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Abstract. Advection of trace species, or tracers, also called
tracer transport, in models of the atmosphere and other phys-
ical domains is an important and potentially computation-
ally expensive part of a model’s dynamical core. Semi-
Lagrangian (SL) advection methods are efficient because
they permit a time step much larger than the advective sta-
bility limit for explicit Eulerian methods without requiring
the solution of a globally coupled system of equations as
implicit Eulerian methods do. Thus, to reduce the compu-
tational expense of tracer transport, dynamical cores often
use SL methods to advect tracers. The class of interpola-
tion semi-Lagrangian (ISL) methods contains potentially ex-
tremely efficient SL methods. We describe a finite-element
ISL transport method that we call the interpolation semi-
Lagrangian element-based transport (Islet) method, such as
for use with atmosphere models discretized using the spec-
tral element method. The Islet method uses three grids that
share an element grid: a dynamics grid supporting, for ex-
ample, the Gauss–Legendre–Lobatto basis of degree three; a
physics parameterizations grid with a configurable number of
finite-volume subcells per element; and a tracer grid support-
ing use of Islet bases with particular basis again configurable.
This method provides extremely accurate tracer transport and
excellent diagnostic values in a number of verification prob-
lems.

1 Introduction

An atmosphere model has two parts: the dynamical core,
which computes resolved fluid flow and resolved thermody-
namics (Lauritzen, 2011); and the subgrid parameterizations,
which compute unresolved chemistry and physics processes
(Stensrud, 2009). In turn, the dynamical core also has two
parts: first, the dynamics solver, which solves the equations

of fluid motion; second, the tracer transport solver, which ad-
vects trace atmosphere species, or tracers, using the air den-
sity and flow fields from the dynamics solver.

Because of the large number of tracers in climate mod-
els, tracer transport can be computationally very expensive.
For example, in the Dept. of Energy’s Energy Exascale Earth
System Model (E3SM) (E3SM Project, 2018) Atmosphere
Model (EAM) version 1 (Golaz et al., 2019), configured with
the default 40 tracers, tracer transport takes approximately
75 % of the total dynamical core wall clock time and approx-
imately 23 % of the total atmosphere model wall clock time
on a typical computer cluster (Golaz et al., 2022, Fig. 3). For
EAM version 2, we developed a new tracer transport method
that is 6.5 to over 8 times faster than in EAM version 1 in
the cases of, respectively, low and high workload per com-
puter node (Golaz et al., 2022, Fig. 3). In addition, we devel-
oped remap operators to remap data between separate grids
for physics parameterizations and dynamics, permitting the
physics parameterization computations to run on a coarser
grid and thus 1.6 to 2.2 times faster in version 2 than in ver-
sion 1 (Hannah et al., 2021; Golaz et al., 2022).

In this article, we describe the interpolation semi-
Lagrangian element-based transport method, with the
acronym stylized as “Islet” rather than “ISLET” to mini-
mize distracting all-capitalized text. The Islet method ex-
tends those we developed for EAM version 2 by provid-
ing the discretizations with natural parameters to trade be-
tween computational cost and accuracy in tracer transport
and physics parameterizations for a given, fixed dynamical
core configuration.

1.1 Problem statement

The mass continuity equation for the air density ρ is

∂ρ

∂t
+∇ · (ρu)= 0, (1)
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where u is the flow velocity. The tracer transport equation in
continuity form and with a source term for a tracer mixing
ratio q and corresponding tracer density ρq is

∂(ρq)

∂t
+∇ · (ρqu)= ρf, (2)

where f is a source term for q. Combining Eqs. (1) and (2)
gives the advective form of the tracer transport equation,

Dq
Dt
≡
∂q

∂t
+u · ∇q = f. (3)

Because of time splitting in the atmosphere model, our focus
is often on the sourceless advection equation,

Dq
Dt
= 0. (4)

At position x and time t1, the exact solution of Eq. (4) in
terms of the solution at another time t0 is

q(x, t1)= q(X(t0;x, t1), t0). (5)

X(t0;x, t1) is the solution of the ordinary differential equa-
tion

d
dt
X(t;x, t1)= u(X(t;x, t1), t), (6)

with the initial condition X(t1;x, t1)= x. In a semi-
Lagrangian method, X(t1;x, t1)= x is called the arrival
point and X(t0;x, t1) is called the departure point. In this
article, our focus is on the two-dimensional equations on the
sphere. Thus, X and u each have two horizontal components
and no vertical component. In various settings, the density
variable ρ can be, for example, mass per unit area, layer
thickness, or layer pressure increment.

An approximate numerical solution for q of Eq. (4) is said
to be property preserving if (possibly just a subset of) prop-
erties that hold for the exact solution also hold for the ap-
proximate one. Eq. (5) implies that advection cannot intro-
duce new extrema in the mixing ratio; advection is said to be
shape preserving. Equation (2) with f = 0 implies the global
mass is conserved. Although the focus of this article is not
the continuity equation, we note that the Lagrangian form
of the continuity equation, Eq. (B4) in Appendix B, implies
that the total mass in a Lagrangian parcel, which is a parcel
of fluid that moves with the flow, is constant. A final property
that is a special case of the shape-preserving property relates
to coupling a solver for Eq. (4) to a dynamics solver: mass-
tracer consistency. This property means that if q is constant
in space at time t0, then it remains constant in space at every
other time. In other words, the dynamics solver and transport
solver use the same air density. The methods in this article
conserve global mass, do not introduce new nodal extrema,
and provide mass-tracer consistency when coupled to a dy-
namics solver.

There is a large body of work on tracer transport meth-
ods. As a result, researchers have developed a large number
of accuracy, property preservation, and other diagnostics for
use in comparisons of methods (Lauritzen et al., 2012, 2014;
Lauritzen and Thuburn, 2012; Lauritzen, 2011; Lauritzen
et al., 2015).

Another quality of a transport method is important: its
computational efficiency. Computational efficiency is some
measure of solution accuracy for a given set of computational
resources.

Thus, when developing a new transport method, the ob-
jective is to obtain high efficiency, as measured by diagnos-
tic values and computational cost, constrained by the need to
couple to specific dynamics and physics grids. Our objective
in this article is to extend our highly efficient tracer transport
method for EAM version 2 by introducing, first, parameters
whose values trade between solution accuracy and compu-
tational cost and, second, algorithms associated with these
parameters.

