Articles | Volume 15, issue 20
https://doi.org/10.5194/gmd-15-7715-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-15-7715-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Systems Analysis, Integrated Assessment and Modelling, Dübendorf, Switzerland
Damien Bouffard
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Surface Waters – Research and Management, Kastanienbaum, Switzerland
Firat Ozdemir
Swiss Data Science Center, ETH Zurich, Zurich, Switzerland
Cintia L. Ramón
Water Research Institute and Department of Civil Engineering, University of Granada, Granada, Spain
James Runnalls
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Surface Waters – Research and Management, Kastanienbaum, Switzerland
Fotis Georgatos
Swiss Data Science Center, ETH Zurich, Zurich, Switzerland
Swiss Data Science Center, EPFL, Lausanne, Switzerland
Camille Minaudo
EPFL, Swiss Federal Institute of Technology, Physics of Aquatic Systems Laboratory, Margaretha Kamprad Chair, Lausanne, Switzerland
Jonas Šukys
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Systems Analysis, Integrated Assessment and Modelling, Dübendorf, Switzerland
Related authors
No articles found.
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025, https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary
Short summary
Many waterbodies undergo nutrient decline, called oligotrophication, globally, but a comprehensive dataset to understand ecosystem responses is lacking. The OLIGOTREND database comprises multi-decadal chlorophyll a and nutrient time series from rivers, lakes, and estuaries with 4.3 million observations from 1894 unique measurement locations. The database provides empirical evidence for oligotrophication responses with a spatial and temporal coverage that exceeds previous efforts.
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025, https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Short summary
Models simplify reality using assumptions, which can sometimes introduce flaws and affect their accuracy. Properly calibrating model parameters is essential, and although automated tools can speed up this process, they may occasionally produce incorrect values due to inconsistencies in the model. We demonstrate that by carefully applying automated tools, we were able to identify and correct a flaw in a widely used model for lake environments.
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Tomy Doda, Cintia L. Ramón, Hugo N. Ulloa, Alfred Wüest, and Damien Bouffard
Hydrol. Earth Syst. Sci., 26, 331–353, https://doi.org/10.5194/hess-26-331-2022, https://doi.org/10.5194/hess-26-331-2022, 2022
Short summary
Short summary
At night or during cold periods, the shallow littoral region of lakes cools faster than their deeper interior. This induces a cold downslope current that carries littoral waters offshore. From a 1-year-long database collected in a small temperate lake, we resolve the seasonality of this current and report its frequent occurrence from summer to winter. This study contributes to a better quantification of lateral exchange in lakes, with implications for the transport of dissolved compounds.
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022, https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
Short summary
We investigate the impact of baseflow contribution on concentration–flow (C–Q) relationships across the Australian continent. We developed a novel Bayesian hierarchical model for six water quality variables across 157 catchments that span five climate zones. For sediments and nutrients, the C–Q slope is generally steeper for catchments with a higher median and a greater variability of baseflow contribution, highlighting the key role of variable flow pathways in particulate and solute export.
Marco Toffolon, Luca Cortese, and Damien Bouffard
Geosci. Model Dev., 14, 7527–7543, https://doi.org/10.5194/gmd-14-7527-2021, https://doi.org/10.5194/gmd-14-7527-2021, 2021
Short summary
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189, https://doi.org/10.5194/esd-12-1169-2021, https://doi.org/10.5194/esd-12-1169-2021, 2021
Short summary
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021, https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Short summary
This study investigates the drivers of spatial variations in stream water quality in poorly studied headwater catchments and includes multiple elements involved in major water quality issues, such as eutrophication. We used a regional public dataset of monthly stream water concentrations monitored for 10 years over 185 agricultural catchments. We found a spatial and seasonal opposition between carbon and nitrogen concentrations, while phosphorus concentrations showed another spatial pattern.
