Articles | Volume 16, issue 2
https://doi.org/10.5194/gmd-16-719-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-719-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
Varun Sharma
CORRESPONDING AUTHOR
School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
Snow Processes, Snow and Avalanche Research Unit, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Sunwell Sàrl, Lausanne, Switzerland
Franziska Gerber
School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
Snow Processes, Snow and Avalanche Research Unit, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Michael Lehning
School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
Snow Processes, Snow and Avalanche Research Unit, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Related authors
No articles found.
Mahdi Jafari and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-3035, https://doi.org/10.5194/egusphere-2025-3035, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how air moves within snow in Arctic regions and how this affects the snow's structure. Using a new method that links two computer models, we found that cold weather can trigger air movement inside the snow, creating vertical channels and changing the snow's density and temperature. These changes are not captured by traditional models, so our work helps improve how snow and climate processes are simulated in cold environments.
Francesca Carletti, Carlo Marin, Chiara Ghielmini, Mathias Bavay, and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-974, https://doi.org/10.5194/egusphere-2025-974, 2025
Short summary
Short summary
This work presents the first high-resolution dataset of wet snow properties for satellite applications. With it, we validate links between Sentinel-1 backscattering and snowmelt stages, and investigate scattering mechanisms through a radiative transfer model. We disclose the influence of liquid water content and surface roughness at different melting stages and address future challenges, such as capturing large-scale scattering mechanisms and enhancing radiative transfer modules for wet snow.
Elizaveta Sharaborova, Michael Lehning, Nander Wever, Marcia Phillips, and Hendrik Huwald
EGUsphere, https://doi.org/10.5194/egusphere-2024-4174, https://doi.org/10.5194/egusphere-2024-4174, 2025
Short summary
Short summary
Global warming provokes permafrost to thaw, damaging landscapes and infrastructure. This study explores methods to slow this thawing at an alpine site. We investigate different methods based on passive and active cooling system. The best approach mixes both methods and manages heat flow, potentially allowing excess energy to be used locally.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Daniela Brito Melo, Armin Sigmund, and Michael Lehning
The Cryosphere, 18, 1287–1313, https://doi.org/10.5194/tc-18-1287-2024, https://doi.org/10.5194/tc-18-1287-2024, 2024
Short summary
Short summary
Snow saltation – the transport of snow close to the surface – occurs when the wind blows over a snow-covered surface with sufficient strength. This phenomenon is represented in some climate models; however, with limited accuracy. By performing numerical simulations and a detailed analysis of previous works, we show that snow saltation is characterized by two regimes. This is not represented in climate models in a consistent way, which hinders the quantification of snow transport and sublimation.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Joel Fiddes, Kristoffer Aalstad, and Michael Lehning
Geosci. Model Dev., 15, 1753–1768, https://doi.org/10.5194/gmd-15-1753-2022, https://doi.org/10.5194/gmd-15-1753-2022, 2022
Short summary
Short summary
This study describes and evaluates a new downscaling scheme that addresses the need for hillslope-scale atmospheric forcing time series for modelling the local impact of regional climate change on the land surface in mountain areas. The method has a global scope and is able to generate all model forcing variables required for hydrological and land surface modelling. This is important, as impact models require high-resolution forcings such as those generated here to produce meaningful results.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Cited articles
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a, b
Amory, C.: Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica, The Cryosphere, 14, 1713–1725, https://doi.org/10.5194/tc-14-1713-2020, 2020. a
Amory, C., Trouvilliez, A., Gallée, H., Favier, V., Naaim-Bouvet, F., Genthon, C., Agosta, C., Piard, L., and Bellot, H.: Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica, The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015, 2015. a
Arduini, G., Balsamo, G., Dutra, E., Day, J. J., Sandu, I., Boussetta, S., and
Haiden, T.: Impact of a Multi-Layer Snow Scheme on Near-Surface Weather
Forecasts, J. Adv. Model. Earth Sy., 11, 4687–4710,
https://doi.org/10.1029/2019MS001725, 2019. a, b, c
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature, 438,
303–309, https://doi.org/10.1038/nature04141, 2005. a
Bavay, M., Lehning, M., Jonas, T., and Loewe, H.: Simulations of future snow
cover and discharge in Alpine headwater catchments, Hydrol. Process.,
23, 95–108, https://doi.org/10.1002/hyp.7195, 2009. a
Bavay, M., Gruenewald, T., and Lehning, M.: Response of snow cover and runoff
to climate change in high Alpine catchments of Eastern Switzerland,
Adv. Water Resour., 55, 4–16,
https://doi.org/10.1016/j.advwatres.2012.12.009, 2013. a
Betts, A. K., Desjardins, R., Worth, D., Wang, S., and Li, J.: Coupling of
winter climate transitions to snow and clouds over the Prairies, J.