Our motivation is to support the computationally effi-
cient simulation of strongly tracer-dependent models, such
as those of aerosols, by enabling extremely highly resolved
tracer filamentary structure for a fixed dynamics resolution.
A recent report from the National Academies of Sciences,
Engineering, and Medicine (Field et al., 2021) includes the
recommendation to “explore whether global aerosol optical
depth (AOD) distribution is significantly affected by plume-
scale effects,” and asks: “Are nested grids needed to represent
plume processes? What spatial resolution is needed to faith-
fully represent the radiative forcing and impact outcomes?”
In this article, we present algorithms that can help to address
these questions.

1.2 Overview of the E3SM Atmosphere Model

EAM uses the High-Order Method Modeling Environment
(HOMME) dynamical core (Dennis et al., 2005, 2012).
HOMME uses the spectral element method to discretize the
equations of atmospheric flow. HOMME’s grid consists of
horizontally unstructured quadrilateral elements extruded as
columns in the vertical dimension. Element-based methods
permit extremely flexible discretization of domains: for ex-
ample, E3SM’s regionally refined model (RRM) configura-
tions (Tang et al., 2019), in which the atmosphere element
grid is refined in a particular region of the earth.

In the horizontal direction, each quadrilateral element has
an np×np subgrid. HOMME uses the Gauss–Legendre–
Lobatto (GLL) spectral element polynomial basis and nodes.
The two-dimensional (2D) basis functions are tensor prod-
ucts of one-dimensional (1D) GLL basis functions. np is the
number of subgrid nodes in a 1D basis function; the degree of
the polynomial is np−1. Figure 1 shows one spectral element
outlined in blue. The large black dots are the 4×4 tensor-
product grid of GLL nodes with np = 4.
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Figure 1. Diagram of subelement grids. One spectral element (blue
solid line outlining the full square) with dynamics (nv

p = 4, black
large circles), tracer (nt

p = 8, small red circles), and physics (nf = 6,
green dashed lines) subelement grids.

The Courant–Friedrichs–Lewy (CFL) condition for the ad-
vection operator in spectral element fluid dynamics scales
inversely with the minimum distance between GLL nodes.
In turn, this minimum distance scales roughly quadratically
in np. For example, nodes for np = 6, 8, and 12 have mini-
mum distances respectively 2.4, 4.3, and 10.0 times smaller
than nodes for np = 4. Thus, developers of a dynamics solver
choose a value for np that is large enough to provide good ac-
curacy and wave representation but small enough to permit a
large time step, i.e., one determined by accuracy rather than
stability considerations. EAM always sets nv

p = 4, where we
use v to refer specifically to the dynamics solver’s value of
np. We refer to the spectral element grid, including the spec-
tral element nodes, as the dynamics grid, and the element
grid excluding subgrid nodes as the element grid.

For efficiency, the EAM version 2 physics and chemistry
parameterizations run on a different grid than the dynamics;
we call this grid the physics grid. To couple efficiently to the
dynamics grid, the physics grid has the same element grid as
the dynamics grid but its own subelement grid (Herrington
et al., 2019; Hannah et al., 2021). The physics grid divides
each horizontal quadrilateral element into a regular nf×nf
subgrid of finite-volume quadrilateral subcells. In Fig. 1, the
dashed green lines outline the 6×6 physics subgrid, with
nf = 6. EAM version 2 uses nf = 2. Compared with EAM
version 1, in which the physics and dynamics grids were the
same, EAM version 2 has 4/9 as many physics grid points,
speeding up the parameterizations part of the model by up

to 2.25 times with a small cost for remapping between dy-
namics and physics grids. The shared element grid and the
element-local remap operators minimize interprocess com-
munication costs.

1.3 Overview of the Islet method

While our tracer transport method is based on spectral ele-
ments and, like the physics grid, uses the same element grid
as the dynamics grid, it is not restricted by the CFL condition.
This important fact motivates making nt

p, where we use t to
refer specifically to the transport solver’s value of np, a pa-
rameter of the tracer transport module and independent of nv

p,
to trade between computational speed (maximum at nt

p = n
v
p)

and higher accuracy (increasing with nt
p). In Fig. 1, the small

red circles are GLL nodes for nt
p = 8. We refer to this ap-

proach as tracer transport p-refinement. In the finite element
method, p-refinement means increasing the basis polynomial
degree. In the Islet method, we increase nt

p relative to nv
p to

represent the mixing ratio fields at higher resolution.
In summary, we use one element grid, three subelement

grids, and three corresponding parameters: the dynamics
grid, nv

p; the physics grid, nf; and the tracer transport grid,
nt

p. For efficiency, EAM version 2 already uses two grids,
one with nt

p = n
v
p = 4 and the other with nf = 2. This article

considers the case nt
p > n

v
p. Figure 1 shows the three subgrids

for one spectral element.
The tracer transport solver couples to the dynamics solver

through the flow velocity u, the air density ρ, and possibly
a small subset of tracers such as specific humidity. It cou-
ples to the parameterizations through the tracers. Coupling
requires remapping a field between grids. It is natural to give
responsibility for these remap procedures to the tracer trans-
port solver module as the remap operators share many of the
same requirements and computations as the transport solver.
As in the case of remapping quantities between the physics
grid and the dynamics grid in EAM version 2, the shared
element grid and element-local remap procedures minimize
communication when remapping among the three grids. For
brevity, we refer to this overall spectral element, three-grid
scheme as the Islet method.

1.4 Outline

The rest of this article is structured as follows. The Islet
method depends on a number of lower-level algorithms. Sec-
tion 2 and Appendix A describe these; mathematical details
can be skipped on a first reading. Section 3 describes each
step of the Islet method over the course of one time step.
Descriptions are compact, relying on the details in Sect. 2.
Section 4 describes and presents the results of a number of
verification problems. Finally, Sect. 5 concludes.
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2 Overview of algorithms

This section describes the details of low-level algorithms on
which the Islet method depends, associated concepts, and re-
lated work for context. Our objective is to isolate the no-
tation for and details of these low-level algorithms to this
section, then focus on the higher-level details of the Islet
method in Sect. 3 without lower-level clutter. Section 2.1 dis-
cusses semi-Lagrangian transport, the finite-element interpo-
lation semi-Lagrangian method in particular, and the bases
that the Islet method uses. Section 2.2 describes our approach
to solving the property preservation problem. Section 2.3 de-
scribes algorithms to remap data between grids. Section 2.4
describes the spectral element direct stiffness summation op-
erator.

