notation, we will write CGnk for the space of
continuousn-dimensional vector fields with polynomial de-
greek, and DGnk for the corresponding space with no inter-
element continuity constraint.

Recall that T = {T } is the tessellation of them-
dimensional manifold inRn by m-simplices. A vector field
represented in this way hasn components, wheren is the di-
mension of the space in which the manifold is immersed. For
instance, a vector field of this type on a tessellation of the
surface of the sphere will have three components, not two.
This has the natural consequence that the vector field is not
constrained to be tangent to the manifold. Where this is re-
quired, it will have to be imposed as an additional constraint
in the equations to be solved. There is an example illustrating
this in Sect.5.1.2.

Geosci. Model Dev., 6, 2099–2119, 2013 www.geosci-model-dev.net/6/2099/2013/
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Since these finite element spaces are the Cartesian prod-
ucts of scalar-valued component spaces, the basis functions
for the vector field can be written with respect to the scalar
basis functions. For example, if{φj }Nj=1 is the basis for
a scalar-valued space, the basis for the corresponding two-
dimensional vector space is given by

{φi}
2N
i=1 =

{[
φj
0

]}N
j=1

⋃ {[
0
φk

]}N
k=1

. (24)

The pullback through the map from the reference cellGT
is applied separately to each Cartesian component:

8i(X)= φi(x)= φi(GT (X)). (25)

Consequently, the mass integral over a single cell trans-
forms in the same manner as the scalar case:∫
T

φi(x) · φj (x)dx =

∫
T0

8i(X) · 8j (X)|JT |dX. (26)

The Cartesian product vector spaces are, in fact, a special
case of a more general class of mixed finite element spaces
which can be composed of any other finite element spaces.
If U andV are finite element spaces of any type with bases
{φj }

N
j=1 and{ψk}

M
k=1, thenW = U×V is the Cartesian prod-

uct of these spaces with basis given by

{ωi}
N+M
i=1 =

{[
φj
0

]}N
j=1

⋃ {[
0
ψk

]}M
k=1

. (27)

This definition is fully recursive so any number of spaces
of any type can be combined in this way. Mixed spaces re-
quire no special handling in the manifold case beyond that
required by the component spaces. That is to say, without
loss of generality, ifω is a basis function ofW of the form
ω =

[
φ 0

]T then its pullback� is given by�=
[
8 0

]T ,
where8 is the pullback ofφ.

Vector-valued finite element spaces can, as we have just
seen, be constructed via Cartesian products of scalar fi-
nite element spaces. However, there are also a collection
of highly useful finite element families that are inherently
vector-valued. In the geoscientific context, the most com-
mon example of such is the lowest order Raviart–Thomas
element (Raviart and Thomas, 1977), known to the fi-
nite volume community as the C-grid velocity discretisa-
tion (Arakawa and Lamb, 1977). Other examples include the
Nédélec edge and face elements (Nédélec, 1980, 1986). In
both cases we compute in Cartesian coordinates, with the
metric terms being formed implicitly through the transfor-
mation from the reference element.

We have already defined the grad operator on a mani-
fold. The vector calculus operators div and curl on a two-
dimensional manifoldM are most easily defined as limits of

flux and circulation integrals,

div u(x)= lim
ε→0

1

|Cε |

∮
Cε

u · ndx, (28)

curl u(x)= lim
ε→0

1

|Cε |

∮
Cε

u · dx, (29)

whereCε is a loop centred onx that approaches a circle of
radiusε asε → 0, and|Cε | is the area on the manifold en-
closed byCε .

Vector fields u from divergence-conforming (div-
conforming) finite element spaces (such as the Raviart–
Thomas finite element space) are constrained so that the
normal componentu·n is continuous across each facet of the
tessellation, wheren is the normal vector on the facet. The
tangential component(s) are not required to be continuous.
There is sufficient continuity for the divergence operator to
be globally defined, hence the term “div-conforming”. For
such element spaces, vector fields are naturally mapped from
a reference cell to each physical cell via thecontravariant
Piola transform (Brezzi and Fortin, 1991; Rognes et al.,
2009): letting 8 be a vector field defined on the reference
cell T0, we define the fieldφ on the physical cellT as

φ(x)=
1

±|JT |
JT 8(X). (30)

We remark that, in the case of am-dimensional manifold
immersed inRn, 8 is a vector field withm components
and Eq. (30) definesφ as ann-vector field. Moreover, ob-
serve thatφ is in the tangent space ofT by construction.
The sign of Eq. (30) is positive if the current element has the
same orientation as the manifold and negative if the orienta-
tions differ. On a non-orientable manifold, the sign is inde-
terminant and the contravariant Piola transformation cannot
be employed. The implementation of manifold orientation is
discussed in Sect.3.3.2.

Conversely,curl-conformingfinite element spaces, such as
Nédélec spaces, are defined such that for each field in this
space the component of the field tangent to each facet is con-
tinuous across that facet, while the normal component to the
facet may be discontinuous. The desired tangential continu-
ity is enabled if the fields are mapped from a reference cell
to each physical cell via thecovariant Piolatransform:

φ(x)= (J†
T )

T 8(X). (31)

We note that the covariant Piola transform also mapsm-
vector fields ton-vector fields, and that its image is in the
tangent space ofT , by definition, since the column space of
(J†
T )

T coincides with the column space ofJT as previously
noted in Sect.2.2.

A third approach to obtaining vector fields on manifolds
is the approach to high-order discontinuous Galerkin meth-
ods on manifolds inBernard et al.(2008), under which vec-
tor fields are expanded using a local tangent basis on each

www.geosci-model-dev.net/6/2099/2013/ Geosci. Model Dev., 6, 2099–2119, 2013
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DOLFINy
Problem.ufl (UFL) FFC−−−−−→ Problem.h (UFC) −−−−−→ main.cpp −−−−−→ Solution

Fig. 2. The FEniCS pipeline viewed from the C++ interface. In the Python interface, the components UFL,

FFC, UFC and DOLFIN are more closely integrated.

The next step in the pipeline is the processing of the UFL specification by a special purpose com-

piler: the FEniCS Form Compiler (FFC) (Kirby and Logg, 2006; Logg et al., 2012d). FFC is targeted285

at generating efficient, lower-level code for the assembly of the relevant finite element tensors. FFC

generates code that conforms to the Unified Form-assembly Code (UFC) interface (Alnæs et al.,

2009, 2012). More precisely, given a set of variational forms specified in UFL, separate classes

are generated for each of the finite elements over which the basis functions and any coefficients are

defined, for each of the variational forms, and for each of the integrals appearing in the forms. The290

finite element classes then provide functions for evaluating the specific basis functions, computing

the specific local-to-global degree of freedom maps, evaluating the specific degrees of freedom on

arbitrary functions et cetera. The integral class(es) similarly provide functions for computing the

specific local element tensor.

The generated code can then be used by the user directly, or, as is more common, be used via295

the problem-solving environment and finite element library DOLFIN. DOLFIN provides high per-

formance computing functionality for simplicial meshes, automated assembly of variational forms,

relying on the generated code for each specific form as detailed above, and interfaces to numerical

linear algebra libraries; for more details see (Logg and Wells, 2010; Logg et al., 2012e). DOLFIN

provides both a C++ interface and a Python interface. In the Python interface, the steps detailed300

above are all closely integrated; in particular, the code generation happens seamlessly via just-in-

time (JIT) compilation.

Three implementation points crystallise as necessary in order to integrate weak formulations de-

fined over manifolds into the FEniCS pipeline.

– Extend the form language UFL to include finite elements and variational forms defined over305

simplicial cells of differing geometric and topological dimension.

– Extend the form compiler FFC to provide corresponding support for the novel UFL finite

elements and forms introduced.

– Support UFC and DOLFIN data structures for, and operations over, meshes defined over sim-

plicial cells with differing geometric and topological dimension.310

The extensions to the previous functionality required to achieve these three aspects are described

11

Fig. 2. The FEniCS pipeline viewed from the C++ interface. In the Python interface, the com-
ponents UFL, FFC, UFC and DOLFIN are more closely integrated.
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Fig. 2.The FEniCS pipeline viewed from the C++ interface. In the Python interface, the components UFL, FFC, UFC and DOLFIN are more
closely integrated.

element, but the surface fluxes are resolved into three dimen-
sions. We did not implement this approach since it would
require more invasive changes in UFC.

