Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7121-2022
https://doi.org/10.5194/gmd-15-7121-2022
Development and technical paper
 | 
21 Sep 2022
Development and technical paper |  | 21 Sep 2022

Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G

Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke

Related authors

Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024,https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Characteristics of the 1979–2020 Antarctic firn layer simulated with IMAU-FDM v1.2A
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023,https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Albert, M. R. and Shultz, E. F.: Snow and firn properties and air-snow transport processes at Summit, Greenland, Atmos. Environ., 36, 2789–2797, https://doi.org/10.1016/S1352-2310(02)00119-X, 2002. a
Anderson, E.: A point energy and mass balance model, Tech. Rep. D24, National Weather Office, https://repository.library.noaa.gov/view/noaa/6392/noaa_6392_ (last access: 1 September 2021), 1976. a, b, c, d
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res.-Earth Surf., 115, 1–12, https://doi.org/10.1029/2009JF001306, 2010. a, b
Ashmore, D. W., Mair, D. W., and Burgess, D. O.: Meltwater percolation, impermeable layer formation and runoff buffering on Devon Ice Cap, Canada, J. Glaciol., 66, 61–73, https://doi.org/10.1017/jog.2019.80, 2019. a
Banta, J. R. and McConnell, J. R.: Annual accumulation over recent centuries at four sites in central Greenland, J. Geophys. Res.-Atmos., 112, 1–9, https://doi.org/10.1029/2006JD007887, 2007. a
Download
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Share