Geophys. Res.–Atmos., 119, 1118–1139,
https://doi.org/10.1002/2013JD021168, 2014. a
Birnbaum, G., Freitag, J., Brauner, R., König-Langlo, G., Schulz, E.,
Kipfstuhl, S., Oerter, H., Reijmer, C., Schlosser, E., Faria, S., Ries, H.,
Loose, B., Herber, A., Duda, M., Powers, J., Manning, K., and Van Den Broeke,
M.: Strong-wind events and their influence on the formation of snow dunes:
Observations from Kohnen station, Dronning Maud Land, Antarctica, J.
Glaciol., 56, 891–902, https://doi.org/10.3189/002214310794457272, 2010. a
Bloeschl, G., Hall, J., Parajka, J., Perdigao, R. A. P., Merz, B., Arheimer,
B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M., Canjevac, I.,
Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N.,
Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A.,
Kjeldsen, T. R., Kohnova, S., Koskela, J. J., Ledvinka, O., Macdonald, N.,
Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A.,
Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas,
J. L., Sauquet, E., Sraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson,
D., Zaimi, K., and Zivkovic, N.: Changing climate shifts timing of European
floods, Science, 357, 588–590, https://doi.org/10.1126/science.aan2506,
2017. a
Brauchli, T., Trujillo, E., Huwald, H., and Lehning, M.: Influence of
Slope-Scale Snowmelt on Catchment Response Simulated With the
Alpine3D Model, Water Resour. Res., 53, 10723–10739,
https://doi.org/10.1002/2017WR021278, 2017. a, b
Burke, E. J., Dankers, R., Jones, C. D., and Wiltshire, A. J.: A retrospective
analysis of pan Arctic permafrost using the JULES land surface model,
Clim. Dynam., 41, 1025–1038, https://doi.org/10.1007/s00382-012-1648-x,
2013. a
Collier, E., Mölg, T., Maussion, F., Scherer, D., Mayer, C., and Bush, A. B. G.: High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram, The Cryosphere, 7, 779–795, https://doi.org/10.5194/tc-7-779-2013, 2013. a
Comola, F. and Lehning, M.: Energy- andmomentum-conservingmodel of splash
entrainment in sand and snow saltation, Geophys. Res. Lett., 44,
1601–1609, https://doi.org/10.1002/2016GL071822, 2017. a
Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., and Morin, S.: Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model, The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, 2016. a
Dery, S. J. and Yau, M. K.: A bulk blowing snow model, Bound.-Lay.
Meteorol., 93, 237–251, https://doi.org/10.1023/A:1002065615856,
1999. a
Dery, S. J. and Yau, M. K.: Simulation of blowing snow in the Canadian
Arctic using a double-moment model, Bound.-Lay. Meteorol., 99,
297–316, https://doi.org/10.1023/A:1018965008049, 2001. a
Dery, S. J. and Yau, M. K.: Large-scale mass balance effects of blowing snow
and surface sublimation, J. Geophys. Res.-Atmos., 107,
4679, https://doi.org/10.1029/2001JD001251, 2002. a, b, c, d
Doms, G., Förstner, J., Heise, E., Herzog, H., Mironov, D., Raschendorfer,
M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vogel, G.: A
description of the nonhydrostatic regional COSMO model. Part II: Physical
parameterization, Deutscher Wetterdienst, Offenbach, Germany,
https://doi.org/10.5676/DWD_pub/nwv/cosmo-doc_5.05_II, 2011. a
Doorschot, J. J. J. and Lehning, M.: Equilibrium saltation: Mass fluxes,
aerodynamic entrainment, and dependence on grain properties, Bound.-Lay.
