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Abstract. We present a Bayesian inference for a three-
dimensional hydrodynamic model of Lake Geneva with
stochastic weather forcing and high-frequency observational
datasets. This is achieved by coupling a Bayesian inference
package, SPUX, with a hydrodynamics package, MITgcm,
into a single framework, SPUX-MITgcm. To mitigate un-
certainty in the atmospheric forcing, we use a smoothed par-
ticle Markov chain Monte Carlo method, where the inter-
mediate model state posteriors are resampled in accordance
with their respective observational likelihoods. To improve
the uncertainty quantification in the particle filter, we develop
a bi-directional long short-term memory (BiLSTM) neural
network to estimate lake skin temperature from a history of
hydrodynamic bulk temperature predictions and atmospheric
data. This study analyzes the benefit and costs of such a state-
of-the-art computationally expensive calibration and assimi-
lation method for lakes.

1 Introduction

Lake management is a constantly evolving tradeoff between
different conflict of interest. The most obvious is that lakes
are easily accessible sources of drinking water but are also
the place into which wastewater is ultimately discharged.
Lake stakeholders traditionally evaluate the evolution of
lakes from in situ observations. While still not widely used
for this purpose, previous studies clearly showed the bene-
fit of one- and three-dimensional hydrodynamic models to
project different scenarios for the short- or long-term future
(Gaudard et al., 2019; Soulignac et al., 2019; Vinnå et al.,
2021).

While a number of dedicated monitoring projects already
exist for a number of large lakes, operational, fully three-
dimensional (3D) models are quite sparse. The most no-
table is the NOAA Great Lakes Operational Forecast Sys-
tem (GLOFS; Chu et al., 2011; Anderson et al., 2018),
which provide comprehensive predictions (water tempera-
ture, velocity and level, and ice cover) for all of the Lau-
rentian Great Lakes. Over 25 years, the forecasting service
has been continuously improved with better and more so-
phisticated models. Currently, data assimilation is used for
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calibration only (Anderson et al., 2018), but there is research
toward making it part of the operational mode as well (Ye
et al., 2020). Another platform is Meteolakes, which pro-
vides short-term water temperature and velocity forecasts for
the Geneva, Biel, Zurich, and Greifen lakes in Switzerland
(Baracchini, 2019; Baracchini et al., 2020a, b). The plat-
form uses an ensemble Kalman filter to assimilate remotely
sensed lake surface water temperature (LSWT), which re-
duced the mean temperature prediction error by half. An ad-
ditional benefit of the ensemble filter was a better predic-
tion of mesoscale physical processes such as gyres and up-
wellings (Baracchini et al., 2020a). However, due to the lim-
itation of the assimilation scheme, only a fraction (≈ 3.7 %)
of the available LSWT images were used.

The purpose of this study is to investigate a novel ap-
proach to the data assimilation of highly heterogeneous data
using Bayesian inference techniques applied to a 3D hydro-
dynamic model of Lake Geneva. The model relies on the
ensemble affine invariant sampler (EMCEE; Goodman and
Weare, 2010; Šukys and Bacci, 2021) to calibrate the dis-
tributions of physical model parameters. The EMCEE is a
sampler for Markov chain Monte Carlo that is particularly
well suited for nonlinear parameters. The advantage of this
approach over standard inference methods is that it provides
a more informative and accurate parameter estimation, albeit
at higher computational expense. To increase the confidence
in the sampling algorithm, we used a particle filter method
that provides trajectories consistent with the hydrodynamic
model (Andrieu et al., 2010; Šukys and Bacci, 2021). In par-
ticular, as a substitute to the more well-known Kalman fil-
ter and the 4D-Var algorithms, the trajectories themselves
are resampled based on their respective observational like-
lihoods, with the more probable realizations stochastically
forming the basis for sequential predictions. Importantly, the
filter does not modify the model states (they are only deleted
or replicated instead), and therefore, the predictions do not
exhibit shocks generated by some data assimilation models.

A proper assimilation of remotely sensed lake surface wa-
ter temperature (LSWT) requires an estimation of the wa-
ter surface temperature from the hydrodynamic predictions.
Thus, we deploy a bi-directional long short-term memory
(BiLSTM) neural network to estimate the skin temperature
of the lake and to quantify its uncertainty. The network re-
lies on a 27 h history of hydrodynamic model bulk temper-
ature and atmospheric predictions as inputs for the conver-
sion. The neural network was trained using 16 months of data
(the year 2018 and January–April 2020) together with Me-
teoSwiss COSMO-1 atmospheric model reanalysis and Me-
teolakes water bulk temperature predictions.

We present the openly available SPUX-MITgcm frame-
work, which integrates the Bayesian inference algorithms of
the SPUX package (Šukys and Bacci, 2021) with the hydro-
dynamics of the MITgcm code (Adcroft et al., 1997) and the
trained BiLSTM network. To the best of our knowledge, the
data assimilation and particle filtering approach that we pro-

pose in this paper has not been previously tested for fully
three-dimensional models due to the relatively high compu-
tational costs of the model parameter posterior estimation
and lack of supporting software. We investigate the viability
of this approach and analyze the performance of individual
components. The results demonstrate that, while our method-
ology improves model performance, the framework requires
further improvements to become usable for practical applica-
tions.

2 Data and numerical model

In this section, we describe the available data, the hydrody-
namic model, and our data assimilation approach. As data
and software reproducibility are essential for more open and
accessible research, in the Supplement, we provide docu-
mentation on accessing and running the numerical model,
which enables a full replication of the results (over a short
period of time) that we present in this paper.