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
Cited articles
Adcroft, A., Hill, C., and Marshall, J.: Representation of Topography by
Shaved Cells in a Height Coordinate Ocean Model, Mon. Weather Rev.,
125, 2293–2315, https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2,
1997. a, b
Alappattu, D. P., Wang, Q., Yamaguchi, R., Lind, R. J., Reynolds, M., and
Christman, A. J.: Warm layer and cool skin corrections for bulk water
temperature measurements for air-sea interaction studies, J. Geophys. Res.-Oceans, 122, 6470–6481,
https://doi.org/10.1002/2017JC012688, 2017. a, b
Anderson, E. J., Fujisaki-Manome, A., Kessler, J., Lang, G. A., Chu, P. Y.,
Kelley, J. G., Chen, Y., and Wang, J.: Ice Forecasting in the Next-Generation
Great Lakes Operational Forecast System (GLOFS), J. Marine Sci. Eng., 6, 123, https://doi.org/10.3390/jmse6040123, 2018. a, b
Andrieu, C., Doucet, A., and Holenstein, R.: Particle Markov chain Monte Carlo
methods, J. Roy. Stat. Soc. B, 72, 269–342,
https://doi.org/10.1111/j.1467-9868.2009.00736.x, 2010. a, b
Baracchini, T.: From observations to 3D forecasts: Data assimilation for high
resolution lakes monitoring, PhD thesis, EPFL, Lausanne,
https://doi.org/10.5075/epfl-thesis-9475, 2019. a, b
Baracchini, T., Chu, P. Y., Šukys, J., Lieberherr, G., Wunderle, S., Wüest, A., and Bouffard, D.: Data assimilation of in situ and satellite remote sensing data to 3D hydrodynamic lake models: a case study using Delft3D-FLOW v4.03 and OpenDA v2.4, Geosci. Model Dev., 13, 1267–1284, https://doi.org/10.5194/gmd-13-1267-2020, 2020a. a, b, c
Bouffard, D. and Lemmin, U.: Kelvin waves in Lake Geneva, J. Great Lakes Res., 39, 637–645,
https://doi.org/10.1016/j.jglr.2013.09.005, 2013. a, b
Bouffard, D. and Wüest, A.: Convection in Lakes, Annu. Rev. Fluid
Mech., 51, 189–215, https://doi.org/10.1146/annurev-fluid-010518-040506, 2019. a, b
Bouffard, D., Kiefer, I., Wüest, A., Wunderle, S., and Odermatt, D.: Are
surface temperature and chlorophyll in a large deep lake related? An analysis
based on satellite observations in synergy with hydrodynamic modelling and
in-situ data, Remote Sens. Environ., 209, 510–523,
https://doi.org/10.1016/j.rse.2018.02.056, 2018. a, b
Campin, J.-M., Heimbach, P., Losch, M., Forget, G., edhill3, Adcroft, A., amolod, Menemenlis, D., dfer22, Hill, C., Jahn, O., Scott, J., stephdut, Mazloff, M., Fox-Kemper, B., antnguyen13, Doddridge, E., Fenty, I., safinenko, Bates, M., Eichmann, A., Smith, T., mitllheisey, Martin, T., Lauderdale, J., Abernathey, R., samarkhatiwala, hongandyan, Deremble, B., and dngoldberg: safinenko/MITgcm: Datalakes-MITgcm (8d98ed1), Zenodo [code], https://doi.org/10.5281/zenodo.5634042, 2021. a
Chen, C., Beardsley, R. C., and Cowles, G.: An Unstructured Grid, Finite-Volume
Coastal Ocean Model (FVCOM) System, Oceanography, 19, 78–89,
https://doi.org/10.5670/oceanog.2006.92, 2006. a
Chu, P. Y., Kelley, J. G. W., Mott, G. V., Zhang, A., and Lang, G. A.:
Development, implementation, and skill assessment of the NOAA/NOS Great Lakes
Operational Forecast System, Ocean Dynam., 61, 1305–1316,
https://doi.org/10.1007/s10236-011-0424-5, 2011. a
Cimatoribus, A. A., Lemmin, U., Bouffard, D., and Barry, D. A.: Nonlinear
Dynamics of the Nearshore Boundary Layer of a Large Lake (Lake Geneva),
J. Geophys. Res.-Oceans, 123, 1016–1031,
https://doi.org/10.1002/2017JC013531, 2018. a, b
Cogley, J. G.: The Albedo of Water as a Function of Latitude, Mon. Weather
Rev., 107, 775–781, https://doi.org/10.1175/1520-0493(1979)107<0775:TAOWAA>2.0.CO;2,
1979. a
Deltares: Delft3D-FLOW user manual, vol. 330, https://content.oss.deltares.nl/delft3d/manuals/Delft3D-FLOW_User_Manual.pdf (last access: 1 May 2021), 2013. a