Meteorol., 104, 111–130, https://doi.org/10.1023/A:1015516420286,
2002. a, b, c
Dujardin, J., Kahl, A., and Lehning, M.: Synergistic optimization of renewable
energy installations through evolution strategy, Environ. Res.
Lett., 16, 064016, https://doi.org/10.1088/1748-9326/abfc75, 2021. a
Dutra, E., Viterbo, P., Miranda, P. M. A., and Balsamo, G.: Complexity of
Snow Schemes in a Climate Model and Its Impact on Surface
Energy and Hydrology, J. Hydrometeorol., 13, 521–538,
https://doi.org/10.1175/JHM-D-11-072.1, 2012. a
European Environment Agency: CORINE Land Cover (CLC) 2006, Version 17, CRC/TR32
Database (TR32DB), https://www.tr32db.uni-koeln.de/data.php?dataID=1152 (last access: 4 December 2022), 2006. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Filhol, S. and Sturm, M.: Snow bedforms: A review, new data, and a formation
model, J. Geophys. Res.-Earth, 120, 1645–1669,
https://doi.org/10.1002/2015JF003529, 2015. a
Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., and
Robinson, D. A.: A review of global satellite-derived snow products, Adv. Space Res., 50, 1007–1029, https://doi.org/10.1016/j.asr.2011.12.021,
2012. a
Geerts, B., Pokharel, B., and Kristovich, D. A. R.: Blowing Snow as a
Natural Glaciogenic Cloud Seeding Mechanism, Mon. Weather
Rev., 143, 5017–5033, https://doi.org/10.1175/MWR-D-15-0241.1,
2015. a
Gerber, F. and Lehning, M.: REMA topography and AntarcticaLC2000 for WRF,
EnviDat [data set], https://doi.org/10.16904/envidat.190, 2020. a
Gerber, F. and Sharma, V.: Running COMO-WRF on very high resolution over
complex terrain, Laboratory of Cryospheric Sciences, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland, Envidat [data set] https://doi.org/10.16904/envidat.35,
2018. a
Gerber, F., Besic, N., Sharma, V., Mott, R., Daniels, M., Gabella, M., Berne, A., Germann, U., and Lehning, M.: Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain, The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, 2018. a, b, c, d
Gouttevin, I., Lehning, M., Jonas, T., Gustafsson, D., and Mölder, M.: A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741), Geosci. Model Dev., 8, 2379–2398, https://doi.org/10.5194/gmd-8-2379-2015, 2015. a, b
Groot Zwaaftink, C. D., Cagnati, A., Crepaz, A., Fierz, C., Macelloni, G., Valt, M., and Lehning, M.: Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK, The Cryosphere, 7, 333–347, https://doi.org/10.5194/tc-7-333-2013, 2013. a
Groot Zwaaftink, C. D., Diebold, M., Horender, S., Overney, J., Lieberherr, G.,
Parlange, M. B., and Lehning, M.: Modelling Small-Scale Drifting Snow with a
Lagrangian Stochastic Model Based on Large-Eddy Simulations, Bound.-Lay.