2.1 Study site

Lake Geneva is the largest freshwater lake in western Europe
and is located on the border between France and Switzerland,
covering an area of approximately 580 km2, with an average
depth of 154 m. Spanning 73 km along its longest axis, and
with a maximum width of 14 km, the lake consists of a wider
and deeper main portion in the east and a narrow and shallow
portion in the west. The water level and discharge rate into
the Rhône river are managed by a dam on the western end
of the lake. Lake Geneva is predominantly vertically strati-
fied in density due to temperature, although complete mixing
does occur every few years. The mountainous nature of the
region significantly affects the wind patterns over the lake,
with northeast and southwest being the prevalent directions.
These wind patterns, along with seasonal variability in light
penetration depth, significantly affect the thermal structure of
the lake (Bouffard and Lemmin, 2013; Bouffard et al., 2018).
As the mean water residence time in the lake is 10 years, the
primary factor driving the lakes’ dynamics is the atmospheric
forcing.

2.2 Hydrodynamic model

We simulate the hydrodynamics of Lake Geneva using
the MITgcm (Adcroft et al., 1997) package (tag “check-
point67q”), which uses the finite volume method to solve the
incompressible Navier–Stokes equations under the Boussi-
nesq approximation. Alternative package options were FV-
COM (Finite Volume Community Ocean Model; Chen et al.,
2006), used by the Great Lakes Environmental Research
Laboratory (GLERL), and Delft3D-FLOW (Deltares, 2013),
used by Meteolakes. We use a hydrostatic formulation com-
bined with a third-order direct space–time flux limiter advec-
tion scheme (Prather, 1986). A nonlinear equation of state by
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Table 1. Hydrodynamic model parameters.

Parameter Value Units

Quadratic bottom drag coefficient CD 0.0025 None
Constant salinity value 0.05 PSU
Coriolis parameter f0 1.068× 10−4 1 s−1

Background vertical viscosity 10−6 m2 s−1

Background vertical diffusivity 1.4× 10−7 m2 s−1

Adams–Bashforth 0.03 None
Non-dimensional lateral eddy viscosity 6× 10−4 None
Lateral eddy diffusivity 0.5 m2 s−1

McDougall et al. (2003) is applied with constant salinity. Due
to the large size of the lake, the Coriolis force is included. A
detailed list of the fixed model parameter values is provided
in Table 1.

The simulations are performed on a Cartesian grid (z coor-
dinate system), with 1 km horizontal resolution and 50 verti-
cal layers that gradually increase in thickness from 1 m at the
surface to 21 m in the deepest portion of the lake. We chose
a time step of 60 s. While larger time steps were still numer-
ically stable, a smaller value was helpful in reducing vertical
temperature over-diffusion into the deep layers. To improve
the accuracy of the topography and reduce spurious artifacts
near the bottom, shaved cells are allowed. We apply free-
slip boundary conditions to both the horizontal and vertical
boundaries and use the non-dimensional bottom drag coef-
ficient from Bouffard and Lemmin (2013) to enable energy
dissipation. On the surface, we use an implicit free-surface
formulation.

We model the vertical mixing processes using the nonlo-
cal K-profile parameterization (KPP) scheme (Large et al.,
1994), which is commonly used in oceanography. Small
background vertical diffusivity and viscosity parameters are
included to ensure stability (see Table 1). For equivalent pa-
rameters on the lateral scales, we manually tuned the eddy
viscosity and diffusivity parameters by minimizing the differ-
ence between model predictions and in situ temperature pro-
files at Buchillon station. While a more optimal approach is
to infer these parameters, our data assimilation scheme found
them difficult to identify (see the Supplement).

Surface forcing inputs were derived from the MeteoSwiss
COSMO-E numeric weather prediction model, which are
made at 2.2 km resolution. While the COSMO-E model gen-
erates an ensemble of 21 predictions, in previous hydrody-
namic models of Lake Geneva, only the mean and spread
were used (Baracchini et al., 2020b; Cimatoribus et al.,
2018). In Sect. 2.4.2, we describe a data assimilation ap-
proach that makes use of the individual ensembles which rep-
resent the span of weather dynamics more accurately. This
approach has the additional advantage of not requiring the
estimation of the spatiotemporal noise parameters that Barac-
chini et al. (2020b) used to add stochasticity to their model.
Air pressure, air temperature, wind velocity, longwave radia-

tion, relative humidity, and cloud coverage are used to deter-
mine the input fields in accordance with Fink et al. (2014),
where the wind drag coefficients of Wüest and Lorke (2003)
are used to improve surface stress coupling at low wind
speeds. We also include the inflow and outflow of the Rhône
river, using the volume flow and temperature measured a few
kilometers upstream at Porte du Scex Station (Swiss Federal
Office for Environment, FOEN). As smaller tributaries and
precipitation/evaporation are not taken into consideration in
the model, the water level in the model is manually adjusted
to the measured values from the St. Prex station.

Correct transfer of heat and energy from the atmosphere is
an essential component of a well-performing hydrodynamic
model, especially in summer. In this regard, the bulk trans-
fer coefficient of sensible heat (Dalton number) is a signif-
icant parameter that, in several studies (Verburg and An-
tenucci, 2010; Baracchini, 2019; Rahaghi et al., 2018), has
been shown to be larger than the default values used in ocean
simulations. Therefore, we seek to infer this parameter. In
addition, to more realistically accommodate fluctuations in
water transparency, we estimate a spatially uniform Secchi
depth using the photosynthetically active radiation (PAR)
data from the LéXPLORE moorings (Wüest et al., 2021) to
determine the attenuation rate of shortwave energy in the wa-
ter column. In the future, given the spatial variability in Lake
Geneva (Bouffard et al., 2018; Soulignac et al., 2019), a bet-
ter approach might be to use remote sensing data to estimate
the Secchi depth for different lake locations. Finally, we use
the albedo formula of Cogley (1979) to account for seasonal
changes in surface reflectivity. The Secchi measurements and
albedo values are visualized in the Supplement.

