Articles | Volume 6, issue 4
https://doi.org/10.5194/gmd-6-1319-2013
https://doi.org/10.5194/gmd-6-1319-2013
Model evaluation paper
 | 
23 Aug 2013
Model evaluation paper |  | 23 Aug 2013

Sensitivities and uncertainties of modeled ground temperatures in mountain environments

S. Gubler, S. Endrizzi, S. Gruber, and R. S. Purves

Related authors

Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions
V. Wirz, S. Gruber, R. S. Purves, J. Beutel, I. Gärtner-Roer, S. Gubler, and A. Vieli
Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016,https://doi.org/10.5194/esurf-4-103-2016, 2016
Estimating velocity from noisy GPS data for investigating the temporal variability of slope movements
V. Wirz, J. Beutel, S. Gruber, S. Gubler, and R. S. Purves
Nat. Hazards Earth Syst. Sci., 14, 2503–2520, https://doi.org/10.5194/nhess-14-2503-2014,https://doi.org/10.5194/nhess-14-2503-2014, 2014

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

AIAA: Guide for the verification and validation of computational fluid dynamics simulations, American Institute of Aeronautics and Astronautics, Reston, VA, USA, 1998.
Anderson, M. G. and Bates, P. D. (Eds).: Model Validation: Perspectives in Hydrological Science, Wiley, New York, USA, 2001.
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009.
Ångström, A.: The albedo of various surfaces of ground, Geograf. Ann., 7, 323–342, 1925.
Barringer, J. R. F.: A variable lapse rate snowline model for the remarkables, Central Otago, New Zealand, J. Hydrol., 28, 32–46, 1989.
Download
Share