Meteorol., 153, 117–139, https://doi.org/10.1007/s10546-014-9934-2, 2014. a
Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., and Lehning, M.: Distributed snow and rock temperature modelling in steep rock walls using Alpine3D, The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, 2017. a
Hanzer, F., Carmagnola, C. M., Ebner, P. P., Koch, F., Monti, F., Bavay, M.,
Bernhardt, M., Lafaysse, M., Lehning, M., Strasser, U., François, H., and
Morin, S.: Simulation of snow management in Alpine ski resorts using three
different snow models, Cold Reg. Sci. Technol., 172, 102995,
https://doi.org/10.1016/j.coldregions.2020.102995, 2020. a
Harpold, A. A. and Kohler, M.: Potential for Changing Extreme Snowmelt and
Rainfall Events in the Mountains of the Western United States, J.
Geophys. Res.-Atmos., 122, 13219–13228,
https://doi.org/10.1002/2017JD027704, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hines, K. M. and Bromwich, D. H.: Development and Testing of Polar Weather
Research and Forecasting (WRF) Model. Part I: Greenland Ice Sheet
Meteorology, Mon. Weather Rev., 136, 1971–1989,
https://doi.org/10.1175/2007MWR2112.1, 2008. a
Hock, R., de Woul, M., Radić, V., and Dyurgerov, M.: Mountain glaciers and ice
caps around Antarctica make a large sea-level rise contribution, Geophys.
Res. Lett., 36, L07501, https://doi.org/10.1029/2008GL037020, 2009. a
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019. a
Hui, F., Kang, J., Liu, Y., Cheng, X., Gong, P., Wang, F., Li, Z., Ye, Y., and
Guo, Z.: AntarcticaLC2000: The new Antarctic land cover database for the year
2000, Sci. China Earth Sci., 60, 686–696,
https://doi.org/10.1007/s11430-016-0029-2, 2017. a
Jafari, M., Gouttevin, I., Couttet, M., Wever, N., Michel, A., Sharma, V.,
Rossmann, L., Maass, N., Nicolaus, M., and Lehning, M.: The Impact of
Diffusive Water Vapor Transport on Snow Profiles in Deep and
Shallow Snow Covers and on Sea Ice, Front. Earth Sci., 8,
249, https://doi.org/10.3389/feart.2020.00249, 2020. a
Jensen, A. A., Harrington, J. Y., Morrison, H., and Milbrandt, J. A.:
Predicting Ice Shape Evolution in a Bulk Microphysics Model, J.
Atmos. Sci., 74, 2081–2104, https://doi.org/10.1175/JAS-D-16-0350.1, 2017. a, b
Jin, J., Gao, X., Yang, Z. L., Bales, R. C., Sorooshian, S., and Dickinson,
R. E.: Comparative analyses of physically based snowmelt models for climate
simulations, J. Climate, 12, 2643–2657,
https://doi.org/10.1175/1520-0442(1999)012<2643:CAOPBS>2.0.CO;2, 1999. a
Keenan, E., Wever, N., Dattler, M., Lenaerts, J. T. M., Medley, B., Kuipers Munneke, P., and Reijmer, C.: Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density, The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, 2021. a
Khvorostyanov, V. I. and Curry, J. A.: Terminal Velocities of Droplets and
Crystals: Power Laws with Continuous Parameters over the Size Spectrum,
J. Atmos. Sci., 59, 1872–1884,
https://doi.org/10.1175/1520-0469(2002)059<1872:TVODAC>2.0.CO;2, 2002. a
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.: ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, 2018. a, b
König-Langlo, G.: Continuous meteorological observations at Neumayer station
(2011-01), Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.775173, 2012. a
Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., Aumond, P., Auguste, F., Bechtold, P., Berthet, S., Bielli, S., Bosseur, F., Caumont, O., Cohard, J.-M., Colin, J., Couvreux, F., Cuxart, J., Delautier, G., Dauhut, T., Ducrocq, V., Filippi, J.-B., Gazen, D., Geoffroy, O., Gheusi, F., Honnert, R., Lafore, J.-P., Lebeaupin Brossier, C., Libois, Q., Lunet, T., Mari, C., Maric, T., Mascart, P., Mogé, M., Molinié, G., Nuissier, O., Pantillon, F., Peyrillé, P., Pergaud, J., Perraud, E., Pianezze, J., Redelsperger, J.-L., Ricard, D., Richard, E., Riette, S., Rodier, Q., Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour, M., Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vionnet, V., and Wautelet, P.: Overview of the Meso-NH model version 5.4 and its applications, Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, 2018. a
Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J.,
Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P.,
Redelsperger, J. L., Richard, E., and Vilà-Guerau de Arellano, J.: The
Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and
control simulations, Ann. Geophys., 16, 90–109,
https://doi.org/10.1007/s00585-997-0090-6, 1998. a
Lazzara, M. A., Weidner, G. A., Keller, L. M., Thom, J. E., and Cassano, J. J.: Antarctic automatic
weather station program: 30 years of polar observations, B. Am. Meteorol.