2.1 Semi-Lagrangian transport

The Islet method uses semi-Lagrangian (SL) transport. In an
SL method, following Eqs. (5) and (6), each Eulerian arrival
grid point at time t1 is advected backward or forward in time
to its generally off-grid departure point at time t0. The re-
sulting Lagrangian departure grid then samples the field at
time t0 and, by some means, uses these data to construct the
advected field at time t1.

In the problem of tracer transport, for which the flow
velocity u is provided, SL methods can take much longer
time steps than Eulerian methods. Data dependencies are lo-
cal to a small domain of dependence; thus, unlike an im-
plicit method, SL tracer transport does not require the solu-
tion of a global linear equation. This long time step requires
many fewer interprocess communication rounds and some-
times fewer floating point operations per unit of simulation
time than Eulerian methods, making SL methods substan-
tially more efficient than Eulerian methods for tracer trans-
port.

Transport methods often are the composition of a number
of operators. Two key operators are the linear advection op-
erator and the nonlinear property preservation operator; we
describe ours in Sect. 2.1.4 and 2.2, respectively.

2.1.1 Types of SL methods

For a broad survey of atmosphere tracer transport meth-
ods, including a large number of Lagrangian and semi-
Lagrangian methods, we refer the reader to Lauritzen et al.
(2014, Sect. 2). In addition, Giraldo et al. (2003), Natarajan
and Jacobs (2020), and Bradley et al. (2019) review types of
SL methods. This article focuses on remap-form interpola-
tion methods.

A method in remap form directly remaps the tracer field
on the Eulerian grid at the previous time step to the La-
grangian grid, in contrast to flux-form methods that integrate
over swept regions (Lauritzen et al., 2010; Lee et al., 2016)
or characteristic curves (Erath and Nair, 2014). The compu-

tational and communication costs of a remap-form method
are very nearly independent of time step whereas a flux-form
method’s cost grows roughly linearly with the time step.

An interpolation SL (ISL) method directly discretizes the
tracer transport equation, Eq. (5): q(xi, t1)= q(x̄i, t0), where
xi is an Eulerian arrival grid point and x̄i is its departure,
generally off-grid, point at t0 < t1. q has exact values only at
grid points xi ; thus, evaluating q(x̄i, t0) requires interpola-
tion.

Interpolation is in contrast to exactly cell-integrated meth-
ods, which accurately integrate the basis of a target (e.g., La-
grangian) element against those of the source; see, e.g.,
Bosler et al. (2019). (In some cases, an inaccurate cell-
integrated method can be interpreted as an interpolation
method; see Appendix B for an example.) Exactly cell-
integrated methods have substantially greater cost than in-
terpolation methods for three reasons.

First, to obtain smoothness in the integrand, integration is
over facets computed by geometric intersection of a target el-
ement against source elements; intersection calculations are
not needed in interpolation methods. Typically, to minimize
computational geometry complexity, departure cell edges are
approximated by great arcs rather than flow-distorted curves,
limiting the method to second-order accuracy; however, Ull-
rich et al. (2013) describe a higher-order edge reconstruc-
tion that yields a third-order accurate advection method. In
contrast, achieving arbitrarily high order in an ISL method’s
linear advection operator does not entail any additional com-
plexity.

Second, accurate integration has a larger computational
cost because it requires sphere-to-reference point calculation
and interpolant evaluations at many quadrature points.

Third, an exactly cell-integrated method requires a larger
communication volume because all data from a source ele-
ment are used to integrate against each target basis function.

In trade for these additional costs, exactly cell-integrated
methods are locally mass conserving, and the fact that they
are L2 projections can be used to prove stability. Local mass
conservation means that one can identify numerical, possibly
Lagrangian, fluid parcels on the grid that have constant tracer
mass. Local is in contrast to global mass conservation; the
latter means that the mass of the tracer fluid is conserved
over the whole domain but not necessarily in any identifiable
parcels smaller than the domain. Although an exactly cell-
integrated method is locally mass conserving, coupling it to a
dynamics solver still generally requires additional measures
to obtain mass-tracer consistency.

2.1.2 Spectral element ISL transport

Our objective in this work is to use the design freedom pro-
vided by giving up local, but not global, mass conservation
to maximize computational efficiency. We develop an ISL
method that uses the Islet bases, summarized in Appendix A
and derived in Bradley et al. (2021, Sects. 2 and 3) and a
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Figure 2. Diagram of the linear advection operation in a finite-
element interpolation semi-Lagrangian time step. (a) Six spectral
elements (blue solid lines) with an nt

p = 6 tracer grid (red small
circles). The black large circles in the upper-left element show the
nv

p = 4 dynamics grid. The upper-left Eulerian arrival element is
advected backward in time to the right and down, resulting in the
Lagrangian departure element (blue dashed outline, open circle dy-
namics grid points, green tracer grid points). The domain of depen-
dence of each green starred tracer grid point is the bottom right Eu-
lerian element, with interpolation grid points (red small circles) as-
sociated with this domain of dependence outlined in black. (b) The
six 1D nt

p = 6 element basis functions, a different color for each, for
the natural GLL (dashed curves) and Islet GLL (solid curves) bases.
In the bottom right Eulerian element, a set of 1D basis functions is
conceptually associated with each of the red horizontal and green
vertical rectangles outlining an element side, and a 2D basis func-
tion over the element is a tensor product of one 1D basis function
from each set.

forthcoming article based on that material, to satisfy a neces-
sary condition for stability.

