Articles | Volume 17, issue 11
https://doi.org/10.5194/gmd-17-4561-2024
https://doi.org/10.5194/gmd-17-4561-2024
Methods for assessment of models
 | 
10 Jun 2024
Methods for assessment of models |  | 10 Jun 2024

EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions

Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian

Related authors

UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022,https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary

Cited articles

Anctil, F. and Ramos, M.-H.: Verification Metrics for Hydrological Ensemble Forecasts, Springer Berlin Heidelberg, Berlin, Heidelberg, 1–30, ISBN 978-3-642-40457-3, https://doi.org/10.1007/978-3-642-40457-3_3-1, 2017. a, b
Barnston, A. G.: Correspondence among the correlation, RMSE, and Heidke forecast verification measures; refinement of the Heidke score, Weather Forecast., 7, 699–709, https://doi.org/10.1175/1520-0434(1992)007<0699:CATCRA>2.0.CO;2, 1992. a
Bellier, J., Zin, I., and Bontron, G.: Sample Stratification in Verification of Ensemble Forecasts of Continuous Scalar Variables: Potential Benefits and Pitfalls, Mon. Weather Rev., 145, 3529–3544, https://doi.org/10.1175/MWR-D-16-0487.1, 2017. a, b
Beven, K. and Young, P.: A guide to good practice in modeling semantics for authors and referees, Water Resour. Res., 49, 5092–5098, https://doi.org/10.1002/wrcr.20393, 2013. a, b
Bourgin, F., Andréassian, V., Perrin, C., and Oudin, L.: Transferring global uncertainty estimates from gauged to ungauged catchments, Hydrol. Earth Syst. Sci., 19, 2535–2546, https://doi.org/10.5194/hess-19-2535-2015, 2015. a
Download
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Share