Soc., 93, 1519–1537, https://doi.org/10.1175/BAMS-D-11-00015.1, 2012. a
Lehning, M. and Fierz, C.: Assessment of snow transport in avalanche terrain,
Cold Reg. Sci. Technol., 51, 240–252,
https://doi.org/10.1016/j.coldregions.2007.05.012, 2008. a, b, c
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stockli, U., and Zimmerli, M.:
SNOWPACK model calculations for avalanche warning based upon a new network
of weather and snow stations, Cold Reg. Sci. Technol., 30,
145–157, https://doi.org/10.1016/S0165-232X(99)00022-1, 1999. a
Lehning, M., Doorschot, J., and Bartelt, P.: A snowdrift index based on
SNOWPACK model calculations, Ann. Glaciol., 31, 382–386,
https://doi.org/10.3189/172756400781819770, 2000. a
Lehning, M., Loewe, H., Ryser, M., and Raderschall, N.: Inhomogeneous
precipitation distribution and snow transport in steep terrain, Water
Resour. Res., 44, W07404, https://doi.org/10.1029/2007WR006545,
2008. a, b, c, d
Lenaerts, J. T. M., van den Broeke, M. R., van Angelen, J. H., van Meijgaard, E., and Déry, S. J.: Drifting snow climate of the Greenland ice sheet: a study with a regional climate model, The Cryosphere, 6, 891–899, https://doi.org/10.5194/tc-6-891-2012, 2012. a
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011. a
Luo, L., Zhang, J., Hock, R., and Yao, Y.: Case Study of Blowing Snow Impacts
on the Antarctic Peninsula Lower Atmosphere and Surface Simulated With a
Snow/Ice Enhanced WRF Model, J. Geophys. Res.-Atmos.,
126, e2020JD033936, https://doi.org/10.1029/2020JD033936,
2021. a
Mann, G. W., Anderson, P. S., and Mobbs, S. D.: Profile measurements of blowing
snow at Halley, Antarctica, J. Geophys. Res.-Atmos.,
105, 24491–24508, https://doi.org/10.1029/2000JD900247, 2000. a
Marty, C., Schlögl, S., Bavay, M., and Lehning, M.: How much can we save? Impact of different emission scenarios on future snow cover in the Alps, The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017, 2017. a
Masson, V. and Seity, Y.: Including atmospheric layers in vegetation and urban
offline surface schemes, J. Appl. Meteorol. Clim., 48,
1377–1397, https://doi.org/10.1175/2009JAMC1866.1, 2009. a
Melo, D. B., Sharma, V., Comola, F., Sigmund, A., and Lehning, M.: Modeling
snow saltation: the effect of grain size and interparticle cohesion, Earth
and Space Science Open Archive, p. 29, https://doi.org/10.1002/essoar.10507087.1, 2021. a
Ménard, C. B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., Fierz, C., Kim, H., Kontu, A., Lejeune, Y., Marks, D., Niwano, M., Raleigh, M., Wang, L., and Wever, N.: Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data, Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, 2019. a
Mitchell, D. L.: Use of mass- and area-dimensional power laws for determining
precipitation particle terminal velocities, J. Atmos.