2.4 Facet integrals

Supposeu= uiψi is a scalar field andv = vjφj is a vector
field. A commonly occurring integral form (for example for
the pressure gradient in a mixed finite element fluid simula-
tion) is∫
T

∇u · vdx. (32)

A routine manipulation, for example to impose boundary
conditions or to introduce coupling between elements if the
spaces are discontinuous, is to integrate by parts:∫
T

∇u · vdx = −

∫
T

u∇ · vdx +

∫
0

uv · nds

+

∫
00

u+v+
· n+

+ u−v−
· n−ds . (33)

Here,0 indicates the surface ofT (empty if the manifold
is closed), and00 is the set of interior facets (points in one
dimension, edges in two dimensions and faces in three di-
mensions) between cells inT . n is the outward pointing nor-
mal to the element in question, with the superscripts+ and−

denoting the two sides of each interior facet. In the manifold
case, there are two features of facet normals which are signif-
icant. The first is that, as with other vector-valued quantities,
the facet normal has dimensionn, that of the physical space.
The second is that adjacent cells on a manifold are not typ-
ically coplanar (m= 2) or colinear (m= 1). Consequently,
the identityn+

= −n−, which holds in the standardn=m

case, does not generally hold on a manifold.

3 Integrating manifolds into the FEniCS Project
pipeline

3.1 The FEniCS Project pipeline

The FEniCS Project is a collection of numerical software,
supported by a set of novel algorithms and techniques, aimed

at the automated solution of differential equations using finite
element methods (Logg et al., 2012b). The FEniCS Project
software consists of a number of interoperable software com-
ponents which define a full computational pipeline when
used together.

The core of the FEniCS pipeline is the following
(cf. Fig.2). Consider the common use case where a finite ele-
ment formulation of a partial differential equation is given in
mathematical form and the numerical solution is the desired
output. The simplest such example is the Galerkin projection
problem Eq. (1) over, for instance, the space of piecewise lin-
ear functions, defined relative to the tessellationT , to obtain
the discrete solutionu.

The first step is to express the variational formulation
in the domain-specific Python-embedded language Unified
Form Language (UFL) (Alnæs et al., 2013; Alnæs, 2012).
Continuing with Eq. (1) as an example, to express the varia-
tional formulation the user must express (i) the finite element
spaceV ; (ii) the basis functionsu,v and coefficientf in-
volved; and (iii) the right-hand and left-hand side variational
forms.

The next step in the pipeline is the processing of the
UFL specification by a special purpose compiler: the FEn-
iCS Form Compiler (FFC) (Kirby and Logg, 2006; Logg
et al., 2012d). FFC is targeted at generating efficient, lower-
level code for the assembly of the relevant finite element ten-
sors. FFC generates code that conforms to the Unified Form-
assembly Code (UFC) interface (Alnæs et al., 2009, 2012).
More precisely, given a set of variational forms specified in
UFL, separate classes are generated for each of the finite el-
ements over which the basis functions and any coefficients
are defined, for each of the variational forms, and for each
of the integrals appearing in the forms. The finite element
classes then provide functions for evaluating the specific ba-
sis functions, computing the specific local-to-global degree
of freedom maps, evaluating the specific degrees of freedom
on arbitrary functions, et cetera. The integral class(es) simi-
larly provide functions for computing the specific local ele-
ment tensor.

The generated code can then be used by the user directly,
or, as is more common, be used via the problem-solving
environment and finite element library DOLFIN. DOLFIN
provides high performance computing functionality for sim-
plicial meshes, automated assembly of variational forms,
relying on the generated code for each specific form as

Geosci. Model Dev., 6, 2099–2119, 2013 www.geosci-model-dev.net/6/2099/2013/
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below.

3.2 Extending and interpreting UFL over manifolds

As described in Alnæs et al. (2012), UFL is in essence composed of three sublanguages for express-

ing (i) finite elements; (ii) expressions, including terminal types and operators acting on them; and315

(iii) variational forms.

3.2.1 Finite and mixed finite elements over manifolds

A basic UFL finite element is defined in terms of a family, a cell and a (polynomial) degree. In

order to allow finite elements to be defined over manifolds, the only modification required is to

define a cell of differing geometric and topological dimensions. Such cells are in place in UFL320

for m≤ n= 1,2,3. Geometric quantities, such as the volume, the circumradius or facet normals,

are associated with each cell type. When appropriate, these are defined relative to the topological

dimension of the cell; for instance, the volume of a triangle cell embedded in R3 refers to the 2-

dimensional volume of the cell.

UFL allows Cartesian combinations (and nested combinations) of finite elements of arbitrary fam-325

ilies and degrees to form vector, tensor or mixed elements with an arbitrary number of components.

The number of components (the value dimension) of a vector element defaults to the geometric di-

mension n of the cell over which the element is defined. Similarly the shape of a tensor element

defaults to (n,n). The UFL code listing in Figure 3 illustrates this. Note that UFL mixed elements

(including vector and tensor elements) are defined over a common cell. As a consequence, mixed330

elements for which different components are defined over different cells are not supported.

# Define triangle cell embedded in Rˆ3

cell = Cell("triangle", 3)

# Define Lagrange element over this cell

Q = FiniteElement("Lagrange", cell, 1)

# Define Lagrange vector element

V = VectorElement("Lagrange", cell, 1)

# Arguments defined over V will have 3 components:

u = Coefficient(V)

u[0], u[1], u[2]

Fig. 3. UFL code defining scalar and vector finite elements on a triangle embedded in R3. This code is included

in the supplementary materials as snippets/finiteelement.ufl.

We emphasise that UFL vector elements are generally not constrained to lie in the tangent space

of the manifold. This is a deliberate choice for the sake of flexibility, applicability and consistency.
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Fig. 3. UFL code defining scalar and vector finite elements on a triangle embedded in R3. This
code is included in the Supplement as snippets/finiteelement.ufl.
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Fig. 3. UFL code defining scalar and vector finite elements on a triangle embedded inR3. This code is included in the Supplement as
snippets/finiteelement.ufl.

detailed above, and interfaces to numerical linear algebra li-
braries; for more details seeLogg and Wells(2010) andLogg
et al. (2012e). DOLFIN provides both a C++ interface and
a Python interface. In the Python interface, the steps detailed
above are all closely integrated; in particular, the code gener-
ation happens seamlessly via a just-in-time (JIT) compilation
process in which C++ code is generated, compiled and exe-
cuted at runtime within a single Python function call. This
process is described in more detail inLogg et al.(2012d).

Three implementation points crystallise as necessary in or-
der to integrate weak formulations defined over manifolds
into the FEniCS pipeline.

– Extend the form language UFL to include finite el-
ements and variational forms defined over simplicial
cells of differing geometric and topological dimension.

– Extend the form compiler FFC to provide correspond-
ing support for the novel UFL finite elements and
forms introduced.

– Support UFC and DOLFIN data structures for, and op-
erations over, meshes defined over simplicial cells with
differing geometric and topological dimension.

The extensions to the previous functionality required to
achieve these three aspects are described below.

3.2 Extending and interpreting UFL over manifolds

As described inAlnæs et al.(2013), UFL is in essence com-
posed of three sublanguages for expressing (i) finite ele-
ments; (ii) expressions, including terminal types and oper-
ators acting on them; and (iii) variational forms.

3.2.1 Finite and mixed finite elements over manifolds

A basic UFL finite element is defined in terms of a family,
a cell and a (polynomial) degree. In order to allow finite
elements to be defined over manifolds, the only modifica-
tion required is to define a cell of differing geometric and

topological dimensions. Such cells are in place in UFL for
m≤ n= 1,2,3. Geometric quantities, such as the volume,
the circumradius or facet normals, are associated with each
cell type. When appropriate, these are defined relative to the
topological dimension of the cell; for instance, the volume of
a triangle cell embedded inR3 refers to the two-dimensional
volume of the cell.

UFL allows Cartesian combinations (and nested combina-
tions) of finite elements of arbitrary families and degrees to
form vector, tensor or mixed elements with an arbitrary num-
ber of components. The number of components (the value
dimension) of a vector element defaults to the geometric di-
mensionn of the cell over which the element is defined. Sim-
ilarly the shape of a tensor element defaults to(n,n). The
UFL code listing in Fig.3 illustrates this. Note that UFL
mixed elements (including vector and tensor elements) are
defined over a common cell. As a consequence, mixed ele-
ments for which different components are defined over dif-
ferent cells are not supported.

We emphasise that UFL vector elements are generally
not constrained to lie in the tangent space of the manifold.
This is a deliberate choice for the sake of flexibility, appli-
cability and consistency. For applications where the vector
fields should be restricted to the tangent space, this require-
ment can be enforced either via an additional variational con-
straint, or, if applicable, by employing div-conforming or
curl-conforming finite elements. Note however that the ba-
sis functions and coefficients defined over the latter are still
indexed from 0, . . . ,n−1 wheren is the geometric dimension
of the cell and value dimension of the element.

