Articles | Volume 15, issue 16
Geosci. Model Dev., 15, 6285–6310, 2022
https://doi.org/10.5194/gmd-15-6285-2022
Geosci. Model Dev., 15, 6285–6310, 2022
https://doi.org/10.5194/gmd-15-6285-2022
Development and technical paper
16 Aug 2022
Development and technical paper | 16 Aug 2022

Islet: interpolation semi-Lagrangian element-based transport

Andrew M. Bradley et al.

Related authors

The Fully Coupled Regionally Refined Model of E3SM Version 2: Overview of the Atmosphere, Land, and River
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-262,https://doi.org/10.5194/gmd-2022-262, 2022
Preprint under review for GMD
Short summary
A framework to evaluate IMEX schemes for atmospheric models
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020,https://doi.org/10.5194/gmd-13-6467-2020, 2020
HOMMEXX 1.0: a performance-portable atmospheric dynamical core for the Energy Exascale Earth System Model
Luca Bertagna, Michael Deakin, Oksana Guba, Daniel Sunderland, Andrew M. Bradley, Irina K. Tezaur, Mark A. Taylor, and Andrew G. Salinger
Geosci. Model Dev., 12, 1423–1441, https://doi.org/10.5194/gmd-12-1423-2019,https://doi.org/10.5194/gmd-12-1423-2019, 2019
Short summary

Related subject area

Numerical methods
The Intelligent Prospector v1.0: geoscientific model development and prediction by sequential data acquisition planning with application to mineral exploration
John Mern and Jef Caers
Geosci. Model Dev., 16, 289–313, https://doi.org/10.5194/gmd-16-289-2023,https://doi.org/10.5194/gmd-16-289-2023, 2023
Short summary
Predicting peak daily maximum 8 h ozone and linkages to emissions and meteorology in Southern California using machine learning methods (SoCAB-8HR V1.0)
Ziqi Gao, Yifeng Wang, Petros Vasilakos, Cesunica E. Ivey, Khanh Do, and Armistead G. Russell
Geosci. Model Dev., 15, 9015–9029, https://doi.org/10.5194/gmd-15-9015-2022,https://doi.org/10.5194/gmd-15-9015-2022, 2022
Short summary
Transfer learning for landslide susceptibility modeling using domain adaptation and case-based reasoning
Zhihao Wang, Jason Goetz, and Alexander Brenning
Geosci. Model Dev., 15, 8765–8784, https://doi.org/10.5194/gmd-15-8765-2022,https://doi.org/10.5194/gmd-15-8765-2022, 2022
Short summary
ISMIP-HOM benchmark experiments using Underworld
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022,https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver
Keith J. Roberts, Alexandre Olender, Lucas Franceschini, Robert C. Kirby, Rafael S. Gioria, and Bruno S. Carmo
Geosci. Model Dev., 15, 8639–8667, https://doi.org/10.5194/gmd-15-8639-2022,https://doi.org/10.5194/gmd-15-8639-2022, 2022
Short summary

Cited articles

Bosler, P. A., Bradley, A. M., and Taylor, M. A.: Conservative multimoment transport along characteristics for discontinuous Galerkin methods, SIAM J. Sci. Comput., 41, B870–B902, 2019. a, b
Bradley, A. M.: COMPOSE (v1.1.2): Methods for Islet paper, Zenodo [code], https://doi.org/10.5281/zenodo.5595499, 2021a. a
Bradley, A. M.: Methods data for Islet paper, Zenodo [data set], https://doi.org/10.5281/zenodo.5595518, 2021b. a
Bradley, A. M., Bosler, P. A., Guba, O., Taylor, M. A., and Barnett, G. A.: Communication-efficient property preservation in tracer transport, SIAM J. on Sci. Comput., 41, C161–C193, 2019. a, b, c, d, e, f, g, h
Bradley, A. M., Bosler, P. A., and Guba, O.: Islet: Interpolation semi-Lagrangian element-based transport, Geosci. Model Dev. Discuss., [preprint], https://doi.org/10.5194/gmd-2021-296, 2021. a, b, c
Download
Short summary
Tracer transport in atmosphere models can be computationally expensive. We describe a flexible and efficient interpolation semi-Lagrangian method, the Islet method. It permits using up to three grids that share an element grid: a dynamics grid for computing quantities such as the wind velocity; a physics parameterizations grid; and a tracer grid. The Islet method performs well on a number of verification problems and achieves high performance in the E3SM Atmosphere Model version 2.