Sci., 53, 1710–1723,
https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2,
1996. a, b, c
Mölg, T., Cullen, N. J., Hardy, D. R., Kaser, G., and Klok, L.: Mass balance
of a slope glacier on Kilimanjaro and its sensitivity to climate,
Int. J. Climatol., 28, 881–892,
https://doi.org/10.1002/joc.1589, 2008. a
Morrison, H. and Grabowski, W. W.: A novel approach for representing ice
microphysics in models: Description and tests using a kinematic framework,
J. Atmos. Sci., 65, 1528–1548,
https://doi.org/10.1175/2007JAS2491.1, 2008. a, b
Mott, R. and Lehning, M.: Meteorological Modeling of Very
High-Resolution Wind Fields and Snow Deposition for Mountains,
J. Hydrometeorol., 11, 934–949, https://doi.org/10.1175/2010JHM1216.1,
2010. a
Mott, R., Schirmer, M., Bavay, M., Grünewald, T., and Lehning, M.: Understanding snow-transport processes shaping the mountain snow-cover, The Cryosphere, 4, 545–559, https://doi.org/10.5194/tc-4-545-2010, 2010. a
Munneke, P. K., van den Broeke, M. R., Lenaerts, J. T. M., Flanner, M. G.,
Gardner, A. S., and van de Berg, W. J.: A new albedo parameterization for use
in climate models over the Antarctic ice sheet, J. Geophys.
Res.-Atmos., 116, D05114, https://doi.org/10.1029/2010JD015113,
2011. a
Nishimura, K. and Hunt, J. C. R.: Saltation and incipient suspension above a
flat particle bed below a turbulent boundary layer, J. Fluid
Mech., 417, 77–102, https://doi.org/10.1017/S0022112000001014,
2000. a
Nishimura, K. and Nemoto, M.: Blowing snow at Mizuho station, Antarctica,
Philos. T. Roy. Soc. A-Math., 363, 1647–1662, https://doi.org/10.1098/rsta.2005.1599,
2005. a
Ohmura, A.: Cryosphere During the Twentieth Century, American
Geophysical Union (AGU), 239–257, https://doi.org/10.1029/150GM19, 2004. a, b
Palm, S. P., Kayetha, V., Yang, Y., and Pauly, R.: Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations, The Cryosphere, 11, 2555–2569, https://doi.org/10.5194/tc-11-2555-2017, 2017. a, b
Petrich, C., Eicken, H., Polashenski, C., Sturm, M., Harbeck, J., Perovich, D.,
and Finnegan, D.: Snow dunes: A controlling factor of melt pond distribution
on Arctic sea ice, J. Geophys. Res.-Oceans, 117, C09029,
https://doi.org/10.1029/2012JC008192, 2012. a
Pomeroy, J. and Gray, D.: SALTATION OF SNOW, Water Resources Research,
26, 1583–1594, https://doi.org/10.1029/WR026i007p01583, 1990. a, b
Saha, S. K., Sujith, K., Pokhrel, S., Chaudhari, H. S., and Hazra, A.: Effects
of multilayer snow scheme on the simulation of snow: Offline Noah and
coupled with NCEP CFSv2, J. Adv. Model. Earth Sy.,
9, 271–290, https://doi.org/10.1002/2016MS000845, 2017. a
Schaefli, B.: Projecting hydropower production under future climates: a guide
for decision-makers and modelers to interpret and design climate change
impact assessments, Wires-Water, 2, 271–289,
https://doi.org/10.1002/wat2.1083, 2015. a
Schlogl, S., Lehning, M., Nishimura, K., Huwald, H., Cullen, N. J., and Mott,
R.: How do Stability Corrections Perform in the Stable Boundary
Layer Over Snow?, Bound.-Lay. Meteorol., 165, 161–180,
https://doi.org/10.1007/s10546-017-0262-1, 2017. a, b
Schmidt, R.: Threshold wind-speeds and elastic impact in snow transport,
J. Glaciol., 26, 453–467, https://doi.org/10.3189/S0022143000010972,
1980. a
Sharma, V.: Reproducibility Dataset for CRYOWRF v1.0, Envidat [data set],
https://doi.org/10.16904/envidat.232, 2021a. a
Sharma, V.: vsharma-next/CRYOWRF: CRYOWRF v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.5060165,
2021b. a
Sharma, V., Comola, F., and Lehning, M.: On the suitability of the Thorpe–Mason model for calculating sublimation of saltating snow, The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018, 2018. a, b
Shin, H. H. and Hong, S.-Y.: Representation of the Subgrid-Scale Turbulent
Transport in Convective Boundary Layers at Gray-Zone Resolutions, Mon.