2.3 Observational datasets

A particular advantage of the Bayesian framework is the nat-
ural ability to handle multiple sources of data with their re-
spective uncertainties. For Lake Geneva, the observations are
either in the form of an in situ measurement or remotely
sensed surface temperature.

2.3.1 In situ

In situ datasets used in the simulations are summarized in Ta-
ble 2 and their locations are displayed in Fig. 1. To make the
data assimilation process much more manageable, the data
from LéXPLORE and FOEN have been subsampled to the
hourly rate from the original intervals of 5 s and 10 min, re-
spectively. The vertical resolution of the LéXPLORE dataset
was also reduced to match the model discretization levels.
Finally, due to the coarse horizontal resolution of the model,
only the magnitude of velocity was considered to be a means
of calibrating the kinetic energy of the lake.
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Figure 1. Location of the measurement sensors on Lake Geneva.
The plot also shows the Rhône inflow and outflow sensor locations
and the St. Prex station, which measures the water level.

2.3.2 Remotely sensed temperature

A processing chain from the University of Bern enables
the extraction of LSWT images at a resolution of 1 km
from the orbital Advanced Very High Resolution Radiometer
(AVHRR). On average, typically 10 images of Lake Geneva
are generated per day, of which around two are deemed us-
able by the retrieval process. The quality of an individual
snapshot is affected by a number of factors, such as the zenith
angle, cloudiness, or sensor errors (Riffler et al., 2015; Kil-
patrick et al., 2001). In Lieberherr and Wunderle (2018),
a system of assigning a quality flag (QF) for the different
satellite measurement conditions was developed. An analysis
based on in situ lake data provided an estimate of the uncer-
tainties and biases, ranging from 1.3 ◦C for QF 6 to 1.5 ◦C
for QF 1. However, we believe that a more accurate uncer-
tainty model can be established, and therefore, in Sect. 2.4.3,
we detail an alternative approach based on machine learning
that uses a history of model predictions and weather condi-
tions to generate a bulk-to-skin estimate together with the
associated uncertainty.

2.4 Data assimilation

Lakes, akin to the atmosphere, are highly volatile and sen-
sitive systems. For hydrodynamic models, this means that
small perturbations in models states can significantly alter
the resulting trajectories. Due to the multiple sources of un-
certainty present in numerical discretization models, most
importantly the uncertainty in forcing terms, such trajectory
deviations are ultimately unavoidable. The remedy comes in
the form of data assimilation (DA), a framework for provid-
ing trajectory corrections based on actual observations.

In discussing sources of uncertainty, a distinction should
be made between systematic and random errors (Lahoz and
Schneider, 2014). Systematic errors (or bias) arise due to the

discrepancy between the model and the actual underlying
physics it tries to represent. They can be reduced by certain
techniques, such as parameter calibration, but typically can-
not be eliminated entirely. Random errors, on the other hand,
correspond to inherent uncertainties in the input (weather
forcing and LSWT are quite noisy, for example). The DA
framework we propose in this paper is designed to deal with
these two types of error separately – a particular sampler to
reduce systematic errors (parameter inference) and a particle
filter to mitigate the stochasticity from weather forcing.

2.4.1 Choice of DA model

A variety of DA algorithms have been proposed and
deployed in operational settings and offer different
performance-to-optimality tradeoffs. The two primary
subfields are variational and sequential methods, with some
allowing bias correction (Lahoz and Schneider, 2014). In the
variational approach, an objective function describing the
discrepancy between the model and observations is sought
to be minimized. The 4D-Var is the most popular form and
offers the capability to transfer information from observed
to unobserved regions for nonlinear models. Some of the
drawbacks of this approach are the relatively large numerical
costs, both for the model and uncertainty, reduced flexibility,
and complex implementation of time-dependent parameters
(Lahoz and Schneider, 2014; Baracchini et al., 2020b).
From the sequential methods, Kalman filters (KFs), which
iteratively evolve a forecast together with error covariance
matrices, are an optimal approach. As the true KF is expen-
sive due to the cost of computing the covariance matrix in
model space, local model linearity is frequently assumed.
For high-dimensional systems, this, however, can result in
significant errors in the state and covariance estimation.

Significant performance enhancement is enabled through
ensemble methods, where a collection of model states Mj is
propagated forward in time, and the resulting trajectories en-
able the estimation of covariance. The trajectories differ as a
result of varying stochasticity in the initial conditions or forc-
ing terms. The ensemble KF (EnKF) is an efficient and highly
popular sequential scheme, providing greater stability and
an easier covariance estimation (Evensen, 1994). The EnKF
has successfully been applied to hydrodynamic forecasting
of Lake Geneva by Baracchini et al. (2020a), with a 54 %
reduction in temperature error in comparison to an unassim-
ilated model. In recent years, the local ensemble transform
KF (LETKF) has been tested in a number of weather predic-
tion frameworks with encouraging results (Gustafsson et al.,
2018). The assimilation techniques introduced above have
the limitation of assuming that uncertainties and model states
are Gaussian and that the model is linear (Lahoz and Schnei-
der, 2014). While this assumption is perfectly reasonable for
many applications, non-Gaussian observational error and pa-
rameter distributions can be problematic for such methods.
For higher-resolution models, the traditional approaches of

Geosci. Model Dev., 15, 7715–7730, 2022 https://doi.org/10.5194/gmd-15-7715-2022



A. Safin et al.: Physics-preserving data assimilation method for lake 3D hydrodynamic models 7719

Table 2. Characteristics of the in situ datasets. Note that we assume the FOEN river and water level data to be exact.