3.2.2 Differential operators over manifolds in UFL

A variational form is typically defined, both mathematically
and in UFL, via a set of operators acting on a set of basis
functions or coefficients integrated over some domain. Tak-
ing Eq. (22) as an example, the differential operator∇x acts
on basis functionsφi andφj . The operators defined by UFL

www.geosci-model-dev.net/6/2099/2013/ Geosci. Model Dev., 6, 2099–2119, 2013
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cell = Cell("triangle", 3)

V = FiniteElement("Lagrange", cell, 1)

u = TrialFunction(V)

v = TestFunction(V)

a = inner(grad(u), grad(v))*dx

# or equivalently

# a = sum(u.dx(i)*v.dx(i) for i in range(3))

Fig. 4. UFL code defining the weak Laplacian operator from (22) for piecewise linear elements over a triangle

embedded in R3. This code is included in the supplementary materials as snippets/laplacian.ufl.

3.2.3 Integration measures over manifolds

UFL supports variational forms defined via integration of an integrand I over a set of predefined

classes of domains defined relative to a tessellation T = {T} and sums of such integrals. The more

commonly used domains are: all cells (dx), all exterior facets (ds) and all interior facets (dS). More370

precisely, by definition,

I*dx :=
∑
T∈T

∫
T

I dx, I*ds :=
∑
e∈Ee

∫
e

I ds, I*dS :=
∑
e∈Ei

∫
e

I ds. (37)

Here, Ee refers to the set of all exterior facets of the tessellation T while E i refers to the set of

all interior facets. Recall that T is composed of cells of geometric dimension n and topological

dimension m, 1≤m≤ n≤ 3. The facets T therefore have geometric dimension n and topological375

dimension m−1, and dx and ds in (37) refer to the standard Lebesgue integration measures on Rm

and Rm−1 respectively.

For example, this implies that the integral over all cells of a mesh of the surface of a ball will equal

the integral over all exterior facets of a mesh of the ball. Figure 5 illustrates this using DOLFIN code
1.380

3.3 Extending the FEniCS Form Compiler (FFC) onto manifolds

The interface of the form compiler FFC has two main entry points: one for compiling a (set of) UFL

form(s) and one for compiling a separate UFL finite element.

3.3.1 Compiling variational forms and integrals over manifolds

A UFL form is a sum of UFL integrals each of predefined type determined by the measure symbol.385

The role of FFC is to generate UFC-compliant code for the form and for each of the integrals. The
1UFL is not concerned with actual meshes so (Python) DOLFIN code, in which the variational form specification is

integrated with the problem solving environment, is used to illustrate here. The essence is the definitions of the forms a and

b.
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Fig. 4. UFL code defining the weak Laplacian operator from Eq. (22) for piecewise lin-
ear elements over a triangle embedded in R3. This code is included in the Supplement as
snippets/laplacian.ufl.
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Fig. 4. UFL code defining the weak Laplacian operator from Eq. (22) for piecewise linear elements over a triangle embedded inR3. This
code is included in the Supplement as snippets/laplacian.ufl.

include arithmetic, algebraic, indexing and differential oper-
ators. The arithmetic and algebraic operators extend trivially
to the case of functions defined over manifolds; on the other
hand, the precise extensions of the differential operators de-
serve a few comments.

UFL provides the differential operatorsgrad , div ,
curl , androt . In addition, component-wise derivatives can
be expressed viadx(i) or Dx(u, i) for some functionu
and indexi , which ranges over then Cartesian components
of the gradient vector represented in the embedded space.
The UFL gradientgrad can be viewed as the base operator:
it is defined in accordance with Eq. (14), which, in particular,
defines∇u as an element ofRn. As such, for a scalar-valued
basis functionu defined over a cell of geometric dimension
n, grad(u) is a vector-valued expression, indexable by an
index i ranging from 0 ton. Moreover, we define

grad(u)[i] := ∇(u)i, (34)

where∇u is represented in then-dimensional physical space;
the extension to gradients of vector- and tensor-valued ex-
pressions, expanded inn-dimensional Cartesian components,
is immediate. Building on Eq. (34), we define the component
derivativesdx(i) andDx(u, i) as

u.dx(i) ≡ Dx(u, i) := grad(u)[i] . (35)

In short, the component derivatives are defined as the com-
ponents of the gradient, and components are defined in terms
of the standard Euclidean orthonormal basis forRn. Figure4
shows the UFL code corresponding to example Eq. (22).

On an affine triangle, the definition of the divergence op-
erator Eq. (28) simplifies to

∑2
i=0(∇u)i , since there are no

curvature terms. Therefore, in our implementation, we sim-
ply define

div(u) :=

n−1∑
i=0

u.dx(i) . (36)

This would need to be modified if non-affine cells were in-
troduced. The UFL operatorscurl androt (which return
identical output in UFL) have not been modified from their

definitions for the casem= n and should only be used with
care for the casem< n. This is because curl is defined us-
ing a normal vector, and sometimes the user may wish to use
the actual (discontinuous) normal to the mesh manifold, and
sometimes they may wish to use a continuous approxima-
tion the the normal. An example using a curl operator built
using the mesh normal field is given in Sect. 5.5, where it
is crucial that this operator produces exactly divergence-free
vector fields.

3.2.3 Integration measures over manifolds

UFL supports variational forms defined via integration of an
integrandI over a set of predefined classes of domains de-
fined relative to a tessellationT = {T } and sums of such in-
tegrals. The more commonly used domains are all cells (dx ),
all exterior facets (ds ) and all interior facets (dS). More pre-
cisely, by definition,

I * dx :=

∑
T ∈T

∫
T

Idx, I * ds :=

∑
e∈Ee

∫
e

Ids,

I * dS :=

∑
e∈E i

∫
e

Ids. (37)

Here,Ee refers to the set of all exterior facets of the tes-
sellationT while E i refers to the set of all interior facets.
Recall thatT is composed of cells of geometric dimension
n and topological dimensionm, 1≤m≤ n≤ 3. The facets
T , therefore, have geometric dimensionn and topological
dimensionm−1, and dx and ds in Eq. (37) refer to the stan-
dard Lebesgue integration measures onRm and Rm−1, re-
spectively.

For example, this implies that the integral over all cells of
a mesh of the surface of a ball will equal the integral over all
exterior facets of a mesh of the ball. Figure5 illustrates this
using DOLFIN code1.

1UFL is not concerned with actual meshes so (Python) DOLFIN
code, in which the variational form specification is integrated with
the problem solving environment, is used to illustrate here. The
essence is the definitions of the formsa andb.

Geosci. Model Dev., 6, 2099–2119, 2013 www.geosci-model-dev.net/6/2099/2013/
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from dolfin import *

# Define a mesh of a sphere (ball) with radius 1 and a mesh of its

# surface

mesh = Mesh(Sphere(Point(0.0, 0.0, 0.0), 1.0), 8)

surface = BoundaryMesh(mesh, "exterior")

# Integrate 1 over the exterior facets of the mesh of the ball

I = Constant(1.0)

a = I*ds

A = assemble(a, mesh=mesh)

# Integrate 1 over the cells of mesh of the surface of the ball

b = I*dx

B = assemble(b, mesh=surface)

# Confirm that A == B to within numerical precision

eps = 1.e-14

assert (abs(A - B) < eps)

Fig. 5. DOLFIN Python code illustrating that an integral over the surface facets of a meshed ball is equivalent

to the integral over the manifold mesh of the ball’s surface. This example is included in the supplementary

material as snippets/measures.py

main part of the integral code is the computation of the local element tensor over a given physical

mesh entity for the specific integral. This functionality is provided by the generated code body of

the ufc::* integral::tabulate tensor functions. The UFC specification allows mesh

entities and in particular physical cells with differing topological and geometric dimensions. The390

extension of FFC to immersed manifolds is therefore restricted to extending the generation of the

local element tensor code body to this case.

For all integral types, the generated code computes the local element tensors by pulling the integral

back to a suitable reference cell as shown in (9) for the local mass matrix and in (23) for the local

stiffness matrix. For an integral over a cell of topological dimension m, the integral is pulled back395

to the reference element2 of both topological and geometric dimension m. FFC uses FIAT (Kirby,

2004) to pre-evaluate the reference basis functions on the reference cell. Since FIAT only operates

on the reference cell, it requires no modification for our purposes.

As demonstrated in Section 2, the mathematical representation of the variational forms supported

by FFC differs between the standard and immerse manifolds cases only in the definition of the Jaco-400

bian and its pseudo-determinant and inverse. FFC’s internal representation follows the mathematics,

with the consequence that only the final, code generation, stage requires modification for the im-

2The definition of the UFC reference cells for dimensions 1,2,3 are given in Alnæs et al. (2012)
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Fig. 5. DOLFIN Python code illustrating that an integral over the surface facets of a meshed
ball is equivalent to the integral over the manifold mesh of the ball’s surface. This example is
included in the Supplement as snippets/measures.py.
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Fig. 5.DOLFIN Python code illustrating that an integral over the surface facets of a meshed ball is equivalent to the integral over the manifold
mesh of the ball’s surface. This example is included in the Supplement as snippets/measures.py.

