Articles | Volume 15, issue 16
https://doi.org/10.5194/gmd-15-6285-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6285-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Islet: interpolation semi-Lagrangian element-based transport
Sandia National Laboratories, Albuquerque, New Mexico, USA
Peter A. Bosler
Sandia National Laboratories, Albuquerque, New Mexico, USA
Oksana Guba
Sandia National Laboratories, Albuquerque, New Mexico, USA
Related authors
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020, https://doi.org/10.5194/gmd-13-6467-2020, 2020
Oksana Guba, Arjun Sharma, Mark A. Taylor, Peter A. Bosler, and Erika L. Roesler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3966, https://doi.org/10.5194/egusphere-2025-3966, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
It is important for computational Earth system models to capture interactions between the ocean and the atmosphere accurately. Because of incredible complexity of these interactions, computational models contain simplifications, which may hinder the models' capabilities. Here we focus on detailed analysis of thermodynamic interactions between the ocean and the atmosphere in computational Earth system models. We also provide a framework to show how modeling these interactions can be improved.
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Oksana Guba, Mark A. Taylor, Peter A. Bosler, Christopher Eldred, and Peter H. Lauritzen
Geosci. Model Dev., 17, 1429–1442, https://doi.org/10.5194/gmd-17-1429-2024, https://doi.org/10.5194/gmd-17-1429-2024, 2024
Short summary
Short summary
We want to reduce errors in the moist energy budget in numerical atmospheric models. We study a few common assumptions and mechanisms that are used for the moist physics. Some mechanisms are more consistent with the underlying equations. Separately, we study how assumptions about models' thermodynamics affect the modeled energy of precipitation. We also explain how to conserve energy in the moist physics for nonhydrostatic models.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020, https://doi.org/10.5194/gmd-13-6467-2020, 2020
Cited articles
Bradley, A. M.: COMPOSE (v1.1.2):
Methods for Islet paper, Zenodo [code], https://doi.org/10.5281/zenodo.5595499, 2021a. a
Bradley, A. M.: Methods data for Islet paper, Zenodo [data set], https://doi.org/10.5281/zenodo.5595518, 2021b. a
Bradley, A. M., Bosler, P. A., and Guba, O.: Islet: Interpolation
semi-Lagrangian element-based transport, Geosci. Model Dev. Discuss.,
[preprint], https://doi.org/10.5194/gmd-2021-296, 2021. a, b, c
Chen, Y., Simon, K., and Behrens, J.: Extending legacy climate models by adaptive mesh refinement for single-component tracer transport: a case study with ECHAM6-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0), Geosci. Model Dev., 14, 2289–2316, https://doi.org/10.5194/gmd-14-2289-2021, 2021. a
Dennis, J., Fournier, A., Spotz, W. F., St-Cyr, A., Taylor, M. A., Thomas,
S. J., and Tufo, H.: High-resolution mesh convergence properties and parallel
efficiency of a spectral element atmospheric dynamical core, Int. J. High
Perform C., 19, 225–235, 2005. a
Dormand, J. R. and Prince, P. J.: A family of embedded Runge-Kutta formulae,
J. Comput. Appl. Math., 6, 19–26, 1980. a
E3SM Project: Energy Exascale Earth System Model (E3SM), E3SM Project [computer
software], https://doi.org/10.11578/E3SM/dc.20180418.36, 2018. a
Eastham, S. D. and Jacob, D. J.: Limits on the ability of global Eulerian models to resolve intercontinental transport of chemical plumes, Atmos. Chem. Phys., 17, 2543–2553, https://doi.org/10.5194/acp-17-2543-2017, 2017. a
Erath, C. and Nair, R. D.: A conservative multi-tracer transport scheme for
spectral-element spherical grids, J. Comput. Phys., 256, 118–134, 2014. a