Weather Rev., 143, 250–271, https://doi.org/10.1175/MWR-D-14-00116.1, 2015. a
Sigmund, A., Dujardin, J., Comola, F., Sharma, V., Huwald, H., Melo, D. B.,
Hirasawa, N., Nishimura, K., and Lehning, M.: Evidence of Strong Flux
Underestimation by Bulk Parametrizations During Drifting and Blowing Snow,
Bound.-Lay. Meteorol., 182, 119–146, https://doi.org/10.1007/s10546-021-00653-x,
2022. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J.,
Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.: A description of
the advanced research WRF model version 4 (No. NCAR/TN-556+STR), National
Center for Atmospheric Research: Boulder, CO, USA, 145 pp.,
https://doi.org/10.5065/1dfh-6p97, 2019. a
Sørensen, M.: An analytic model of wind-blown sand transport, in: Aeolian
Grain Transport 1, edited by: Barndorff-Nielsen, O. E. and Willetts, B. B.,
Springer Vienna, Vienna, 67–81, https://doi.org/10.1007/978-3-7091-6706-9_4, 1991. a
Sorensen, M.: On the rate of aeolian sand transport, Geomorphology, 59, 53–62,
https://doi.org/10.1016/j.geomorph.2003.09.005, 2004. a
Sotiropoulou, G., Vignon, É., Young, G., Morrison, H., O'Shea, S. J., Lachlan-Cope, T., Berne, A., and Nenes, A.: Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models, Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, 2021. a
NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team: ASTER Global Digital Elevation Model V003,
2019, NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/ASTER/ASTGTM.003, 2019. a
Steger, C. R., Reijmer, C. H., and van den Broeke, M. R.: The modelled liquid water balance of the Greenland Ice Sheet, The Cryosphere, 11, 2507–2526, https://doi.org/10.5194/tc-11-2507-2017, 2017a. a
Steger, C. R., Reijmer, C. H., van den Broeke, M. R., Wever, N., Forster,
R. R., Koenig, L. S., Munneke, P. K., Lehning, M., Lhermitte, S., Ligtenberg,
S. R. M., Miege, C., and Noel, B. P. Y.: Firn Meltwater Retention on the
Greenland Ice Sheet: A Model Comparison, Front. Earth
Sci., 5, https://doi.org/10.3389/feart.2017.00003,
2017b. a, b
Sulia, K. J. and Harrington, J. Y.: Ice aspect ratio influences on mixed-phase
clouds: Impacts on phase partitioning in parcel models, J.
Geophys. Res.-Atmos., 116, D21309, https://doi.org/10.1029/2011JD016298,
2011. a
Tabler, R. D.: Controlling blowing and drifting snow with snow fences and road design.
No. NCHRP Project 20-7 (147), 2003. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
Forecasts of Winter Precipitation Using an Improved Bulk
Microphysics Scheme. Part II: Implementation of a New Snow
Parameterization, Mon. Weather Rev., 136, 5095–5115,
https://doi.org/10.1175/2008MWR2387.1, 2008. a
Thorpe, A. and Mason, B.: Evaporation of ice spheres and ice crystals, Brit.
J. Appl. Phys., 17, p. 541, https://doi.org/10.1088/0508-3443/17/4/316,
1966. a
Vali, G., Leon, D., and Snider, J. R.: Ground-layer snow clouds, Q.