Figure 2a illustrates the linear advection step in the Islet
method. First, the upper-left element is advected backward in
time from time t1 to time t0, using velocity data on the nv

p = 4
dynamics grid to advect each dynamics grid point. Second,
the nv

p = 4 isoparametric map interpolates the locations of
the Lagrangian nt

p = 6 tracer grid points from the Lagrangian
nv

p = 4 dynamics grid points. Third, the tracer data at time t0
in the bottom-right Eulerian element are used to interpolate
the tracer mixing ratio at t0 to each green starred Lagrangian
point. Interpolation uses the 2D tensor-product nt

p = 6 nodal

basis. Fourth, these values are then the values in the upper-
left Eulerian element at time t1.

Figure 2b shows two bases, the GLL basis, called the natu-
ral basis when a distinguishing name is needed, and the Islet
GLL basis. The ISL method using the natural GLL basis is
unstable for the test problem of uniform flow on a uniform
grid, but the ISL method using the Islet GLL basis is stable
for this problem (Bradley et al., 2021). In this article, all of
the algorithms accommodate either basis type, and we use
the Islet GLL bases to obtain stability; see Appendix A for
details.

Each basis is a nodal basis: a basis function has value 1 at
one node and 0 at every other node. Thus, each basis func-
tion is associated with a node. For example, in Fig. 2b, the
blue basis function is associated with the third node of six.
The basis is symmetric; basis function k ∈ {0, . . .,np− 1} is
the mirror image of basis function np− k− 1. Thus, the blue
and cyan functions are mirror images around reference coor-
dinate 0.

There are two conventional ways to enumerate finite ele-
ment nodal degrees of freedom and basis functions, where
for a scalar field, one degree of freedom is associated with
each basis function. First, in this article, by a basis we al-
ways mean an element basis unless stated otherwise. A ba-
sis function in an element basis set has non-zero values only
within an element. As a result, nodes in the interior of an
element have single-valued field values while nodes at an el-
ement boundary may have multi-valued field values.

Second, the viewpoint of global continuous degrees of
freedom and global basis functions always assigns only one
degree of freedom of the field to each grid point. The basis
function associated with a grid point in the interior of an el-
ement is the same as in the element basis. A grid point on
the element boundary has a basis function that spans all the
elements that share that grid point. This global basis function
is the sum of the element basis functions associated with that
grid point.

In the case of continuous finite element methods, the
two viewpoints are equivalent, and convenience determines
which viewpoint is adopted. In the case of a discontinuous
finite element method, only the element viewpoint is possi-
ble.

The Islet method accommodates both continuous and dis-
continuous variants; in this article, we present only the con-
tinuous variant. We always take the element viewpoint, re-
gardless of the continuity of a field. Thus, for a scalar field,
there is one degree of freedom associated with each grid
point in an element and, thus, n degrees of freedom at a grid
point shared by n elements. Index i is associated with grid
point location xi . Again, to be clear, for a grid point at an
element edge, multiple index values are associated with the
same location x. Some steps in the Islet method introduce
discontinuities in the field across elements. Section 2.4 de-
scribes the operator that restores continuity to a discontinu-
ous field.
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2.1.3 Definitions and notation

The tracer mixing ratio degrees of freedom are written qi
and the air density, ρi . The vector of all scalar values is bold-
faced, e.g., q. A subset of these, with the index set given
by E , is written q(E). When needed, a superscript letter in-
dicates on which grid the field is approximated: t, tracer; v,
dynamics; and f, physics.

Arithmetic between vectors applies entry-wise. For two
vectors, x and y, we write x� y for element-wise multipli-
cation and x� y for element-wise division.

We need to define a map between a reference element with
coordinates r ∈ [−1,1]2 and element e on the manifold with
coordinates x, e.g., the sphere. Let this map be x =me(r)
and its inverse be r =m−1

e (x). Additionally, let e = E(x) re-
turn the element index for the element that contains e. In this
work, if x is on the boundary of multiple elements, E(x) can
be any of the corresponding element indices without affect-
ing the solution.

Similarly, we need to map between (element-)local and
global indices. Local indices are in the set {0, . . ., (ngp)2− 1},
where g ∈ {v, t}. Global index i is in element elm(i;g)≡
bi/(n

g
p)

2
c. The corresponding local index is lcl(i;g)≡

imod(ngp)2. Given the local index j and element index e, the
global index is glb(j ;g)≡ (ngp)2e+ j . Let E(e;g) be the set
of global indices for the grid points in element e. We omit g
when it is not necessary to specify a grid. For convenience,
let qe ≡ q(E(e)).

Element basis functions and reference-coordinate nodes
are indexed locally. Thus, global grid point i corresponds
to the 2D tensor-product element basis function φlcl(i;g) and
reference-coordinate node r lcl(i;g).

Occasionally, we write the tensor product in the 2D
basis explicitly. Let a 1D element basis function set
be ψj , j ∈ 0, . . .,np− 1. Let r ≡ (r1, r2). Then, φi(r)≡
ψbi/npc(r1)ψimodnp(r2). Figure 2b shows the nt

p = 6 basis
functions ψj .

The function normalize(x)≡ x/‖x‖2.
Finally, we write the particular map x =me(r) we use.

The map uses just the corner nodes of an element; it is
the isoparametric map for a bilinear basis. In element e, let
cornere(j ;v) be the global index of corner j of the element,
here referenced to the dynamics grid for concreteness. Let
φbilin
j (r) be the bilinear basis functions, i.e., the GLL basis

with np = 2. Then,

x(r)= normalize

(
3∑
j=0

xv
corner(j ;v)φ

bilin
j (r)

)
. (7)

This is the map described in Guba et al. (2014, Appendix A).

2.1.4 The linear advection operator

Now we write the steps illustrated in Fig. 2. First, each grid
point xv

i is advected from time t1 to time t0 to give

x̄v
i ≡X(t0;x

v
i , t1). (8)

In this article, we assume this step is performed nearly ex-
actly, i.e., with numerical error substantially smaller than any
other source of error because this article focuses on the spa-
tial part of the advection discretization. Second, the tracer
grid points are computed from the dynamics grid points using
the nv

p-basis isoparametric map followed by normalization:

x̄t
i ≡ normalize

 ∑
j∈Ev(elm(i;t))

x̄v
jφ

v
lcl(j ;v)(r

t
lcl(i;t))

 . (9)

Third, an interpolated value from time t0 is assigned to each
advected tracer grid point:

e ≡ E(x̄t
i) (10)

q t
i(t1)=

∑
j∈E t(e)

q t
j (t0)φ

t
lcl(j ;t)(m

−1
e (x̄t

i)). (11)

2.2 Property preservation

Shape preservation and mass conservation on their own are
not necessarily difficult to achieve. Rather, the hard problem
in the development of an efficient transport method is the
consistent coupling of the transport scheme to the dynami-
cal core, or mass-tracer consistency. Mass-tracer consistency
means that the transport solver and dynamics solver agree ex-
actly on the air density field. Achieving both mass-tracer con-
sistency and a long transport time step requires redistributing
tracer mass.