Field, C., Cheung, W., Dilling, L., Frumhoff, P., Greely, H., Hordequin, M.,
Hurrell, J., Light, A., Lin, A., MacMartin, D., McHenry, R., Moreno-Cruz, J.,
Ricke, K., Russell, L., Sagar, A., and Wennberg, P.:
Reflecting Sunlight:
Recommendations for Solar Geoengineering Research and Research Governance,
The National Academies Press, Washington, DC, https://doi.org/10.17226/25762, 2021. a
Fischer, P. F. and Patera, A. T.: Parallel spectral element methods for the
incompressible Navier-Stokes equations, in: Solution of Superlarge Problems
in Computational Mechanics, Springer, 49–65, https://doi.org/10.1007/978-1-4613-0535-4_3, 1989. a
Giraldo, F. X.: Lagrange–Galerkin methods on spherical geodesic grids, J. Comput. Phys., 136, 197–213, 1997. a
Giraldo, F. X., Perot, J. B., and Fischer, P. F.: A spectral element
semi-Lagrangian (SESL) method for the spherical shallow water equations,
J. Comput. Phys., 190, 623–650, 2003. a
Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C.,
et al.: The DOE E3SM coupled model version 1: Overview and evaluation at
standard resolution, J. Adv. Model Earth Sy., 11, 2089–2129, 2019. a
Golaz, J.-C., Roekel, L. P. V., Zheng, X., Roberts, A., Wolfe, J. D., Lin, W.,
Bradley, A., Tang, Q., Maltrud, M. E., Forsyth, R. M., Zhang, C., Zhou, T.,
Zhang, K., Zender, C. S., Wu, M., Wang, H., Turner, A. K., Singh, B.,
Richter, J. H., Qin, Y., Petersen, M. R., Mametjanov, A., Ma, P.-L., Larson,
V. E., Krishna, J., Keen, N. D., Jeffery, N., Hunke, E. C., Hannah, W. M.,
Guba, O., Griffin, B. M., Feng, Y., Engwirda, D., Di Vittorio, A. V., Dang,
C., Conlon, L. M., Chen, C.-C.-J., Brunke, M. A., Bisht, G., Benedict, J. J.,
Asay-Davis, X. S., Zhang, Y., Zhang, M., Zeng, X., Xie, S., Wolfram, P. J.,
Vo, T., Veneziani, M., Tesfa, T. K., Sreepathi, S., Salinger, A. G., Eyre, J.
E. J. R., Prather, M. J., Mahajan, S., Li, Q., Jones, P. W., Jacob, R. L.,
Huebler, G. W., Huang, X., Hillman, B. R., Harrop, B. E., Foucar, J. G.,
Fang, Y., Comeau, D. S., Caldwell, P. M., Bartoletti, T., Balaguru, K.,
Taylor, M. A., McCoy, R. B., Leung, L. R., and Bader, D. C.: The DOE E3SM
Model Version 2: Overview of the physical model and initial model
evaluation, Earth and Space Science Open Archive [preprint],
https://doi.org/10.1002/essoar.10511174.2, 2022. a, b, c, d
Guba, O., Taylor, M. A., Ullrich, P. A., Overfelt, J. R., and Levy, M. N.: The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity, Geosci. Model Dev., 7, 2803–2816, https://doi.org/10.5194/gmd-7-2803-2014, 2014. a, b
Hannah, W. M., Bradley, A. M., Guba, O., Tang, Q., Golaz, J.-C., and Wolfe, J.:
Separating Physics and Dynamics grids for Improved Computational Efficiency
in Spectral Element Earth System Models, J. Adv. Model Earth Sy., 13,
e2020MS002419, https://doi.org/10.1029/2020MS002419, 2021. a, b, c, d, e, f, g, h, i, j
Herrington, A. R., Lauritzen, P. H., Reed, K. A., Goldhaber, S., and Eaton,
B. E.: Exploring a lower resolution physics grid in CAM-SE-CSLAM, J.
Adv. Model Earth Sy., 11, 2019MS001684, https://doi.org/10.1029/2019MS001684, 2019. a, b
Kaas, E.: A simple and efficient locally mass conserving semi-Lagrangian
transport scheme, Tellus A, 60, 305–320, 2008. a
Lauritzen, P. H.: Atmospheric Transport Schemes: Desirable Properties and a
Semi-Lagrangian View on Finite-Volume Discretizations, in: Numerical
Techniques for Global Atmospheric Models, edited by: Lauritzen, P. H.,
Jablonowski, C., Taylor, M. A., and Nair, R. D., vol. 80 of Lecture Notes in Computational Science and Engineering,
Springer, Berlin, 185–250, 2011. a, b
Lauritzen, P. H. and Thuburn, J.: Evaluating advection/transport schemes using
interrelated tracers, scatter plots and numerical mixing diagnostics, Q. J.