Dataset Physical quantity Frequency used in the model Depth Sensor Sensor
span (m) count uncertainty

Buchillon Temperature Hourly 1, 35 2 0.1 ◦C
LéXPLORE Temperature Hourly 0.25–90 16 0.1 ◦C
LéXPLORE Velocity magnitude Hourly 15–90 8 0.08 m s−1

GE3 Temperature 1–2 measurements per month 2.5–50 8 0.1 ◦C
SHL2 Temperature 1–2 measurements per month 2.5–290 16 0.1 ◦C
FOEN Rhône inflow/outflow Temperature, volume flow Hourly – 2 –
FOEN St. Prex Water level hourly Surface 1 –
LéXPLORE PAR Daily 0–30 m 4 –

4D-Var and EnKF have shown declining performance at the
convective scale (Gustafsson et al., 2018; van Leeuwen et al.,
2019).

In our model, we employ a particle Markov chain Monte
Carlo (MCMC) method, which is highly suitable for non-
linear problems (Andrieu et al., 2010; Šukys and Bacci,
2021). The MCMC algorithm is used to infer selected hy-
drodynamic model parameters (see Sect. 2.4.2), with an en-
semble affine invariant sampler (EMCEE) for the parame-
ter acceptance/rejection criterion. A visualization of the pro-
cess is shown in Fig. 2. The EMCEE sampler is particu-
larly effective for poorly scaled distributions that become
well conditioned under affine transformations and can be sig-
nificantly faster than standard MCMC approaches on highly
skewed distributions. A more thorough discussion of the ad-
vantages and disadvantages is given in Goodman and Weare
(2010). Here, we only provide a brief overview of the mech-
anism. The EMCEE algorithm initializes with an ensemble
of Markov chains (walkers), {Xi}, drawn from a prior prob-
ability distribution, 5(x), and split into two subsets, S1 and
S2. Their marginal likelihood is estimated as explained in the
paragraph below. First, we update all the walkersXj from S1
using the stretch formula Xj,new =Xj +Z[Xj −Xk], where
Xk is a randomly chosen walker from S2, and Z is a scaling
variable. Each proposed update Xj,new is confirmed in ac-
cordance with a Metropolis acceptance probability. The next
step is to update S2 walkers using the updated S1 elements.
We continue alternatively evolving walkers from S1 and S2
until a suitable convergence criterion is met.

For each EMCEE parameter, a particle filter (PF) is de-
ployed to address the stochasticity of the weather predictions.
The PF, implemented in Šukys and Bacci (2021), works
as follows. For each parameter α(k)i , we initialize m model
states, Mj , and simulate until an observation is reached at
time t = t1 (see Fig. 2). At this point, the model simulations
are paused, and all particles are resampled (bootstrapped)
according to their observational likelihoods. Thus, certain
model states will be deleted and replaced by some other state
from a different trajectory. The models are propagated us-
ing this mechanism until all the data are assimilated. Such a
resampling algorithm significantly increases the algorithmic

and implementation complexity due to the required destruc-
tion and replication of existing particles. However, it also
provides an efficient way of sampling intermediate poste-
rior model states. To the authors’ best knowledge, this is the
first application of such a filtering algorithm to a fully three-
dimensional model. A particular benefit of this approach is
that the stochasticity from the atmosphere is sufficient to gen-
erate trajectories that manage to track the observational data
with proper model parameters. This is in contrast to the non-
physical correction vector in many other DA schemes that are
necessary to nudge trajectories toward the data. Aside from
potentially causing instabilities, these latter approaches de-
crease the confidence in the fidelity of the underlying model,
as the correction mechanism potentially also corrects a model
deficiency. At the same time, as no model is perfect, the
SPUX PF offers limited capability to handle the biases that
the sampler does not eliminate. In addition, the strict nature
of our PF (model states cannot be modified) significantly lim-
its its performance, and thus, it cannot be expected to outper-
form the abovementioned established alternatives.

2.4.2 Implementation using SPUX and design of
numerical experiments

For data assimilation and particle filtering, we use the SPUX
package (Šukys and Bacci, 2021), a modular framework for
parallel Bayesian inference with a user-friendly program-
ming interface. The 3D hydrodynamics package, MITgcm,
was modified to allow a Secchi depth value argument for ev-
ery simulation hour and was built as a shared library to en-
able interfacing with SPUX using the ctypes package. The
ctypes approach, as opposed to launching the model as a
subprocess, provided a noticeably faster and more stable per-
formance. During calibration, EMCEE was configured to run
with 16 chains distributed over 8 parallel workers, with 10
particles per filter. This required a total of 89 parallel work-
ers (note that nine of these workers are managers that assign
tasks but do not run simulations themselves). The simula-
tions were run at the Swiss National Supercomputing Center
(CSCS) over a period of approximately 3 months (≈ 10.5 h
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Figure 2. A simplified visualization of the data assimilation framework that we use in this paper. The EMCEE sampler proposes 2n walkers
(also called chains in SPUX), whose marginal likelihood is then evaluated using the particle filter (PF). The PF resamples trajectories via
deletion/replication with respect to their dataset and observational error model.

to predict 11 months using the PF and ≈ 21 h for a full EM-
CEE sampler iteration).

As described in Sect. 2.2, we chose two hydrodynamic
model parameters to infer. In both cases, we can establish
an interval (a,b) that contains the optimal value, but we oth-
erwise assume a uniform distribution, U , within. The first
parameter is the Smagorinsky harmonic viscosity coefficient
Csmag to which we assign a prior distribution U(2,4), con-
sistent with Griffies and Hallberg (2000). To the second pa-
rameter – the Dalton number, CD – we assign the prior

U(0.045,0.06) based on a preliminary sensitivity analysis.
For Dalton values outside the prior, heat exchanges with the
atmosphere were not modeled satisfactorily. For example, the
default MITgcm value CD = 0.0346 results in a significant
temperature underprediction during the summer months.