3.3 Extending the FEniCS Form Compiler (FFC) onto
manifolds

The interface of the form compiler FFC has two main entry
points: one for compiling a (set of) UFL form(s) and one for
compiling a separate UFL finite element.

3.3.1 Compiling variational forms and integrals over
manifolds

A UFL form is a sum of UFL integrals each of prede-
fined type determined by the measure symbol. The role
of FFC is to generate UFC-compliant code for the form
and for each of the integrals. The main part of the inte-
gral code is the computation of the local element tensor
over a given physical mesh entity for the specific integral.
This functionality is provided by the generated code body
of theufc:: * _integral::tabulate_tensor func-
tions. The UFC specification allows mesh entities and in par-
ticular physical cells with differing topological and geomet-
ric dimensions. The extension of FFC to immersed manifolds
is therefore restricted to extending the generation of the local
element tensor code body to this case.

For all integral types, the generated code computes the lo-
cal element tensors by pulling the integral back to a suitable
reference cell as shown in Eq. (9) for the local mass matrix
and in Eq. (23) for the local stiffness matrix. For an integral
over a cell of topological dimensionm, the integral is pulled

back to the reference element2 of both topological and ge-
ometric dimensionm. FFC uses FIAT (Kirby, 2004) to pre-
evaluate the reference basis functions on the reference cell.
Since FIAT only operates on the reference cell, it requires no
modification for our purposes.

As demonstrated in Sect.2, the mathematical representa-
tion of the variational forms supported by FFC differs be-
tween the standard and immerse manifolds cases only in the
definition of the Jacobian and its pseudo-determinant and in-
verse. FFC’s internal representation follows the mathematics,
with the consequence that only the final, code generation,
stage requires modification for the immersed manifold case.

The code generation stage of FFC relies on predefined
code snippets or kernels for computing the Jacobians, the
Jacobian (pseudo-)determinants and the Jacobian (pseudo-
)inverses. Compiling forms over cells with differing topolog-
ical and geometric dimension is therefore simply enabled by
providing implementations based on the definition Eqs. (12)
and (16) for the (remaining) cases 1≤m< n≤ 3. This light-
touch modification is compatible with the full range of opti-
misations which FFC can insert in the generated form code.
We show an example of the generated code correspond-
ing to Eq. (23) in Fig. 6. The geometrically defined UFL
operands such as facet normal are likewise extended to im-
mersed manifolds by corresponding modified code snippets.

2The definition of the UFC reference cells for dimensions 1,2,3
are given inAlnæs et al.(2012).
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/// Tabulate the tensor for the contribution from a local cell

virtual void tabulate_tensor(double* A,

const double * const * w,

const double* vertex_coordinates,

int cell_orientation) const

// Compute Jacobian

double J[6];

compute_jacobian_triangle_3d(J, vertex_coordinates);

// Compute Jacobian inverse and determinant

double K[6];

double detJ;

compute_jacobian_inverse_triangle_3d(K, detJ, J);

// Set scale factor

const double det = std::abs(detJ);

// Compute geometry tensor

const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]);

const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]);

const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]);

const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]);

// Compute element tensor

A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1;

A[1] = -0.5*G0_0_0 - 0.5*G0_1_0;

A[2] = -0.5*G0_0_1 - 0.5*G0_1_1;

A[3] = -0.5*G0_0_0 - 0.5*G0_0_1;

A[4] = 0.5*G0_0_0;

A[5] = 0.5*G0_0_1;

A[6] = -0.5*G0_1_0 - 0.5*G0_1_1;

A[7] = 0.5*G0_1_0;

A[8] = 0.5*G0_1_1;

Fig. 6. Generated code for the bilinear form corresponding to the weak Laplacian. This code is extracted

from snippets/laplacian.h in the supplementary materials, which was obtained by running FFC on the code in

Figure 4.
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Fig. 6. Generated code for the bilinear form corresponding to the weak Laplacian. This code is
extracted from snippets/laplacian.h in the Supplement, which was obtained by running FFC on
the code in Fig. 4.
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Fig. 6. Generated code for the bilinear form corresponding to the weak Laplacian. This code is extracted from snippets/laplacian.h in the
Supplement, which was obtained by running FFC on the code in Fig.4. The array A represents the 3×3 local element tensor for the discrete
Laplacian. For a full explanation of FFC and the code it generates, the reader is directed toLogg et al.(2012d).

3.3.2 Compiling finite elements and dofmaps over
manifolds

In addition to the code for integrals and forms, FFC gen-
erates UFC finite element and dofmap (degree-of-freedom
map) classes for all finite elements encountered in a form
and when compiling a separate finite element. The primary
non-trivial functionality provided by these generated classes
are evaluating degrees of freedom on arbitrary coefficients,
evaluating basis functions at arbitrary points, and interpolat-
ing vertex values. As for forms and integrals, the FFC code
generation strategy for these operations relies on pulling the
finite element basis functions back to the appropriate refer-
ence cell or, in some cases, pushing the degrees of freedom
forward from the reference to the physical cell.

In the cases of scalar basis functions Eq. (8) or Cartesian
products of these Eq. (25), the implementation of the pull-
backs and push-forwards extend trivially from the case with
matching topological and geometric dimension to that of dif-
fering topological and geometric dimension. For div- and
curl-conforming elements, the implementation of the pull-
back is based on the Piola contravariant and covariant trans-
forms Eqs. (30) and (31). As for forms, the intermediate com-
piler representation preserves the semi-symbolic representa-
tion given by the mathematical expressions, and so the gen-
erated code again simply calls out to the redefined Jacobians,
pseudo-determinants and pseudo-inverses.

However, the finite element families mapped via the con-
travariant Piola transform present one additional novel as-
pect: the choice of sign in Eq. (30). As detailed inRognes
et al.(2009) for the case of matching topological and geomet-

Geosci. Model Dev., 6, 2099–2119, 2013 www.geosci-model-dev.net/6/2099/2013/
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ric dimensions, using the signed determinant of the Jacobian
in combination with the UFC numbering of mesh entities re-
sult in the desired normal component continuity. However, as
the generalised Jacobian determinant does not carry a sign,
the choice of sign in Eq. (30) must be determined by alter-
native means. In fact, it is not possible to determine the sign
based on the geometry of the physical cell only. Therefore,
the code generation assumes that the choice of sign is deter-
mined via an additional input argument to the relevant UFC
functions.

3.4 Extending DOLFIN onto manifolds

DOLFIN natively supports meshes defined over cells with
differing topological and geometric dimension. Therefore,
the extensions to the form compiler FFC detailed above es-
sentially yield a fully functional FEniCS pipeline for these
meshes.

In view of the previous remarks regarding the contravari-
ant Piola finite element families, the DOLFIN meshes have
been extended to keep track of cell orientations defined rela-
tive to a global normal direction. More precisely, for a tri-
angle cell with vertex coordinatesv0,v1,v2 embedded in
R3, we identify its first two edges bye0 = v1 − v0 ande1 =

v2 − v0. The local cell normalnl is defined bynl = e0 × e1.
Given a global (potentially spatially) varying normal fieldn,
the cell is identified as “up”-oriented ifnl andn are aligned;
that is, ifnl ×n(vm) > 0 for n evaluated at the cell barycentre
vm and “down”-oriented ifnl × n(vm) < 0. This orientation
information is then propagated through the UFC interface
to the code generated by FFC. As an ultimate consequence,
the contravariant Piola element families are not available for
non-orientable manifolds.

3.5 Execution in parallel

One of the key advantages of the FEniCS pipeline is the sep-
aration it achieves between different aspects of the software
and algorithms of the finite element method. In particular, the
implementation of parallel execution is completely separated
from the specification of the numerical method. DOLFIN
supports MPI and OpenMP parallelism, including hybrids
of the two (Richardson and Wells, 2013). The extension of
FEniCS to support immersed manifolds therefore required
no modifications to the existing parallel support, and con-
versely, simulations over manifolds are naturally supported
in parallel.

4 Verification

The FEniCS components, including the extension to im-
mersed manifolds presented here, are primarily tested and
verified via the following means: firstly, automated unit,
system, and regression tests; and secondly, numerical ex-
periments testing the observed convergence rates or other

numerical properties of certain test cases against theoreti-
cally established values. We make some comments on verifi-
cation via the first class of tests here. To illustrate the use of
the implementation and to provide some further evidence to-
wards its correctness, we provide some examples of the sec-
ond class of tests in Sect.5 below.