It is possible to couple a tracer transport method to a dy-
namical core consistently and preserve properties using only
local operations. Lauritzen et al. (2017) describe the coupling
of a finite-volume, cell-integrated SL method to the HOMME
spectral element dynamical core using Lagrangian grid ad-
justments, where each adjustment is a function of only data
in the adjusted entity’s local neighborhood. However, in their
method, the time step is limited to a Courant number of at
most 1, limiting efficiency.

Our approach to consistent coupling is to use what is
sometimes called a global fixer, although, often, this term
applies to only the problem of global mass conservation. In
Bradley et al. (2019), we describe several classes of meth-
ods that we call Communication-Efficient Density Recon-
structors (CEDR). Each CEDR can solve a variety of prop-
erty preservation problems, including shape preservation and
global mass conservation. Each CEDR provides a tight and
practically meaningful bound on mass redistribution. A so-
lution is assured if the input data meet necessary and suffi-
cient conditions. Depending on the algorithm, a CEDR uses

Geosci. Model Dev., 15, 6285–6310, 2022 https://doi.org/10.5194/gmd-15-6285-2022



A. M. Bradley et al.: Islet: interpolation semi-Lagrangian element-based transport 6291

either one or two global reductions or reduction-like com-
munication rounds. See Bradley et al. (2019, Sect. 1.2) for a
discussion of how CEDRs relate to previous global fixers, in
particular, with respect to solution guarantees and number of
communication rounds.

Because we use a CEDR for consistent coupling, we are
then free to exploit it in other parts of our transport method
to maximize efficiency. For example, we can use an interpo-
lation SL method, which is not mass conserving, because the
mass will be corrected at the end of each time step.

Exact shape preservation uses mixing ratio bounds com-
puted from each arrival grid point’s domain of dependence
and does not permit any violation of a domain’s nodal ex-
trema. As a result, exact shape preservation clips smooth ex-
trema, limiting the overall transport method to an order of ac-
curacy generally not more than a little above two. Nonethe-
less, higher-order linear advection is still useful because it
increases the absolute accuracy of the overall method even if
not its order of accuracy, as examples in Sect. 4 will demon-
strate.

2.2.1 CLIPANDASSUREDSUM

In this article, we use the simplest CEDR: CLIPANDAS-
SUREDSUM, subsequently CAAS, algorithm 3.1 in Bradley
et al. (2019).

To explain CAAS, we need to define the weight associated
with a grid point since weights are needed to define the mass.
Conceptually, a weight is an integral over the element of the
product of the grid point’s basis function and the Jacobian
determinant of x =m(r):

θ̄i ≡

1∫
−1

1∫
−1

φlcl(i)(r)

∣∣∣∣∂melm(i)(r)

∂r

∣∣∣∣ dr. (12)

Details of the discretization modify this value. Our manifold
is the sphere, and we use HOMME’s definition of a weight.
HOMME discretizes the weight integral using the np-basis
GLL quadrature. Let

vi ≡

1∫
−1

ψi(r) dr.

Because φlcl(i)(r lcl(j))= 1 when j = i and is 0 for every
other value of j , GLL quadrature applied to Eq. (12) gives

θi ≡
∑

j∈E(elm(i))

[
φlcl(i)(r lcl(j))

∣∣∣∣∂melm(i)(r lcl(j))

∂r

∣∣∣∣]×
vblcl(j)/npcvlcl(j)modnp

=

∣∣∣∣∂melm(i)(r lcl(i))

∂r

∣∣∣∣vblcl(i)/npcvlcl(i)modnp

≡ Jiwi .

In the final line, we define

Ji ≡

∣∣∣∣∂melm(i)(r lcl(i))

∂r

∣∣∣∣ (13)

and wi as the product of the two 1D basis function integrals.
In practice, HOMME modifies each node’s Jacobian deter-
minant Ji by multiplying it by a constant very close to 1 such
that the global sum

∑
iJiwi = 4π ; that is, the sum of all the

products of wi and adjusted Ji gives exactly the area of the
unit sphere. This is an optional and minor implementation
detail, and we neglect this scaling factor subsequently. Note
that, in general, J is discontinuous across elements.

Now we describe CAAS independent of two sets of de-
tails: first, the means by which time-t1 data are obtained and,
second, the index set E over which CAAS is applied. Later,
we will specify these details for each application of CAAS.
At time t1 and grid point i, we are given air density ρi , pre-
liminary tracer mixing ratio q̄i , and weight θi . In addition,
we are given a target total mass b over all i ∈ E . Finally, we
have lower and upper bounds, qmin

i and qmax
i , on the target qi .

These are the inputs to CAAS. The output is a set of modified
values q(E) that solve the 1-norm minimization problem

min
∑
i∈E
|qi − q̄i |

subject to
∑
i∈E
θiρiqi = b (mass conservation)

qmin
i ≤ qi ≤ q

max
i for i ∈ E (shape preservation).

This problem has a solution, i.e., the constraint set is non-
empty, if and only if∑
i∈E
θiρiq

min
i ≤ b ≤

∑
i∈E
θiρiq

max
i . (14)

For details, see Bradley et al. (2019, Sect. 2).
When there is a solution, there are usually an infinite num-

ber, and CAAS efficiently finds one as follows. First, clip the
mixing ratios for i ∈ E :

q̂i ≡min(qmax
i ,max(qmin

i , q̄i)).

Let the preliminary mass be

m̂≡
∑
i∈E
θiρi q̂i .

If m̂= b, then set qi = q̂i for i ∈ E and terminate. Otherwise,
suppose m̂ < b. Second, compute the capacity:

c ≡
∑
i∈E
θiρi(q

max
i − q̂i).