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys. Res.-Oceans, 99, 10143–10162,
https://doi.org/10.1029/94JC00572, 1994. a
Fink, G., Schmid, M., and Wüest, A.: Large lakes as sources and sinks of
anthropogenic heat: Capacities and limits, Water Resour. Res., 50,
7285–7301, https://doi.org/10.1002/2014WR015509, 2014. a
Gaudard, A., Råman Vinnå, L., Bärenbold, F., Schmid, M., and Bouffard, D.: Toward an open access to high-frequency lake modeling and statistics data for scientists and practitioners – the case of Swiss lakes using Simstrat v2.1, Geosci. Model Dev., 12, 3955–3974, https://doi.org/10.5194/gmd-12-3955-2019, 2019. a
Goodman, J. and Weare, J.: Ensemble samplers with affine invariance,
Commun. Appl. Math. Comput. Sci., 5, 65–80,
https://doi.org/10.2140/camcos.2010.5.65, 2010. a, b
Griffies, S. M. and Hallberg, R. W.: Biharmonic Friction with a
Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean
Models, Mon. Weather Rev., 128, 2935–2946,
https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2, 2000. a
Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissmann, M.,
Reich, H., Brousseau, P., Montmerle, T., Wattrelot, E., Bučánek, A., Mile,
M., Hamdi, R., Lindskog, M., Barkmeijer, J., Dahlbom, M., Macpherson, B.,
Ballard, S., Inverarity, G., Carley, J., Alexander, C., Dowell, D., Liu, S.,
Ikuta, Y., and Fujita, T.: Survey of data assimilation methods for
convective-scale numerical weather prediction at operational centres,
Q. J. Roy. Meteor. Soc., 144, 1218–1256,
https://doi.org/10.1002/qj.3179, 2018. a, b
Kendall, A. and Gal, Y.: What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?, in: Advances in Neural Information Processing
Systems, edited by: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R., vol. 30, Curran Associates,
Inc.,
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf (last access: 30 July 2021),
2017. a, b
Kilpatrick, K. A., Podestá, G. P., and Evans, R.: Overview of the NOAA/NASA
advanced very high resolution radiometer Pathfinder algorithm for sea surface
temperature and associated matchup database, J. Geophys. Res.-Oceans, 106, 9179–9197, https://doi.org/10.1029/1999JC000065, 2001. a
Lahoz, W. A. and Schneider, P.: Data assimilation: making sense of Earth
Observation, Front. Environ. Sci., 2, 16,
https://doi.org/10.3389/fenvs.2014.00016, 2014. a, b, c, d
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. a
Lieberherr, G. and Wunderle, S.: Lake Surface Water Temperature Derived from 35
Years of AVHRR Sensor Data for European Lakes, Remote Sens., 10,
https://doi.org/10.3390/rs10070990, 2018. a, b
McDougall, T. J., Jackett, D. R., Wright, D. G., and Feistel, R.: Accurate and
Computationally Efficient Algorithms for Potential Temperature and Density of
Seawater, J. Atmos. Ocean. Tech., 20, 730–741,
https://doi.org/10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2, 2003. a
Prather, M. J.: Numerical advection by conservation of second-order moments,
J. Geophys. Res.-Atmos., 91, 6671–6681,
https://doi.org/10.1029/JD091iD06p06671, 1986. a
Rahaghi, A. I., Lemmin, U., Cimatoribus, A., Bouffard, D., Riffler, M.,
Wunderle, S., and Barry, D. A.: Improving surface heat flux estimation for a
large lake through model optimization and two-point calibration: The case of
Lake Geneva, Limnol. Oceanogr.-Methods, 16, 576–593,
https://doi.org/10.1002/lom3.10267, 2018. a
Riffler, M., Lieberherr, G., and Wunderle, S.: Lake surface water temperatures of European Alpine lakes (1989–2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set, Earth Syst. Sci. Data, 7, 1–17, https://doi.org/10.5194/essd-7-1-2015, 2015. a