The FFC implementation is tested through a series of sam-
ple forms and elements aiming at covering the scope of forms
and elements supported by FFC. The compilation of forms
and elements are tested in multiple ways, primarily via re-
gression testing. In particular, the generated code is directly
compared to previously established references, it is verified
that the generated code compiles and runs, and finally the
output of the generated code when run with a set of sam-
ple input is compared with previously established references.
These tests are carried out for the different representations
available in FFC, with and without optimisations. Moreover,
since the different representations must provide equal results,
the results from running the generated code are compared
across representations. This procedure thoroughly tests the
sample forms and elements included in the test suite. How-
ever, we remark that the quality of this verification strongly
depends on the coverage of the test suite.

In DOLFIN, in addition to regression tests as for FFC
above, unit tests are emphasised: separate functionality is
tested on cases of reduced complexity for which the com-
puted answer can be compared to a known, exact value. In
particular, for the extensions of the FEniCS functionality de-
scribed in this manuscript, unit tests were added ensuring that
cell orientations are correctly computed and that all geome-
try computations relating to cell volumes, circumradius, facet
normals and facet area, for all combinations of geometric and
topological dimensions 1≤m≤ n≤ 3, are correct. A series
of tests verifying the correctness of the results from the auto-
mated assembly of simple forms defined over finite elements
over cells of varying geometric and topological dimension
were also included. A simple, but useful, example is compar-
ing the result of

∫
K

1dx to the area ofK for varying domains
K of known area.

For the manifolds case, a much used technique for cor-
roborating the correctness of the extended implementation is
comparing the case of an immersed smooth surface with van-
ishing curvature to the equivalent standard, and hence thor-
oughly tested, flat case. For example, a known test case on
the unit square can be repeated for the unit square immersed
in R3 and the result verified. Further tests may be constructed
by subjecting the unit square mesh to rigid body transforma-
tions inR3 and solving the problem on the transformed mesh.

All of these tests are available as a part of the FEniCS dis-
tribution and automatically run nightly (or more frequently)
by the FEniCS buildbots. Their status is publicly available at
http://fenicsproject.org/buildbot/.

www.geosci-model-dev.net/6/2099/2013/ Geosci. Model Dev., 6, 2099–2119, 2013
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5 Examples

In this section we provide some examples that cover the main
aspects of solving PDEs on manifolds, and test results that
demonstrate that our approach works. We have concentrated
on the spherical case since that is the main surface of interest
in geoscientific models. The example code is provided in the
Supplement.

5.1 Two mixed formulations of Poisson’s equation

In this section we discuss two different approaches to the dis-
cretisation of the gradient of the scalar solutionu of a Pois-
son equation on the sphere. In the first approach, we use div-
conforming finite element spaces for the vector fieldσ = ∇u

and rely upon the contravariant Piola transform to enforce
tangency to the mesh used to approximate the sphere. In the
second approach, we use Cartesian products of scalar finite
element spaces (in this case discontinuous, piecewise poly-
nomial spaces), and enforce approximate tangency through
the introduction of Lagrange multipliers. This approach was
advocated for fluid models on the sphere inCôté(1988) and
used in conjunction with discontinuous Galerkin methods
in Giraldo(2006).

In both of the following examples, we take� to be the
surface of a unit sphere centred at the origin, and letTh be an
affine tessellation of this surface. For a given scalar function
g, we seek the solutionu of the Poisson equation written in
dual form,

σ − ∇u= 0, (38)

divσ + r = g, (39)

where r is the domain average ofg. Given a solution
(u,σ , r), another solution can be obtained by adding an arbi-
trary constant tou; hence, we impose the condition∫
�

udx = 0, (40)

which fixes the value of this constant, leading to a unique
solution.

5.1.1 Div-conforming spaces

To obtain a weak form of Eqs. (38) and (39), we consider the
dot product of Eq. (38) with a vector-valued test functionτ ,
integrated over the domain. Similarly, we multiply Eq. (39)
by a scalar test functionv and integrate over the domain, and
multiply Eq. (40) by an arbitrary constantt . We apply inte-
gration by parts to transfer the derivative fromu to τ in the
first equation. We obtain

∫
�

σ · τdx+

∫
�

divτudx = 0, (41)

∫
�

divσvdx+

∫
�

rvdx =

∫
�

gvdx, (42)

∫
�

tudx = 0, (43)

for all t and suitable3 (τ ,v). Sinceτ , v andt are independent,
we may combine these into a single equation:

〈σ ,τ 〉+ 〈divσ ,v〉+ 〈divτ ,u〉+ 〈r,v〉+ 〈t,u〉 = 〈g,v〉, (44)

where we have adopted the angle bracket notation

〈gv〉 =

∫
�

gvdx, (45)

for scalar variables(g,v) and

〈σ ,τ 〉 =

∫
�

σ · τdx, (46)

for vector variables(σ ,τ ).
To obtain a finite element discretisation of this discrete

form, we simply restrictσ andτ to a (vector-valued) finite el-
ement spaceV , andu andv to a different finite element space
Q. It follows from inspection of Eq. (44) thatV must be div-
conforming, but thatQ has no continuity constraints. It is
well known in the literature, for example inAuricchio et al.
(2004), that stable discretisations can be obtained when4 the
div operator maps fromV onto Q; the loss of continuity
means thatQ may be a discontinuous finite element space.
In this example we consider a number of such pairs of spaces
that are available in FEniCS, presented in Table1.

The problem was solved on a sequence of icosahedral
meshes of the sphere, takingg = x1x2x3. Example solutions
and convergence plots are shown in Fig.7, with the error
measured using theL2 norm‖ · ‖0 defined by

‖u‖0 =

∫
�

u2dx. (47)

As expected, we obtain first order convergence for
RT1 − DG0 and BDM1 − DG0, and second order conver-
gence for BDFM2 − DG1 and BDM2 − DG1. This exam-
ple corroborates the veracity of the implementation of
the contravariant Piola transformation on manifold meshes.
The example code is provided in the Supplement in
examples/mixed-poisson/hdiv-l2/mixed-poisson-sphere.py.

3“Suitable” meaning that the integrals are finite.
4Together with some easily satisfied technical conditions.

Geosci. Model Dev., 6, 2099–2119, 2013 www.geosci-model-dev.net/6/2099/2013/
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Fig. 7. Left: plot of the solution u to the div-conforming discretisation of the Poisson equation (44) with

V =RT1 and Q=DG0. Right: ‖u−uh‖0 versus mesh size h (where u is the exact solution and uh is the

numerical solution) for series of discretisations of (44).

and to enforce tangency of σ through a Lagrange multiplier, also expanded in the same space. With

this approach, (38) and (39) become

σ−∇u− lk = 0, (48)

divσ+ r = g, (49)550

σ ·k = 0, (50)

where l is the Lagrange multiplier, and k is the unit outward normal to the manifold Ω. On a

two-dimensional manifold, we introduce a Lagrange multiplier field l ∈ CGk+1; the finite element

problem is to find (σ,u, l,r) ∈W =DG3
k ×CGk+1 ×DGk ×R such that555

〈σ,τ 〉− 〈τ ,∇u〉+ 〈σ,∇v〉− 〈l,τ ·k〉+ 〈γ,σ ·k〉− 〈r,v〉+ 〈t,u〉=−〈g,v〉 (51)

for all (τ ,v,γ, t) ∈W .

Code for this example is provided in the supplementary material in examples/mixed-poisson/l2-

h1/mixed poisson l2 h1.py. Convergence plots are provided in Figure 8. For the DG3
0-CG1 case,

we observe second order convergence in the L2-norm and first order convergence in the H1-norm560

‖ · ‖1 defined by

‖u‖1 =
∫

Ω

u2 + |∇u|2 dx, (52)

in accordance with theory (Cotter et al., 2009).

We would usually expect these convergence rates to increase by one order when we change the

spaces to DG3
1 −CG2. However, as discussed in (Bernard et al., 2008), higher-order convergence565

can only be achieved if higher-order approximations to the manifold itself are used, and in our im-

plementation we use affine triangles. Hence, for DG3
1−CG2, we also observe second and first order

22

Fig. 7. Left: plot of the solution u to the div-conforming discretisation of the Poisson Eq. (44)
with V = RT1 and Q = DG0. Right: ‖u−uh‖0 versus mesh size h (where u is the exact solution
and uh is the numerical solution) for series of discretisations of Eq. (44).
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Fig. 7.Left: plot of the solutionu to the div-conforming discretisation of the Poisson Eq. (44) with V = RT1 andQ= DG0. Right:‖u−uh‖0
versus mesh sizeh (whereu is the exact solution anduh is the numerical solution) for series of discretisations of Eq. (44).