Third, compute the final values for i ∈ E :

qi = q̂i + (b− m̂)
qmax
i − q̂i

c
.
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As a check, note that∑
i∈E
θiρiqi =

∑
i∈E
θiρi q̂i + (b− m̂)

∑
i∈Eθiρi(q

max
i − q̂i)

c

= m̂+ (b− m̂)
c

c

= b.

If b− m̂≤ c, then qi ≤ qmax
i for i ∈ E ; these conditions hold

if and only if Eq. (14) does. The case m̂ > b is similar. Let

q(E)= CAAS(E,ρ,θ ,b,qmin,qmax, q̄)

carry out these steps.
CAAS is a CEDR because the global version, i.e., the

problem in which E is over all grid points, can be im-
plemented using a single global reduction. For details, see
Bradley et al. (2019, Sect. 6).

2.2.2 Infeasible problems

In some situations, the constraint set is empty. There is a se-
quence of up to two relaxations to the constraints to produce
a non-empty constraint set. Algorithm 3.4 in Bradley et al.
(2019), RECONSTRUCTSAFELY, which wraps a lower-level
algorithm like CAAS, formalizes this sequence. Suppose the
original constraint set is empty and m̂ < b. RECONSTRUCT-
SAFELY first tries to compute a one-norm-minimal relaxation
to qmax, such that the maximum value maxi∈Eqmax

i is not ex-
ceeded:

q(E)=qmax(E) +

CAAS(E, ρ, θ , b−
∑
i∈E
θiρiq

max
i , 0,

max
i∈E

qmax
i − q, qmax).

This relaxed problem provides mass-tracer consistency and
mass conservation but does not solve the exact shape preser-
vation problem. If this relaxation has an empty constraint set,
then RECONSTRUCTSAFELY returns q(E) with uniform val-
ues that satisfy the mass conservation constraint.

2.2.3 Local and global problems

We use CAAS to solve problems at two levels: first, within
each element separately and, second, over the whole grid.
In addition, at the global level, there are two natural choices
for scalar values in the vectors passed to CAAS: grid point
values and integrals over elements. In practice, some local
problems may not have assuredly non-empty constraint sets,
but the global problem always has a non-empty constraint
set.

In the first approach to the global problem, which we refer
to as CAAS–point, the inputs to CAAS are simply the grid
point values. Global and local applications of CAAS are then
identical except for the index set E .

In the alternative approach, which we refer to as CAAS–
CAAS, the global problem is solved over element-level scalar
values, and then a second step applies CAAS separately to
each element. The global step’s task is to provide each el-
ement with a sufficient mass adjustment so that each ele-
ment’s local CAAS step has a non-empty constraint set. The
global problem’s inputs are formulated as follows. Weight
e is element e’s area: Ae ≡

∑
i∈E(e)wiJi . Air density ρe

is the element’s average density. Let the element’s mass
be me ≡

∑
i∈E(e)wiJiρi . Then, ρe =me/Ae. The minimum

mixing ratio is the minimum tracer mass over the element
divided by the total mass: qmin

e ≡
∑
i∈E(e)wiJiρiq

min
i /me,

and similarly for qmax
e . Finally, the initial value q̄e is

q̄e ≡
∑
i∈E(e)wiJiρiqi/me. This global CAAS step returns

element-level mass adjustments. The adjusted mass in an el-
ement is then b in the input to the local CAAS step.

2.2.4 Relaxed problems

In the Islet method, multiple local and one global property
preservation problems are solved in each time step. Not ev-
ery problem must enforce strict property preservation; strict-
ness is required only in certain outputs, e.g., at the end of a
time step. Relaxing the extremal bounds on the mixing ratio
grid point values reduces the amount of mass redistribution.
More subtly, solving relaxed element-local problems before
solving the strict global problem increases intra-element and
decreases inter-element mass redistribution, thus, increasing
the locality of mass redistribution. Finally, problems such as
the toy chemistry problem described in Sect. 4.3.2 that are
sensitive to finite-precision round-off errors benefit from re-
laxed bounds because the perturbation to the mixing ratio is
decreased. Thus, in some element-local CAAS applications
in a time step, for each index i, we widen each pair of bounds
by 1 % of qmax

i − qmin
i in each direction. The global CAAS–

point application uses strict bounds, assuring the tracer field
is property-preserving at the end of a time step.

2.3 Grid remap

Remapping data among multiple component grids is com-
mon in many applications of partial differential equation
(PDE)-based modeling because it is a direct means to per-
mit each component to run in its most efficient configuration.
For example, many whole-earth, fully coupled earth system
models use different grids for ocean, land, and atmosphere
components. Remapping among subcomponent grids is less
common. Recent examples include separate physics parame-
terizations and dynamics grids in the atmosphere (Herrington
et al., 2019; Hannah et al., 2021); adaptive mesh refinement
(AMR) of a tracer (Chen et al., 2021; Semakin and Rastige-
jev, 2020); and local vertical refinement in physics param-
eterizations relative to the shared background vertical grid,
the Framework for Improvement by Vertical Enhancement
(FIVE) (Yamaguchi et al., 2017; Lee et al., 2020).
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In the Islet method, grid remap operators transfer data
among the dynamics, tracer, and physics grids. In all of these
grid transfers, there is one key property: the linear remap
operators use only element-local data. Thus, remap between
grids is extremely efficient.

Remapping a field between a GLL grid, dynamics or
tracer, and the physics grid is described in detail in Hannah
et al. (2021, Sect. 2), and these details are not reproduced
here. Remapping from the dynamics grid to the physics grid
is simple: a physics grid subcell’s value is assigned the av-
erage value of the density over the subcell. Remapping from
the physics grid to the dynamics grid requires a high-order
reconstruction of the data on the physics grid in addition to
maintaining an element-local mass-conservation constraint,
and most of the details in Hannah et al. (2021, Sect. 2) focus
on this high-order reconstruction.