Observational data spanning 15 January–15 Decem-
ber 2019 are used for the calibration and data assimilation
(DA) run. Attempts to calibrate the model parameters us-
ing a shorter timeframe generated posteriors that provided
suboptimal performance for the whole year (see the Supple-
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ment for more of a discussion) and was therefore discarded.
To analyze the effectiveness of model predictions, a con-
trol run (CR) is made without filtering and using parameters
CD = 0.045 and Csmag = 2 as the baseline.

2.4.3 Bulk-to-skin conversion using LSTM

As the AVHRR operates in the infrared portion of the spec-
trum, it effectively measures the skin temperature in the top
few millimeters of the lake. In the bulk region immediately
below this surface layer, the temperature can be significantly
different due to a number of factors, such as wind and so-
lar radiation (Wick et al., 1996; Alappattu et al., 2017). As
the hydrodynamic model generates bulk temperature pre-
dictions, a bulk-to-skin function (forward operator) is nec-
essary for the observation space error model. Existing es-
timates based on oceanographical studies (e.g., Alappattu
et al., 2017) do not directly translate to lake research due to
the differences in typical weather conditions such as frequent
low wind conditions over lakes (Bouffard and Wüest, 2019).
For lakes, an accurate bulk-to-skin parametrization would in-
corporate effects due to convectively driven surface turbu-
lence (Wilson et al., 2013) and more accurate implementa-
tion of the air–water gas exchange, especially in the pres-
ence of surfactants (Bouffard and Wüest, 2019). While such
a parametrization might be possible, it would be technically
difficult to implement, and therefore, we attempt a different
approach.

Instead, we implement a neural network using bi-
directional long short-term memory (BiLSTM) blocks that
use the 27 h history of 18 feature inputs to make a skin tem-
perature prediction. In total, 16 of the features come from
the means and their respective spreads of the MeteoSwiss
weather predictions (air temperature, cloud cover fraction,
wind velocity, relative humidity, precipitation, and shortwave
and longwave radiation). The last two features are the hydro-
dynamic model temperature predictions and hour of the day.
The model was trained using data from 2018 and 2020, with
the bulk water temperature predictions extracted from the
Meteolakes model (Baracchini et al., 2020b). Data from 2019
were separated from the training for benchmarking purposes.
A schematic of a BiLSTM block and the neural network is
shown in Fig. 3. Input to the neural network is provided as a
(27 time step, 18 channel) tensor. An initial, fully connected
layer maps these 18 channels to 32 channels. The output is
then sequentially passed through three separate BiLSTM cell
blocks. Finally, the output of the last BiLSTM block is lin-
early mapped to a two-channel output, which corresponds to
temporal predictions of the skin temperature and their pre-
dictive log variances. In our experiments, LSTMs were cru-
cial in order to exploit historical patterns in the input features
when predicting the skin temperature. In a recent work, an
extension of the LSTMs to a spatially dependent model is
presented by Stalder et al. (2021).

For the particle filter, the uncertainty quantification of the
predicted skin temperature is also necessary. Accordingly,
the BiLSTM blocks in our neural network randomly disables
30 % of the LSTM units to induce stochasticity. This allows
our model to also implement additional methods to quantify
epistemic and aleatoric uncertainty (Kendall and Gal, 2017).
The Monte Carlo dropout approximates predictions from an
ensemble that can be used to quantify the epistemic uncer-
tainty. On the other hand, using the negative log likelihood
of a normal distribution as the objective function in training
allows BiLSTM to also estimate the predicted variance that
can be used to quantify aleatoric uncertainty. Specifically, for
a given input of 18 feature observations over a 27 h history,
the neural network predicts the corresponding 27 h skin tem-
perature estimations as well as their estimated logarithmic
variances. During the optimization phase of the neural net-
work, the negative log likelihood of a normal distribution
from Kendall and Gal (2017) is used, as follows:

L(θ)=
∑
i

1
2

exp(−si)‖yi − ŷi‖2+
1
2
si, (1)

where θ are the neural network weights, yi are the observa-
tions, and ŷi are the skin temperature estimations with corre-
sponding logarithmic variance estimation si . At the test time,
we generate model predictions for 19 times for each input,
while keeping dropouts within BiLSTMs active, yielding 19
different prediction vectors, similar to an ensemble model.
While the mean of the estimated skin surface temperature
is used for mean estimates, we use the variance of the 19
predictions for epistemic uncertainty. Aleatoric uncertainty
is computed from the predicted variance estimates by taking
their average after mapping the predicted logarithmic vari-
ance into variance. The total scalar variance is computed as
the sum of the two variances. Accordingly, we construct a
normal distribution with the computed total variance cen-
tered at the mean skin temperature prediction to be evaluated
against the LSWT measurement.

3 Results and discussion

In this section, we report on the inference results, with the
initial focus on the model parameter inference. As the cali-
bration mechanism operates on distributions, not scalar quan-
tities, the process is more complicated than what is typically
done. Therefore, this warrants a closer look at the posterior
distributions and diagnostics. Then, we compare the results
obtained using the best posterior parameter set, and finally,
we evaluate the performance of the BiLSTM network as a
predictor of skin temperature.