Table 1. Triples (E, V , Q) of finite element spaces. Only the
pairs (V , Q) are used in Sects.5.1.1and5.2, while Sect.5.5 also
requiresE. RT refers to the Raviart–Thomas space (Raviart and
Thomas, 1977), BDM to the Brezzi–Douglas–Marini space (Brezzi
et al., 1985), and BDFM to the Brezzi–Douglas–Fortin–Marini
space (Brezzi and Fortin, 1991). Note that we have used the FEniCS
numbering convention, in which the number refers to the highest
order of polynomials appearing in the space, rather than the normal
convention, in which the number reflects the order of numerical ap-
proximation; seeLogg et al.(2012a) for further details. For exam-
ple, in this numbering, the lowest order Raviart–Thomas space is
denoted RT1, rather than RT0, whilst the BDFM space discussed in
Cotter and Shipton(2012) is denoted BDFM2, not BDFM1. DG0
and DG1 denote discontinuous, piecewise constant and piecewise
linear spaces, respectively. B3 is the space spanned by cubic “bub-
ble” functions that are nonzero only on a single element, and vanish
on element boundaries.

E V Q

CG1 RT1 DG0
CG2 BDM1 DG0

CG2 ⊕ B3 BDFM2 DG1
CG3 BDM2 DG1

5.1.2 Cartesian product space with Lagrange
multipliers

An alternative approach is to work with a Cartesian prod-
uct finite element space, where each Cartesian component of
the three-dimensional vector fieldσ is expanded in the same
finite element space, and to enforce tangency ofσ through
a Lagrange multiplier, also expanded in the same space. With
this approach, Eqs. (38) and (39) become

σ − ∇u− lk = 0, (48)

divσ + r = g, (49)

σ · k = 0, (50)

wherel is the Lagrange multiplier, andk is the unit outward
normal to the manifold�. On a two-dimensional manifold,
we introduce a Lagrange multiplier fieldl ∈ DGk; the finite
element problem is to find(σ ,u, l, r) ∈W = DG3

k×CGk+1×

DGk × R such that

〈σ ,τ 〉 − 〈τ ,∇u〉 + 〈σ ,∇v〉 − 〈l,τ · k〉

+ 〈γ,σ · k〉 − 〈r,v〉 + 〈t,u〉 = −〈g,v〉 (51)

for all (τ ,v,γ, t) ∈W .
Code for this example is provided in the Supplement

in examples/mixed-poisson/l2-h1/mixed_poisson_l2_h1.py.
Convergence plots are provided in Fig.8. For the DG3

0-CG1
case, we observe second order convergence in theL2-norm
and first order convergence in theH1-norm‖ · ‖1 defined by

‖u‖1 =

∫
�

u2
+ |∇u|2dx, (52)

in accordance with theory (Cotter et al., 2009).
We would usually expect these convergence rates to in-

crease by one order when we change the spaces to DG3
1 −

CG2. However, as discussed in (Bernard et al., 2008), higher-
order convergence can only be achieved if higher-order ap-
proximations to the manifold itself are used, and in our im-
plementation we use affine triangles. Hence, for DG3

1−CG2,
we also observe second and first order convergence forL2
andH1 norms, respectively. This example tests the use of
three-dimensional vector fields on a two-dimensional mani-
fold mesh.

5.2 Linear shallow water equations on the sphere

In this section, we use the framework to solve the linear shal-
low water equations in a rotating frame on the sphere. The
unknowns are the depth of the shallow layerD and the ve-
locity u, assumed tangential to the sphere. They are related

www.geosci-model-dev.net/6/2099/2013/ Geosci. Model Dev., 6, 2099–2119, 2013
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Fig. 8. ‖u−uh‖0 and‖u−uh‖1 versus mesh sizeh (whereu is the exact solution anduh is the numerical solution of Eq.51), using Lagrange
multipliers to enforce approximate tangency. Left: DG3

0-CG1. Right: DG3
1-CG2.

by the equations:

ut + fu⊥
+ g∇D = 0,

Dt +Hdivu = 0,
(53)

whereg is the acceleration due to gravity;H is the (constant)
reference layer depth;f =�0x3/R is the Coriolis parameter,
where�0 is the rotation frequency of the sphere andR is the
sphere radius; andu⊥

= k × u, wherek is the unit normal
vector to the sphere. The subscriptt denotes the partial time
derivative.

A weak form of these equations is obtained by taking the
product with test functionsw andφ, integrating over the do-
main� and integrating the gradient by parts. Restricting to
finite element spacesV andQ with w,u ∈ V , andD,φ ∈Q,
leads to the finite element discretisation

〈w,ut 〉 + 〈w,fu⊥
〉 − 〈divw,gD〉 = 0, (54)

〈φ,Dt 〉 + 〈φ,Hdivu〉 = 0, (55)

for all w in V andφ in Q. As discussed inLe Roux et al.
(2005), it is important to choose a pair of finite element
spaces foru andD that would be stable for the mixed Pois-
son problem (as described in Sect.5.1), in order to avoid
having spurious solutions whereD is highly oscillatory in
space but that have very slow frequencies in time. For large-
scale atmosphere and ocean modelling, it is also important
for the system to have exact steady state solutions in thef -
plane (constantf ) case corresponding to each divergence-
free vector field in the finite element space for velocity. These
solutions represent the large-scale balanced flow that slowly
evolves in the nonlinear solutions, giving rise to “weather”.
It was shown inCotter and Shipton(2012) that the stable
element pairs using div-conforming elements foru such as
those listed in Table1 also satisfy this property, and hence
we will use such spaces as examples here.

A direct computation shows that the total energyET given
by

ET (t)= Ek(t)+Ep(t), Ek(t)= 0.5H‖u(t)‖2
0,

Ep(t)= 0.5g‖D(t)‖2
0, (56)

is conserved for these spatial discretisations. It will also be
exactly conserved by the implicit midpoint rule time dis-
cretisation method, which conserves all quadratic invari-
ants (Leimkuhler and Reich, 2005, for example), and so we
use this conservation as a diagnostic to verify our discretisa-
tion.

Snapshots of the solutions using the element combi-
nation V = RT1 and Q= DG0 are presented in Fig.9.
The computed energies for the same element combination
are plotted in Fig.10. We observe that the total energy
is conserved (to within machine precision) as anticipated.
Code for this example is provided in the Supplement in
examples/linear-shallow-water/linear_shallow_water.py.

5.3 Linear wave equations on the torus

The Supplement also includes an example of the solution of
the linear wave equation over a torus. The equations solved
are Eqs. (54) and (55) with f = 0. The initial conditions
provided are of a radially propagating wave. The results are
qualitatively reasonable and energy conservation is observed
to machine precision in a similar manner to that shown in
Fig.10. Since the problem solved does not have a straightfor-
ward analytic solution and is similar in character to the pre-
ceding sphere case, results are not reproduced in the paper.
However this section serves as a pointer to the implementa-
tion in the Supplement for readers interested in simulating
on manifolds other than the sphere. The code for this exam-
ple is included in examples/torus. Of particular interest may

Geosci. Model Dev., 6, 2099–2119, 2013 www.geosci-model-dev.net/6/2099/2013/
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Fig. 9. Snapshots of the solution to the linear shallow water equations obtained using the method of Section 5.2,

with V = RT1 and Q = DG0. Top: D. Bottom: u.

case corresponding to each divergence-free vector field in the finite element space for velocity; these590

solutions represent the large scale balanced flow that slowly evolves in the nonlinear solutions, giving

rise to “weather”. It was shown in Cotter and Shipton (2012) that the stable element pairs using div-

conforming elements for u such as those listed in Table 1 also satisfy this property, and hence we

will use such spaces as examples here.

A direct computation shows that the total energy ET given by595

ET (t) = Ek(t) +Ep(t), Ek(t) = 0.5H‖u(t)‖20, Ep(t) = 0.5g‖D(t)‖20, (56)

is conserved for these spatial discretisations. It will also be exactly conserved by the implicit mid-

point rule time discretisation method, which conserves all quadratic invariants (Leimkuhler and Re-

ich, 2005, for example), and so we use this conservation as a diagnostic to verify our discretisation.

Snapshots of the solutions using the element combination V = RT1 and Q= DG0 are presented600

in Figure 9. The computed energies for the same element combination are plotted in Figure 10. We

observe that the total energy is conserved (to within machine precision) as anticipated. Code for this

example is provided in the supplementary material in examples/linear-shallow-water/linear shallow water.py.
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Fig. 9. Snapshots of the solution to the linear shallow water equations obtained using the
method of Sect. 5.2, with V = RT1 and Q = DG0. Top: D. Bottom: u.