Roy. Meteor. Soc., 138, 906–918, 2012. a
Lauritzen, P. H., Ullrich, P. A., Jablonowski, C., Bosler, P. A., Calhoun, D., Conley, A. J., Enomoto, T., Dong, L., Dubey, S., Guba, O., Hansen, A. B., Kaas, E., Kent, J., Lamarque, J.-F., Prather, M. J., Reinert, D., Shashkin, V. V., Skamarock, W. C., Sørensen, B., Taylor, M. A., and Tolstykh, M. A.: A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes, Geosci. Model Dev., 7, 105–145, https://doi.org/10.5194/gmd-7-105-2014, 2014. a, b
Lauritzen, P. H., Ullrich, P. A., Jablonowski, C., Bosler, P. A., Calhoun, D., Conley, A. J., Enomoto, T., Dong, L., Dubey, S., Guba, O., Hansen, A. B., Kaas, E., Kent, J., Lamarque, J.-F., Prather, M. J., Reinert, D., Shashkin, V. V., Skamarock, W. C., Sørensen, B., Taylor, M. A., and Tolstykh, M. A.: A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes, Geosci. Model Dev., 7, 105–145, https://doi.org/10.5194/gmd-7-105-2014, 2014. a, b, c
Lauritzen, P. H., Conley, A. J., Lamarque, J.-F., Vitt, F., and Taylor, M. A.: The terminator “toy” chemistry test: a simple tool to assess errors in transport schemes, Geosci. Model Dev., 8, 1299–1313, https://doi.org/10.5194/gmd-8-1299-2015, 2015. a, b
Lee, D., Lowrie, R., Petersen, M., Ringler, T., and Hecht, M.: A high order
characteristic discontinuous Galerkin scheme for advection on unstructured
meshes, J. Comput. Phys., 324, 289–302, 2016. a
Lee, H.-H., Bogenschutz, P., and Yamaguchi, T.: The Implementation of
Framework for Improvement by Vertical Enhancement (FIVE) into Energy
Exascale Earth System Model (E3SM), J. Adv. Model Earth Sy., 13,
e2020MS002240, https://doi.org/10.1029/2020MS002240, 2020. a
Natarajan, H. and Jacobs, G. B.: An explicit semi-Lagrangian, spectral method
for solution of Lagrangian transport equations in Eulerian-Lagrangian
formulations, Comput. Fluids, 207, 104526, https://doi.org/10.1016/j.compfluid.2020.104526, 2020. a
Semakin, A. N. and Rastigejev, Y.: Optimized wavelet-based adaptive mesh
refinement algorithm for numerical modeling of three-dimensional global-scale
atmospheric chemical transport, Q. J. Roy. Meteor. Soc., 146, 1564–1574,
2020. a
Shampine, L. F. and Reichelt, M. W.: The Matlab ODE suite, SIAM J. Sci.
Comput., 18, 1–22, 1997. a
Stensrud, D. J.: Parameterization Schemes: Keys to Understanding Numerical
Weather Prediction Models, Cambridge University Press, ISBN 9780521126762, 2009. a
Tang, Q., Klein, S. A., Xie, S., Lin, W., Golaz, J.-C., Roesler, E. L., Taylor, M. A., Rasch, P. J., Bader, D. C., Berg, L. K., Caldwell, P., Giangrande, S. E., Neale, R. B., Qian, Y., Riihimaki, L. D., Zender, C. S., Zhang, Y., and Zheng, X.: Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling, Geosci. Model Dev., 12, 2679–2706, https://doi.org/10.5194/gmd-12-2679-2019, 2019. a
Ullrich, P. A., Lauritzen, P. H., and Jablonowski, C.: Some considerations for
high-order “incremental remap”-based transport schemes: edges,
reconstructions, and area integration, Int. J. Numer. Meth. Fl., 71,
1131–1151, 2013. a
Yamaguchi, T., Feingold, G., and Larson, V. E.: Framework for improvement by
vertical enhancement: A simple approach to improve representation of low and
high-level clouds in large-scale models, J. Adv. Model Earth Sy., 9,
627–646, 2017. a
Short summary
Tracer transport in atmosphere models can be computationally expensive. We describe a flexible and efficient interpolation semi-Lagrangian method, the Islet method. It permits using up to three grids that share an element grid: a dynamics grid for computing quantities such as the wind velocity; a physics parameterizations grid; and a tracer grid. The Islet method performs well on a number of verification problems and achieves high performance in the E3SM Atmosphere Model version 2.
Tracer transport in atmosphere models can be computationally expensive. We describe a flexible...