J. Roy. Meteor. Soc., 138, 1507–1525,
https://doi.org/10.1002/qj.1882, 2012. a
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018. a, b
van Wessem, J. M., Steger, C. R., Wever, N., and van den Broeke, M. R.: An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016, The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, 2021. a
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R.,
Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.: Recent rapid
regional climate warming on the Antarctic Peninsula, Climatic Change, 60,
243–274, https://doi.org/10.1023/A:1026021217991, 2003. a
Vignon, E., Alexander, S. P., DeMott, P. J., Sotiropoulou, G., Gerber, F.,
Hill, T. C. J., Marchand, R., Nenes, A., and Berne, A.: Challenging and
Improving the Simulation of Mid-Level Mixed-Phase Clouds Over the
High-Latitude Southern Ocean, J. Geophys. Res.-Atmos.,
126, e2020JD033490, https://doi.org/10.1029/2020JD033490,
2021. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a, b, c
Vionnet, V., Martin, E., Masson, V., Guyomarc'h, G., Naaim-Bouvet, F., Prokop, A., Durand, Y., and Lac, C.: Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model, The Cryosphere, 8, 395–415, https://doi.org/10.5194/tc-8-395-2014, 2014. a, b, c, d, e, f, g, h, i
Voegeli, C., Lehning, M., Wever, N., and Bavay, M.: Scaling Precipitation
Input to Spatially Distributed Hydrological Models by Measured
Snow Distribution, Front. Earth Sci., 4, 108,
https://doi.org/10.3389/feart.2016.00108, 2016. a
Warren, S., Brandt, R., and Hinton, P.: Effect of surface roughness on
bidirectional reflectance of Antarctic snow, J. Geophys. Res.-Earth, 103, 25789–25807, https://doi.org/10.1029/98JE01898, 1998. a
Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, 2014. a
Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M.: Verification of the multi-layer SNOWPACK model with different water transport schemes, The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, 2015.
a
Wever, N., Valero, C. V., and Fierz, C.: Assessing wet snow avalanche activity
using detailed physics based snowpack simulations, Geophys. Res.
Lett., 43, 5732–5740, https://doi.org/10.1002/2016GL068428,
2016a. a
Wever, N., Würzer, S., Fierz, C., and Lehning, M.: Simulating ice layer formation under the presence of preferential flow in layered snowpacks, The Cryosphere, 10, 2731–2744, https://doi.org/10.5194/tc-10-2731-2016, 2016b. a, b
Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., and Lehning, M.: Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model, Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, 2020. a, b
Xue, J., Xiao, Z., Bromwich, D. H., and Bai, L.: Polar WRF V4.1.1 simulation
and evaluation for the Antarctic and Southern Ocean, Front. Earth
Sci., 16, 1005–1024, https://doi.org/10.1007/s11707-022-0971-8, 2022. a
Xue, Y. K., Sun, S. F., Kahan, D. S., and Jiao, Y. J.: Impact of
parameterizations in snow physics and interface processes on the simulation
of snow cover and runoff at several cold region sites, J. Geophys.
Res.-Atmos., 108, 8859, https://doi.org/10.1029/2002JD003174,
2003. a
Zwaaftink, C. D. G., Loewe, H., Mott, R., Bavay, M., and Lehning, M.: Drifting
snow sublimation: A high-resolution 3-D model with temperature and
moisture feedbacks, J. Geophys. Res.-Atmos., 116,
D16107, https://doi.org/10.1029/2011JD015754, 2011. a
Executive editor
Modelling the interactions of the atmosphere and cryosphere is essential to understanding our changing climate. This paper presents the coupling of the widely used WRF atmosphere to the SNOWPACK snow model. This work creates an important new tool for the modelling community.
Modelling the interactions of the atmosphere and cryosphere is essential to understanding our...
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Most current generation climate and weather models have a relatively simplistic description of...