3.1 Hydrodynamic model calibration

The posterior distribution of two hydrodynamic model pa-
rameters (Smagorinsky viscosity and Dalton number) were
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Figure 3. A diagram of the neural network we use in our model. On the left, we show the general processing of data within the neural
network, and on the right, we show a schematic of a BiLSTM cell.

estimated in SPUX using the EMCEE sampler (see Fig. 2).
For each of the 16 parameter sets, the EMCEE sampler up-
dates a parameter in case a better-performing one is found
or it is deemed to be stuck (no changes for 10 iterations).
The PF is not guaranteed to choose the optimal global trajec-
tory for a parameter set, given the computational constraints
and the resetting of stuck chains (Šukys and Bacci, 2021),
and therefore, some uncertainty around the optimal parame-
ter value is to be expected. In Fig. 4, we show the evolution
of the Markov chain parameters in terms of their means and
the 5th–95th percentiles. We can observe from the relative
stationarity of the distributions that the convergence to the
true posterior distribution was likely achieved. We thus con-
clude that the optimal model parameters were localized with
a sufficiently high degree of confidence.

The inferred marginal posterior distributions are shown in
Fig. 5 in orange, with the prior distribution shown in blue.
The vertical red dashed lines indicate the best-found parame-
ter set, with the values shown in the table to the right. In rela-
tion to their respective priors, the Dalton number is predicted
with a relatively high degree of confidence, while the poste-
rior for the Smagorinsky parameter is less defined. This is to
be expected as the Dalton number has a stronger effect on
model predictions and is therefore more sensitive. However,
with more iterations, we expect that a more centered pos-
terior for the Smagorinsky viscosity parameter would have
been obtained.

We also consider the average redraw rate – the fraction of
particles that form a basis for each sequential prediction –
in Fig. 6. The survival rates dip significantly in cases when
remote sensing data are assimilated or LéXPLORE data are
available.

Figure 4. Evolution of the 16 Markov chain parameters. The solid
lines indicate the median, and the semi-transparent spreads indicate
the 5th–95th percentiles across multiple concurrent chains of the
sampler. The vertical dashed blue line indicates the end of the spec-
ified burn-in period used to determine the posterior distribution.

3.2 In situ data assimilation results

We present the results of the assimilated data predictions in
this section, with the control run (CR) serving as the baseline
for comparison. The data assimilation (DA) prediction was
generated using the MAP values, which are given in Fig. 5
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Figure 5. Marginal posterior (orange) and prior (blue) distributions
of model parameters. The red dashed line indicates the maximum a
posteriori parameter (MAP).

Table 3. Performance of the DA run across the different in situ
datasets in comparison to the CR. Note: CR is the control run, DA is
the data-assimilated run, RMSE is the root mean square error, and
MAE is the mean average error.

Dataset CR CR DA DA
RMSE MAE RMSE MAE

Buchillon (◦C) 0.95 0.61 0.77 0.54
LéXPLORE temp (◦C) 1.26 0.81 1.01 0.67
LéXPLORE velocity (m s−1) 0.033 0.023 0.029 0.020
SHL2 (◦C) 1.32 0.64 1.22 0.56
GE3 (◦C) 1.45 0.84 1.25 0.76

on the right. In addition, whenever possible, we compare the
aggregate error metrics to the values given in Baracchini et al.
(2020b) for their 2017 data (specifically, we do not use their
2019 data which exhibit a noticeable drift in the deeper lay-
ers of the lake in comparison to SHL2 observations). The
performance of the model for the Buchillon, SHL2, and LéX-
PLORE in situ datasets are considered in this section.

Figure 7 shows the temperature for the Buchillon station
at depths of 1 m (left) and 35 m (right). The gray lines rep-
resent the measurement, the red line shows the CR, and the
blue line is the calibrated and data-assimilated (DA) run. As
is evident from the results at both depths, the CR already
captures the seasonal variation and the high-frequency fluc-
tuations quite accurately. The DA run improves the model
performance in the summer, where the CR underpredicts the
near-surface temperature, as shown more clearly in the in-
set which focuses on the predictions for July. For the entire
dataset, the root mean square error (RMSE) decreases from
0.95 ◦C for the CR to 0.77 ◦C for the DA run. Overall, the im-
provement in RMSE and mean average error (MAE) across
the various datasets is 4 %–15 % (summarized in Table 3).
The main source of the performance improvement is the bet-
ter resolution of the near-surface temperature in summer.

We now consider the vertical temperature column profiles
from the SHL2 location, which provides monthly measure-
ments at the deepest location in the lake. As both the CR and
DA run predictions below 100 m are in agreement with the

measurements, we focus on the upper portion of the column.
In Fig. 8, we analyze the performance of the models for a few
selected snapshots. In Fig. 8, the black dots represent mea-
surements, the dashed red line is the CR, and the thick blue
line is the DA run. The results show that the DA run tracks
the observed temperature near the surface with greater accu-
racy, which also results in better modeling of deeper-layer
temperature. Below 60 m the observations are followed quite
accurately by both the CR and DA run, without any substan-
tial difference between the models.

Figure 9 compares the observed vertical column tempera-
ture at the LéXPLORE location to the DA run. The vast bulk
of measurements for this location (both temperature and ve-
locity) were obtained during two periods, as reflected in the
figure. Data for the period 21 June–11 August are shown on
the left, and the right side focuses on 25 October until 15 De-
cember. For simplicity, we will refer to the respective time
intervals as summer and autumn. Outside of those time peri-
ods, the measurements were sparse and are therefore omitted
from comparison. The results show that the DA algorithm
models the water column temperature quite accurately and,
in particular, correctly reproduces the thermocline depth in
the summer. Furthermore, the cooling cycle at the end of the
year is captured quite well. Above the thermocline, the dif-
ference plots highlight that the DA run overpredicts the tem-
perature in the summer months, which, as a result, generates
a smaller and dissipating warm bias in autumn. The discrep-
ancy could potentially be reconciled with a higher-resolution
model or more accurate Secchi depth estimates. In general,
correcting temperature overprediction in the subsurface tur-
bulent layer is a difficult problem exhibited in many studies
(Cimatoribus et al., 2018; Soulignac et al., 2018; Ye et al.,
2020), without a clear consensus on the underlying causes
for each case.