Safin, A.: Datalakes-Hydrodynamics. In Geoscientific Model Development (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.5637216, 2021. a
Safin, A., Runnalls, J., Šukys, J., and Bouffard, D.: Datalakes Observational model predictions (2019), Zenodo [data set], https://doi.org/10.5281/zenodo.5642898, 2021. a
Safin, A., Šukys, J., and Bacci, M.: SPUX-MITgcm (SPUX-MITgcm_v1), Zenodo [code], https://doi.org/10.5281/zenodo.5638313, 2021. a
Soulignac, F., Danis, P.-A., Bouffard, D., Chanudet, V., Dambrine,
E., Guénand, Y., Harmel, T., Ibelings, B. W., Trevisan, D.,
Uittenbogaard, R., and Anneville, O.: Using 3D modeling and remote sensing
capabilities for a better understanding of spatio-temporal heterogeneities of
phytoplankton abundance in large lakes, J. Great Lakes Res., 44,
756–764, https://doi.org/10.1016/j.jglr.2018.05.008, 2018. a
Soulignac, F., Anneville, O., Bouffard, D., Chanudet, V., Dambrine, E.,
Guénand, Y., Harmel, T., Ibelings, B. W., Trevisan, D., Uittenbogaard, R.,
and Danis, P.: Contribution of 3D coupled hydrodynamic-ecological modeling to
assess the representativeness of a sampling protocol for lake water quality
assessment, Knowl. Manag. Aquat. Ecosyst., 420, 42, https://doi.org/10.1051/kmae/2019034,
2019. a, b
Stalder, M., Ozdemir, F., Safin, A., Šukys, J., Bouffard, D., and Perez-Cruz, F.: Probabilistic modeling of lake surface water temperature using a Bayesian spatio-temporal graph convolutional neural network, arXiv, https://doi.org/10.48550/ARXIV.2109.13235, 2021. a
Swiss Data Science Center: RENKU, https://renkulab.io/, last access: 30 August 2021. a
van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and Reich, S.:
Particle filters for high-dimensional geoscience applications: A review,
Q. J. Roy. Meteor. Soc., 145, 2335–2365,
https://doi.org/10.1002/qj.3551, 2019. a
Verburg, P. and Antenucci, J. P.: Persistent unstable atmospheric boundary
layer enhances sensible and latent heat loss in a tropical great lake: Lake
Tanganyika, J. Geophys. Res.-Atmos., 115, D11,
https://doi.org/10.1029/2009JD012839, 2010. a
Vinnå, L. R., Medhaug, I., Schmid, M., and Bouffard, D.: The vulnerability
of lakes to climate change along an altitudinal gradient, Commun.
Earth Environ., 2, 35, https://doi.org/10.1038/s43247-021-00106-w, 2021. a
Wick, G. A., Emery, W. J., Kantha, L. H., and Schlüssel, P.: The Behavior of
the Bulk – Skin Sea Surface Temperature Difference under Varying Wind Speed
and Heat Flux, J. Phys. Oceanogr., 26, 1969–1988,
https://doi.org/10.1175/1520-0485(1996)026<1969:TBOTBS>2.0.CO;2, 1996. a
Wilson, R. C., Hook, S. J., Schneider, P., and Schladow, S. G.: Skin and bulk
temperature difference at Lake Tahoe: A case study on lake skin effect,
J. Geophys. Res.-Atmos., 118, 10332–10346,
https://doi.org/10.1002/jgrd.50786, 2013.
a
Wüest, A. and Lorke, A.: SMALL-SCALE HYDRODYNAMICS IN LAKES, Annu. Rev. Fluid Mech., 35, 373–412,
https://doi.org/10.1146/annurev.fluid.35.101101.161220, 2003. a
Wüest, A., Bouffard, D., Guillard, J., Ibelings, B. W., Lavanchy, S.,
Perga, M.-E., and Pasche, N.: LéXPLORE: A floating laboratory on Lake
Geneva offering unique lake research opportunities, WIREs Water, 8, e1544,
https://doi.org/10.1002/wat2.1544, 2021. a
Ye, X., Chu, P. Y., Anderson, E. J., Huang, C., Lang, G. A., and Xue, P.:
Improved thermal structure simulation and optimized sampling strategy for
Lake Erie using a data assimilative model, J. Great Lakes Res.,
46, 144–158, https://doi.org/10.1016/j.jglr.2019.10.018, 2020. a, b
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Reconciling the differences between numerical model predictions and observational data is always...