Remapping a field between the dynamics and tracer grids
in either direction is simple; each grid hosts a field already in
a high-order representation and, thus, no high-order recon-
struction is needed. The first step is interpolation. Let Iv→t

interpolate a field in an element on the dynamics grid repre-
sented by the natural GLL nv

p-basis to one on the tracer grid
represented by the Islet nt

p-basis, using the natural nv
p-basis

functions to interpolate. Let I t→v do the opposite using the
Islet nt

p-basis functions. We can write these linear operators
explicitly using the notation introduced in Sect. 2.1.2. Let f
be the grid-point values of a scalar field. Consider element e.
Then, for local index i ∈ {0, . . ., (nt

p)
2
− 1},

(f t
e)i =

(
Iv→tf v

e

)
i
≡

∑
j∈Ev(e)

f v
j φ

v
lcl(j ;v)(r

t
i),

where we have used the notation f e ≡ f (E(e)). I t→v is writ-
ten the same way but with t and v switched.

The interpolation of a field f from the dynamics grid to
the tracer grid has the useful property that it is conservative
within each element e despite not being in all cases an L2

projection. Consider f t
e = Iv→tf v

e . Then,∑
i∈E t(e)

wt
if

t
i =

∑
i∈Ev(e)

wv
i f

v
i . (15)

See Appendix A2 for a proof of Eq. (15).
Remapping between grids requires, as a second step, ap-

plying CAAS for property preservation; thus, we need grid
point weight data on each grid. We define J t using Eq. (13).
On the tracer grid, rather than use Eq. (13), we interpolate
the Jacobian determinant values from the dynamics grid,

J t
e = Iv→tJ v

e, (16)

for two reasons. First, this operation conserves the area of the
element,∑
j∈E t(e)

wt
iJ

t
i =

∑
j∈Ev(e)

wv
i J

v
i ,

by Eq. (15). We describe the second reason when discussing
ρ in Sect. 3.1. On the physics grid, we follow a similar pro-
cedure, explained in Hannah et al. (2021, Sect. 2.2.1), that
is specialized to the finite-volume physics grid. Here again,
the area of an element on the physics grid is the same as on
the dynamics grid. Thus, all three subgrid definitions of the
element area agree on element area values.

2.4 Direct stiffness summation

In a spectral element method, most operations are performed
independently in each element, often leading to discontinu-
ities in a field across element boundaries. The global di-
rect stiffness summation (DSS) operator (Fischer and Pat-
era, 1989; Dennis et al., 2012) restores continuity. At each
grid point on an edge of an element, the multi-valued solu-
tion is restored to a single value by weighted summation of
contributions from each element sharing the grid point. An
element’s weight at grid point i is the value wiJi normalized
by the sum of all contributing elements’ values. We will need
a generalization of this operator in which an extra factor σi
is absorbed into the weight in the weighted sum. Let δgrid

ij be
1 if global indices i and j are associated with the same grid
point and 0 otherwise. For global index i, the generalized
DSS applied to a preliminary field ȳ is written:

yi = DSS(θ ,σ , ȳ, i)≡

∑
e

∑
j∈E(e)δ

grid
ij θjσj ȳj∑

e

∑
j∈E(e)δ

grid
ij θjσj

, (17)

where
∑
e is the sum over all elements. In our use of the

generalized DSS, σ = ρ and ȳ = q̄. In the standard DSS, σ
is all one and ȳ = ρ� q̄. These two use cases give the same
value for qi if ρ is continuous across elements. We use the
generalized DSS when we want to make q continuous but
leave ρ discontinuous and, in particular, unmodified from its
original value.

3 The Islet method

Now that we have described the problem setting and the core
algorithms we use, we describe each algorithm that runs in
one time step of the Islet method, advancing the simulation
from time step n to n+ 1.

As part of an earth system model, the advection equation
Eq. (3) has a source term. f is a function of possibly all
the variables in a simulation. The physics parameterizations
compute f on the physics grid. In practice, there are multiple
equations of the form Eq. (3) to solve, e.g., 40 in the E3SM
version 2 water cycle simulations (Golaz et al., 2022); be-
cause they decouple during one transport time step, we can
focus on just one in this section.

In summary, first, air density ρ and trajectory data are
remapped from the dynamics grid to the tracer grid. Second,
1q ≡ f1t is remapped from the physics grid to the tracer
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grid, where 1t is the physics parameterization time step. Ei-
ther of f or 1q is sometimes called a tendency. Third, the
remapped tracer tendencies are added to the tracer-grid trac-
ers. Fourth, the tracers are advected on the tracer grid. Fifth,
tracer states are remapped to the physics and, optionally, dy-
namics grids.

3.1 Algorithms

There are a number of algorithmic steps in a time step.
To organize these algorithms, we name each algorithm
using the format Step::algorithm-name and sometimes
Step::algorithm-name::sub-algorithm-name.

Step::density-d2t. Interpolate J �ρn+1 from the dynam-
ics grid to the tracer grid. In each element e, compute

(ρt
e)
n+1
= (Iv→t(J v

e � (ρ
v
e)
n+1))�J t

e.

This grid transfer conserves J e� ρn+1
e by Eq. (15). J t

�

(ρt)n+1 is not continuous across element boundaries because
J t is not, but continuity is not needed. Equation (16) implies
that if ρe is constant on the dynamics grid, then it is constant
on the tracer grid too. Mapping a constant air density exactly
is not necessary, but since it is possible, we do; this property
is the second reason to define J t according to Eq. (16).

Step::tendency-f2t. Map the tracer tendency 1qn from
the physics grid to the tracer grid. This step involves multiple
sub-algorithms.

Step::tendency-f2t::bounds. In each element e, compute
and store the minimum and maximum values of (qf

e)
n, subse-

quently, extrema. Let an element’s neighborhood contain it-
self and every other element that shares a vertex with it. Aug-
ment an element’s extrema with the extrema over its neigh-
borhood. Finally, augment element e’s extrema again with
the extremal values of the tracer-grid mixing ratio state (q t

e)
n.

This final extrema update assures that if 1(qf
e)
n
= 0, then

(q̄ t
e)
n is unmodified in Step::tendency-f2t::CAAS. These

final extrema are the bounds used in subsequent property
preservation corrections.

Step::tendency-f2t::linear-remap. In each element
e, apply the linear, element-local, conservative, panel-
reconstruction remap operator described in Hannah et al.
(2021, Sect. 2.2.3) to map the tendency from the physics
grid to the tracer grid. In the Islet method, but unlike in
Hannah et al. (2021), the basis used in the mass matrix of
the L2 projection is the Islet basis. From the previous step’s
application of Step::density-d2t, we have ρt

e. The operator
uses this quantity and ρf

e�1(q
f
e)
n to compute ρt

e�1(q
t
e)
n.