Due to the coarse horizontal resolution of the mesh, the
data assimilation algorithm primarily focused on tracking
temperature. As a result, the acoustic Doppler current pro-
filer (ADCP) data played only a secondary role in determin-
ing the trajectory of the model. In Fig. 10, we present the ki-
netic energy spectra computed from the LéXPLORE ADCP
data (gray lines) and the DA run (blue lines) based on dif-
ferent datasets. Figure 10 (left), based on summer readings
for the 15 m sensor, shows excellent agreement for the ki-
netic energy variability above the semi-diurnal (12 h) mode.
For the same sensor location, model predictions underper-
form during the autumn (Fig. 10, right), indicating that the
high-frequency internal wave modes are not being resolved
by the hydrodynamic model. A potentially large contribut-
ing factor for the discrepancies is the relatively coarse spatial
resolution used in the model.

3.3 LSWT assimilation using BiLSTM network

On average, an LSWT image provided 209 usable pixels
and significantly affected particle survival rates. For exam-
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Figure 6. Particle survival rates (fraction of particles in the filter that are retained for continuing the DA) for each snapshot time in the PF
likelihood estimator. The solid line indicates the mean, and the semi-transparent lines indicate the 0th–100th percentiles. The periods of time
when LéXPLORE data are available are shown as shaded gray regions.

Figure 7. Evolution of temperature at the Buchillon station for the 1 m (left) and 35 m (right) sensors for the year 2019. The gray line is the
in situ measurement, the red line corresponds to the control run, and the blue line is the data-assimilated prediction. The small inset on the
left shows the improvement from the assimilated run for the 1 m sensor in greater detail for July.

ple, in Fig. 6, most of the low survival rates are due to the
AVHRR data, which are especially noticeable in cases when
LéXPLORE data are not available. In contrast to Baracchini
et al. (2020b), where a highly selective criterion was applied,
we use all the pixels which have an associated non-zero QF
value. This allowed a much more frequent remote sensing
data assimilation, with 798 (of 2092 total) images usable
for the data assimilation period. The use of LSWT has en-
hanced the model predictions by only a 4 % reduction in the
in situ RMSE. In Fig. 11, we show an example comparison
between the observed LSWT (left), the hydrodynamic model
bulk temperature (center), and the BiLSTM prediction (right)
for a selected snapshot. The result shows that BiLSTM can
predict the spatial variability and structure of LSWT images,
although it also frequently generates an entirely different pro-
file. In general, as these improvement results are not partic-
ularly informative, we instead focus on the overall perfor-
mance of the assimilation model and the BiLSTM predic-
tions.

The global training and performance of the BiLSTM
model are summarized in Table 4. The training and testing
used the means and spreads of the MeteoSwiss weather pre-
dictions in combination with Meteolakes mean bulk temper-
ature. The results show that the network significantly im-
proves predictions of LSWT for the training set and achieves
a 33 % reduction in RMSE for the test set. In the assim-

ilated run, the bulk prediction difference is already small
and only worse than BiLSTM test set performance. In fact,
the BiLSTM network increases the RMSE by about 10 %,
which is most likely attributable to the differences between
the training data and the assimilation process. In general,
as LSWT measurements carry significant uncertainty (1.3–
1.5 ◦C RMSE), the analytic capability is limited by the lack
of exact skin temperature measurements for 2019.

Surprisingly, the predictive capability of the BiLSTM
seems to improve for the LSWT pixels with an associated
QF in the range 2–5 (42 % of the net pixel count), with an
RMSE of 1.92 versus 2.11 ◦C for direct bulk comparison. For
the highest quality data (QF 6), however, BiLSTM does not
improve the performance. In Fig. 12 (left), we analyze the
performance of the BiLSTM (orange lines) against hydro-
dynamic model bulk predictions (in blue) for the different
QFs by plotting the mean RMSE with 10th–90th percentiles.
The gray bar chart shows the total number of LSWT mea-
surements for the particular QF level. Aside from QF 5, the
bulk RMSE gradually increases for lower QFs, as expected.
At the same time, the BiLSTM error is practically constant,
with lower uncertainty, indicating the network’s capability to
predict lower-fidelity data. For QF 5, the discrepancy nearly
doubles, indicating a significant issue with this LSWT data
subset. In contrast to the relatively uniform spatial frequency
of other QFs on the lake, Fig. 12 (right) shows that most of
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Figure 8. Vertical temperature profiles up to 100 m deep at the SHL2 location. The black dots represent observations, the dashed red line is
the control run, and the blue line shows the data-assimilated run.

Figure 9. Vertical temperature profiles from the LéXPLORE sensors for the summer months (left) and late autumn (right). The top row
shows the dataset, and the middle row shows the assimilated predictions. The bottom row shows the difference between the plots, with
positive values indicating model overprediction.

Table 4. Results of the BiLSTM model training (left two columns,
with bulk temperature from Meteolakes; Baracchini et al., 2020b)
and the performance in the DA run (right column).

Training set Test set DA run
(incl. data from (incl. data from (SPUX-

Meteolakes) Meteolakes) MITgcm)

Bulk RMSE 3.00 2.37 1.85
BiLSTM RMSE 1.33 1.60 1.99

the associated measurements occurred near the shore, which
are harder to predict accurately due to the resolution of the
hydrodynamic model. However, as LSWT pixels with asso-
ciated QF 5 are extremely rare (Fig. 12, left), they do not
significantly contribute to the overall result.