3608

Fig. 9. Snapshots of the solution to the linear shallow water equations obtained using the method of Sect.5.2, with V = RT1 andQ= DG0.
Top:D. Bottom:u.
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Fig. 10. Linear shallow water equations: kineticEk , potentialEp,
and total energyET versus timet for an implicit midpoint in time
and RT1 × DG0 in space discretisation of Eqs. (54) and (55). As
expected the total energy is conserved to machine precision (the
maximum absolute conservation error is 1.4× 10−15).

be torus_mesh.py which contains a torus mesh object with
the required specification of the global normal direction, and
a facility for providing expressions such as initial conditions
in manifold (polar) coordinates.

5.4 Upwind discontinuous Galerkin transport on the
sphere

In this section we discuss the transport equation

Dt + div(uD)= 0, (57)

which is a commonly encountered equation in the geo-
sciences, describing the transport of a mass densityD by
a velocity u; it appears in the shallow-water equations as
the continuity equation describing the evolution of the layer
depthD. This equation takes the form of a conservation law
and therefore is ideally suited for discretisation using the dis-
continuous Galerkin (DG) approach which uses finite ele-
ment spaces with no continuity constraints across element
boundaries, and which extends the first order upwind finite
volume method to higher order locally conservative schemes
by increasing the order of the polynomials in each element.

To obtain the spatial discretisation, we multiply Eq. (57)
by a discontinuous test functionφ, integrate over a single
cell T , and integrate by parts to obtain∫
T

φDtdx−

∫
T

∇φ · udx+

∫
∂T

φD̃u · nT ds = 0, (58)

where∂T is the boundary ofT ; andnT is the outward point-
ing normal vector to∂T ; and whereD̃ is taken to be the value
of D on the upwind side; that is, the side away from which
the velocityu, assumed continuous, is pointing. Local con-
servation follows from choosingφ = 1 inside elementT and
φ = 0 outside.

www.geosci-model-dev.net/6/2099/2013/ Geosci. Model Dev., 6, 2099–2119, 2013
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Fig. 11. Snapshots of the solution to the transport equation obtained using the method of Section 5.4.

We take as initial condition for D:

D0 = e−(x2
2+x2

3), (63)

where (x1,x2,x3) are the global Cartesian coordinates as before, and we use the time-independent

rigid rotation velocity field

u= (−x2,x1,0). (64)660

This means that after integrating the equations from t= 0 until t= 2π, we recover the initial con-

dition. For sufficiently small ∆t, chosen so that spatial discretisation error is the dominant error

term, the difference between D at t= 2π and the initial conditions provides a metric for the spatial

discretisation error.

Snapshots of the solutions using DG1 are presented in Figure 11. Moreover, plots of the L2 error665

versus mesh size h are provided in Figure 12, showing the expected second-order convergence. Note

that higher order DG spaces would not yield a higher order convergence rate since we are using a

second-order approximation to the sphere. This example tests the construction of facet normals and

facet integrals on manifold meshes. Code for this example is provided in the supplementary material

in examples/dg-advection/dg-advection.py.670

5.5 Nonlinear shallow water equations

The nonlinear shallow water equations are used to model a single incompressible thin layer of fluid

with a free surface. They are often used as a test bed for horizontal discretisations for use in numeri-

cal weather prediction and ocean modelling. A linearised version was used previously in Section 5.2;

the Coriolis parameter f and gravitational potential g are unchanged from before, but we allow spa-675

tial variations in topography, denoted by b. The velocity u and fluid depth D evolve according

to

ut + (u · ∇)u+ fu⊥+ g∇(D+ b) = 0, (65)

Dt + div(Du) = 0. (66)680

27

Fig. 11. Snapshots of the solution to the transport equation obtained using the method of
Sect. 5.4.
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Fig. 11.Snapshots of the solution to the transport equation obtained using the method of Sect.5.4.

To write this as a global system, we adopt an (arbitrary)
global convention for labelling the two elements on each side
of an interior facet: each interior facete = T +

∪ T −, and we
write φ+ for φ|T + andφ− for φ|T − . We then sum Eq. (58)
over all mesh elements and the problem becomes seekD ∈

DGk such that∫
�

φDtdx−

∫
�

∇φ · uDdx+

∫
0

(φ+
−φ−)Fds = 0, (59)

for all φ ∈ DGk, where0 is the union of all interior facets
(here we have assumed for simplicity that� is closed so
there is no∂� contribution), and where we have introduced
the fluxF = D̃u · n+ (recall thatu = u+ by the assumption
of continuousu). Note that now an integral is performed over
each facet only once, and so the0 integrand contains contri-
butions from both sides of each facet.

Finally, to express the equations in a form that can be eas-
ily written in UFL, we define the following functionv over
0:

v =

{
u · n if u · n> 0

0 otherwise
=

1

2
(u · n + |u · n|) . (60)

Then

F = v+D+
− v−D−, (61)

and we write∫
�

φDtdx−

∫
�

∇φ · uDdx

+

∫
0

(φ+
−φ−)(v+D+

− v−D−)ds = 0. (62)

The block diagonal structure of the mass matrix makes ex-
plicit methods attractive for DG, and strong stability preserv-
ing Runge–Kutta (SSPRK) methods are typically used, since
they have usable Courant number restrictions for stability,
and are shape-preserving when combined with suitable slope
limiters (Cockburn and Shu, 2001). In this example, we use
the third-order SSPRK method, without limiting.

We take as initial condition forD:

D0 = e−(x
2
2+x2

3), (63)

where(x1,x2,x3) are the global Cartesian coordinates as be-
fore, and we use the time-independent rigid rotation velocity
field

u = (−x2,x1,0). (64)

This means that after integrating the equations fromt = 0
until t = 2π , we recover the initial condition. For sufficiently
small1t , chosen so that spatial discretisation error is the
dominant error term, the difference betweenD at t = 2π and
the initial conditions provides a metric for the spatial discreti-
sation error.

Snapshots of the solutions using DG1 are presented in
Fig. 11. Moreover, plots of theL2 error versus mesh sizeh
are provided in Fig.12, showing the expected second-order
convergence. Note that higher order DG spaces would not
yield a higher order convergence rate since we are using
a second-order approximation to the sphere. This example
tests the construction of facet normals and facet integrals on
manifold meshes. Code for this example is provided in the
Supplement in examples/dg-advection/dg-advection.py.

5.5 Nonlinear shallow water equations

The nonlinear shallow water equations are used to model
a single incompressible thin layer of fluid with a free surface.
They are often used as a test bed for horizontal discretisations
for use in numerical weather prediction and ocean modelling.
A linearised version was used previously in Sect.5.2; the
Coriolis parameterf and gravitational potentialg are un-
changed from before, but we allow spatial variations in to-
pography, denoted byb. The velocityu and fluid depthD
evolve according to

ut + (u · ∇)u + fu⊥
+ g∇(D+ b)= 0, (65)

Dt + div(Du)= 0. (66)

The momentum Eq. (65) can be rewritten in terms of the
relative vorticityζ = ∇

⊥
· u = div(u × k), wherek is again

the local unit normal to the sphere:

ut + (ζ + f )u⊥
+ ∇

(
g(D+ b)+

1

2
|u|

2
)

= 0. (67)
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Finally, defining a potential vorticityq =
ζ+f
D

, we obtain
the coupled equations

ut + qDu⊥
+ ∇

(
g(D+ b)+

1

2
|u|

2
)

= 0, (68)

Dt + div(Du)= 0. (69)

We use a mixed finite element discretisation of this,
stabilised with the Anticipated Potential Vorticity Method
(APVM), which serves as a direct extension of the energy-
conserving, enstrophy-dissipating C-grid finite difference
scheme ofArakawa and Hsu(1990). We takeu ∈ V ,D ∈Q,
where(V ,Q) are chosen from the stable pairs of finite ele-
ment spaces listed in Table1. The spatially discretised equa-
tions are then

〈w,ut 〉 +

〈
w, (q − τ(u · ∇)q︸ ︷︷ ︸

APVM term

)F⊥

〉

−

〈
divw,g(D+ b)+

1

2
|u|

2
〉
= 0, (70)

〈φ,Dt 〉 + 〈φ,divF 〉 = 0, (71)

for all w in V , φ inQ, where we have introduced a stabilisa-
tion parameterτ and the volume fluxF . Note that the poten-
tial vorticity q ∈ E and the volume fluxF ∈ V satisfy

〈γ,qD〉 =

〈
−∇

⊥γ,u
〉
+ 〈γ,f 〉 , (72)

〈w,F 〉 = 〈w,Du〉 , (73)

for all γ in E and w in V . The finite element spaceE is
chosen so that the∇⊥ operator maps fromE to V . Suitable
choices ofE, givenV andQ, are also listed in Table1.