To enable uncertainty quantification (UQ) for the PF, each
individual bulk-to-skin prediction is also equipped with a
normal uncertainty distribution, as described in Sect. 2.4.3.
Since the network used the hour of the day and weather pre-
diction uncertainty as part of its training, we can expect some
spatiotemporal variation in the predicted spreads. Therefore,
we analyze those two factors here. In Fig. 13 (left), we show
the hourly mean BiLSTM prediction difference with LSTM
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Figure 10. Kinetic energy spectra computed from the ADCP sensors at the LéXPLORE platform (gray) and from the DA run (blue). Profiles
based on 15 m deep dynamics use July–August data for panel (a) and November–December data for panel (b).

Figure 11. A comparison of LSWT snapshot from 8 August 2019 to the DA bulk and BiLSTM skin temperature predictions.

data as a solid blue line and the 10th–90th percentiles of the
BiLSTM UQ as shaded blue regions. The results suggest that
neural network UQ is capable of slightly better predicting
the spreads for the different times of the day. In contrast,
the default LSWT error model provides relatively uniform
uncertainties across all times of the day, regardless of the
MAE (Fig. 13, right). In general, the improvement is, how-
ever, quite mild, potentially due to the low spatial resolution
of the model.

Finally, we consider the spatial pattern of BiLSTM pre-
dictions and, in particular, examine whether its UQ can pre-
dict regions of the lake with larger model discrepancies.
In Fig. 14 (left), we present the mean BiLSTM prediction
RMSE for the different pixel locations over the lake. As can
be expected, the best performance is obtained for offshore
pixels in the eastern portion of the lake (Grand Lac). The
predictive capability of the network reduces nearshore and
especially in the western portion (in the Petit Lac). The BiL-
STM uncertainty predictions follow a much similar pattern
(Fig. 14, right), including the large increases in uncertainty
near the north shores. In part, this increase can most likely
be attributed to the greater uncertainty in the atmospheric
weather conditions near the land–water interface and the fact
that the majority of observations for training BiLSTM come
from offshore in the Grand Lac, which would likely create a
bias in the model predictions.

4 Conclusions

We presented the SPUX-MITgcm framework, a novel
approach to the calibration of a hydrodynamic model
for a highly spatiotemporally heterogeneous observational
dataset. The inference makes use of the ensemble affine in-
variant sampler (EMCEE) to infer the distribution of the
model parameters coupled with a particle filter (PF) for
stochasticity in atmospheric forcing. The PF relied on resam-
pling existing trajectories, based on their observational likeli-
hoods, to infer the most probable weather conditions over the
lake. As a result, the PF generated physically realistic trajec-
tories (at least with respect to the hydrodynamic model). In
addition, to enable the proper assimilation of remotely sensed
lake surface temperature, we developed a bi-directional long
short-term memory network (BiLSTM) for estimating lake
skin temperature based on a history of weather and bulk tem-
perature predictions.

The particle filter provides a relatively small improvement
to the model predictions (in contrast to other popular data as-
similation schemes) but at no cost to the quality of the phys-
ical model. However, this approach requires a highly robust
hydrodynamic model, as its corrective powers are limited.
Despite the improvements, this approach is quite computa-
tionally costly, especially as a tool for inferring model param-
eters. In addition, as discussed in the Supplement, the sam-
pler has significant difficulty with calibrating certain model
parameters (although this issue could potentially be miti-
gated with a better error model). Therefore, we feel that a
computationally cheaper method for parameter estimation
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Figure 12. Analysis of BiLSTM performance in the DA run with respect to the different quality flags. (a) LSWT difference with respect to
bulk temperature (in blue) and BiLSTM predictions (in orange) as a function of QF. The faint gray bars show the total number of LSWT
measurements associated with the QF. (b) Spatial distribution of LSWT measurement availability for QF 5.

Figure 13. (a) Mean BiLSTM prediction error (dark blue line) and the 10th–90th percentiles of the uncertainties predicted by BiLSTM
(shaded areas) for the different hours of the day. (b) Mean bulk temperature prediction error (dark blue line) and the 10 %–90 % uncertainty
estimates based on Lieberherr and Wunderle (2018).

Figure 14. Spatial distribution for the BiLSTM RMSE (a) and the RMSE predicted by the BiLSTM (b).

(for example, an optimization algorithm instead of a sam-
pler) might be the more productive approach. At the same
time, an improved version of the particle filtering approach
could provide a powerful option for operational forecasting
models.

Code and data availability. The code used for these simulations,
and an example portion of the data, are openly available. The SPUX
source code is available at https://doi.org/10.5281/zenodo.5638313
(Safin et al., 2021), the modified MITgcm repository can
be found at https://doi.org/10.5281/zenodo.5634042 (Campin et

al., 2021), and the repository for handling MITgcm runs is
at https://doi.org/10.5281/zenodo.5637216 (Safin, 2021). While
we cannot openly publish the forcing data, a represen-
tative snapshot is available at https://renkulab.io/gitlab/artur.
safin/datalakes-observational-data-snapshot (last access: 30 Octo-
ber 2021), and the 3D mean temperature and velocity predictions
can be accessed at https://doi.org/10.5281/zenodo.5642898 (Safin
et al., 2019). Finally, the reproducibility of the computational envi-
ronment is enabled through RENKU (Swiss Data Science Center,
2021), an online platform for the storage, tracking, and replication
of numerical codes, which enables users to launch the container
directly from the RENKU site. The entire SPUX-MITgcm repos-
itory and the computational environment is available as a docker
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at https://renkulab.io/projects/artur.safin/DatalakesHydrodynamics,
and an example of running the inference is in the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-7715-2022-supplement.
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