To discretise in time, we will use theθ-method. Define

u? = un+ (1− θ)1un, D? =Dn+ (1− θ)1Dn, (74)

where1un = un+1
− un, 1D =Dn+1

−Dn. The fully dis-
crete equations then read:

0 =
〈
w,1un

〉
+1t

[〈
w,(q − τ(u? · ∇)q)F⊥

〉
−

〈
divw,g(D?+ b)+

1

2
|u?|2

〉]
, (75)

0 = 〈φ,1Dn〉 +1t〈φ,divF 〉, (76)

0 = 〈γ,qD?〉 + 〈∇
⊥γ,u?〉 − 〈γ,f 〉, (77)

0 = 〈w′,F 〉 − 〈w′,u?D?〉, (78)

for all w,w′
∈ V , φ ∈Q, γ ∈ E. We will take θ =

1
2 (im-

plicit midpoint), and chooseτ =
1
21t . A direct, “mono-

lithic” approach is to solve Eq. (75) through Eq. (78)
with DOLFIN’s built-in nonlinear Newton-based solver. Ex-
ample code implementing this approach is presented in
examples/williamson2/auto.py.
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Fig. 12.‖D−Dh‖0 versus mesh sizeh (whereD is the exact so-
lution andDh is the numerical solution to the transport equation
obtained using the method of Sect.5.4). Second order convergence
is observed as expected. Mass is conserved to machine precision
(the maximum absolute conservation error is 1.7× 10−14).

The monolithic solver approach is somewhat inefficient,
because the Newton iteration requires the solution of a large
and difficult-to-precondition linear system. We shall now de-
scribe a more practical approach. Instead of treatingq andF

as prognostic variables to be solved for, we instead treat them
as implicit functions ofu andD, defined through Eqs. (77)
and (78). With this definition, we then try to solve Eqs. (75)
and (76) for 1un and1Dn. The difficulty is that it is no
longer possible to use DOLFIN’s built-in automatic differ-
entiation to generate the Jacobian for this system. However,
from physical considerations, the motion in each time step is
dominated by the propagation of fast gravity waves; the po-
tential vorticityq evolves on a much slower timescale. This
means that we can approximate the Jacobian by treatingq as
if it is independent ofu andD in Eq. (77) and by approxi-
matingF byHu in the Jacobian calculation, whereH is the
average ofD over the domain. This motivates the use of the
Jacobian from the linear shallow water equations Eqs. (54)
and (55); this is the standard semi-implicit method for solv-
ing the shallow-water equations.

Since we have multiple Newton-like iterations within each
time step, we will drop the time-dependent superscriptn for
clarity. We therefore state our problem at each time step as
follows: givenu andD, find 1u, 1D. Let 1uk and1Dk

be the approximations to1u and1D obtained at thekth
iteration. We aim to find aδuk+1 andδDk+1 with which to
update1uk and1Dk:

1uk+1
=1uk+δuk+1, 1Dk+1

=1Dk+δDk+1. (79)

Let u? = un+ (1− θ)1uk, and similarlyD?. We can then
introduceq? andF ?, satisfying

〈γ,q?D?〉 = −〈∇
⊥γ,u?〉 + 〈γ,f 〉 (80)

〈w′,F ?
〉 = 〈w′,u?D?〉 (81)
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for all γ ∈ E,w′
∈ V .

The equations forδuk+1 andδDk+1 are then

〈w,δuk+1
〉 + (1− θ)1t

[
〈w,f (δuk+1)⊥〉 − 〈divw,gδDk+1

〉

]
= −〈w,1uk〉 −1t

[
〈w,q?F ?⊥

〉

−

〈
divw,gD?+

1

2
|u?|2

〉]
(82)

〈φ,δDk+1
〉 + (1− θ)1t〈φ,Hdivδuk+1

〉 =

− 〈φ,1Dk〉 −1t〈φ,divF ?
〉 . (83)

It can be shown that, with the combinations of finite ele-
ment spaces we employ, Eq. (83) implies that the equation

δDk+1
+ (1− θ)1tHdivδuk+1

= −1Dk −1tdivF ? (84)

holds pointwise, and not just in an integral sense. We can
therefore substitute forδDk+1 in the first equation and solve
two separate equations, rather than a pair of coupled equa-
tions.

We illustrate this approach using two examples from the
standard NCAR test set for shallow water equations on the
sphere (Williamson et al., 1992), namely the solid rotation
(test case 2) and mountain (test case 5) cases. The solid ro-
tation case is an exact steady state solution of the nonlinear
rotating shallow water equations, for which the velocity field
is that of solid body rotation around the sphere. The met-
ric for this test case is theL2 norm of the difference from
the initial conditions of the depth fieldD and the velocityu
after five days. The fields were initialised by finite element
projection into the relevant spaces having sampled the func-
tions at quadrature points. Plots of the error for various finite
element spaces are provided in Fig.13, with the expected
convergence rates. The mountain test case is a similar ini-
tial condition (with slightly different magnitude), but with
a large conical mountain in the topography at mid-latitudes.
This case does not have an analytical solution; the metric for
this test is theL2 norm of the difference between the sur-
face height fieldD+ b and a high resolution reference so-
lution obtained from the spectral model provided by NCAR,
at 15 days. Plots of the error are provided in Fig.14, and
show the expected convergence rates. Figure15 shows il-
lustrative snapshots obtained from this simulation. Code il-
lustrating the optimised approach applied to these two ex-
amples is presented in examples/williamson2/manual.py and
examples/williamson5/w5.py. Note that energy conservation
is not an expected property of the timestepping scheme em-
ployed for these tests, so no energy results are presented. A
full analysis of the energy and enstrophy conservation prop-
erties of the spaces studied here is presented inMcRae and
Cotter(2013).

6 Limitations and extensions

The scope of the current implementation leaves room for
a set of natural extensions.

First, the implementation only includes simplicial finite el-
ement cells and basis functions; that is, finite elements de-
fined over intervals, triangles and tetrahedra. Moreover, only
affine transformations from reference to physical cells are
covered here. We remark that this is not due to a limitation in
design: support for tensor product finite elements, including
quadrilaterals and hexahedra, and curved cells is a natural ex-
tension and will be considered in future work. Note that for
these cases, in contrast to the affine case, the Jacobian of the
geometry transformation varies over each cell.
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Fig. 15.Snapshots of the solution to test case 5 for the nonlinear shallow water equations at 15 days. These were obtained using the method
of Sect.5.5, with APVM stabilisation. We tookE = CG2 ⊕ B3, V = BDFM2 andQ= DG1. Top: initial surface height field,D+ b, and
velocity field, u; final surface height and velocity fields. Bottom: final vorticity field,ζ , projected from a triangular mesh into latitude–
longitude coordinates.

Second, we point out that the current UFL design assumes
that mixed finite elements are defined in terms of a number
of component elements sharing a common cell. A direct con-
sequence of this is that mixed elements defined over differ-
ent cells, for instance a mixed element with two components
where one component is defined over cells of geometric di-
mensionn and topological dimensionm and another compo-
nent is defined over cells of geometric dimensionn and topo-
logical dimensionm− 1, is not admitted. This restriction is
however independent of the manifolds aspect: an extension
of UFL for the case wherem= n would immediately carry
over to the casem< n. Such an extension might be useful,
for instance, in order to enable the imposition of a Lagrange
multiplier over the surface of a mesh while solving an equa-
tion over the mesh as a whole.

7 Copyright and access to code

The FEniCS Project software, including the enhancements
documented here, is available under version 3 of the GNU
Lesser General Public License. The functionality described
here is available in release version 1.2 and will be main-
tained in subsequent versions. FEniCS 1.2 consists of:
DOLFIN 1.2.0, FFC 1.2.0, FIAT 1.1, Instant 1.2.0, UFC
2.2.0, UFL 1.2.0. Users are encouraged to employ the current
release of FEniCS. This is available athttp://fenicsproject.
org/download. Archive packages for version 1.2 will re-
main available athttp://fenicsproject.org/download/older_
releases.html.

8 Supplementary material

The Supplement include the source code for the code exam-
ples given in Sect.3 and for each of the numerical exam-
ples presented in Sect.5. In particular, scripts are provided
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to reproduce all of the graphs contained in this paper. Rele-
vant references to the Supplement appear in the paper at the
point at which the material is used, and further information
is provided in the README file.

9 Conclusions

This paper details how the solution of finite element discreti-
sations defined over simplicial meshes of immersed mani-
folds can be automated via code generation. The correspond-
ing implementation is generally available as an integral part
of FEniCS 1.2. The numerical examples presented cover
a range of different partial differential equations and a wide
range of different discretisations; we hope that these illus-
trate the flexibility and the strength of the approach and im-
plementation.

Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/6/
2099/2013/gmd-6-2099-2013-supplement.zip.
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