Step::tendency-f2t::CAAS. In each element e, apply
CAAS, described in Sect. 2.2.1, to (q̄ t

e)
n
≡ (q t

e)
n
+1(q t

e)
n,

using the weight vector θ t
e ≡ w

t
e�J

t
e and air density (ρt

e)
n.

Target mass b is set to the current total element mass
because Step::tendency-f2t::linear-remap is conservative;
thus, no adjustment to the total element mass is needed. The
same upper and lower bounds apply to each GLL node in
the element. In this step, the bounds that Step::tendency-

f2t::bounds computed are relaxed in each direction by 1 %
of the difference between upper and lower bounds, as dis-
cussed in Sect. 2.2.4. The exact bounds will be enforced in
Step::CEDR::global. The constraint set of mass conserva-
tion and bounds nonviolation is non-empty because the con-
stant mixing ratio is a solution, as explained in Hannah et al.
(2021, Sect. 2.3).

Step::tendency-f2t::DSS. At this point, (q̄ t)n is discon-
tinuous across element boundaries. Neither order of accuracy
nor property preservation requires continuity, but we find that
continuity improves the solution quality. (ρt)n can remain
discontinuous. Thus, we apply the generalized DSS, Eq. (17),
to (q̄ t)n, using (ρt)n to obtain the continuous field (q̂ t)n.

Step::advect-interp. Compute and apply the linear advec-
tion ISL operator described in Sect. 2.1.4. This step involves
two substeps: computing the grid point trajectories and com-
puting the interpolants.

Step::advect-interp::trajectory. Compute Eq. (8). The
dynamics component supplies velocity data at the dynam-
ics GLL grid points. Any of a number of algorithms can
compute departure points at time n backward in time from
dynamics-grid arrival GLL points at time n+ 1. The Islet
method takes as input these departure points as 3D Carte-
sian departure points. Next, compute Eq. (9). In each ele-
ment, the natural GLL interpolant Iv→t is applied to each
of the Cartesian components separately to provide departure
points on the tracer grid. This procedure implies that adja-
cent elements compute identical departure points at shared
boundaries. Finally, for simplicity in the subsequent sphere-
to-reference map computations, the 3D Cartesian points are
normalized to the sphere. For nv

p = 4, the nt
p-basis departure

points are obtained at order of accuracy 4.
Step::advect-interp::mixing-ratio. Compute Eq. (10).

Each departure tracer-grid GLL node is mapped to the con-
taining element, subsequently the source element. Details of
finding the source element depend on host-model implemen-
tation details and are omitted here; possibilities include oc-
tree search, O(1) arithmetic for quasiuniform cubed-sphere
element grids having certain reference-to-sphere maps, and
search within a predefined element neighborhood whose size
is proportional to maximum wind speed times advection time
step. Then, the corresponding reference coordinates within
the source element are computed using Newton’s method.
Next, compute Eq. (11). The mixing ratio value is computed
at the departure point using the Islet basis interpolant and
the source element’s (q̂ t)n values. In addition, the source ele-
ment’s stored extrema are associated to this point as bounds.
Finally, the mixing ratio value and bounds are assigned to
the target GLL node on the arrival tracer grid. Departure
points and interpolant weights are calculated once and then
are reused for each tracer.

Step::CEDR. Apply Communication-Efficient Density
Reconstructors (CEDR) on the tracer grid, first to each el-
ement and then globally. In this work, we use CAAS, de-
scribed in Sect. 2.2.1. Node weights are wt

�J t.

Geosci. Model Dev., 15, 6285–6310, 2022 https://doi.org/10.5194/gmd-15-6285-2022



A. M. Bradley et al.: Islet: interpolation semi-Lagrangian element-based transport 6295

Step::CEDR::local. First, apply the element-local CAAS
algorithm. This step is not required but it reduces the amount
of global mass redistribution in Step::CEDR::global,
is computationally inexpensive, involves no interprocess
communication, and, thus, is worth including. As in
Step::tendency-f2t::CAAS, we relax bounds in each di-
rection by 1 % of the difference between upper and lower
bounds. Unlike in Step::tendency-f2t::CAAS, in this appli-
cation of the element-local CAAS algorithm, any two tar-
get GLL nodes in an element may have different bounds;
the bounds depend on the source element for the target GLL
node, as detailed in Step::advect-interp::mixing-ratio. At
this point, the global mass has not yet been corrected; thus,
this local CAAS application’s mass constraint is to main-
tain the element’s current tracer mass. The constraint set is
not assuredly non-empty. Thus, RECONSTRUCTSAFELY, de-
scribed in Sect. 2.2.2, wraps the call to CAAS.

Step::CEDR::global. Apply CAAS–point, described in
Sect. 2.2.3, on the global tracer grid. The exact rather than re-
laxed bounds are applied to each node. The inputs to CAAS–
point are as follows: the air density (ρt)n+1; the weights
θ ≡ wt

�J t; b =
∑
iw

t
iJ

t
i (ρ

t
i)
n(q̂ t)n, the global tracer mass

after the tendency update; the mixing ratio bounds computed
in Step::tendency-f2t::bounds; and the current mixing ra-
tio values from Step::CEDR::local. Let the output values be
(q t)n+1.

Continuity across element boundaries was restored to
the mixing ratio field in Step::tendency-f2t::DSS. Subse-
quent steps maintain it in exact arithmetic. However, in fi-
nite precision, continuity in (q t)n+1 holds only to a lit-
tle above machine precision and not exactly. This numer-
ical discontinuity does not grow in time because in each
time step, both Step::tendency-f2t::DSS and Step::advect-
interp::mixing-ratio restore exact continuity in finite preci-
sion, although only one restoration per time step is necessary
to prevent growth of the numerical discontinuity. No step of
the overall algorithm is sensitive to this small and roughly
temporally constant numerical discontinuity.

At this point, the time step is complete; the remaining
computations remap the tracer grid data between grids.

Step::state-t2f. Remap the mixing ratio state to the
physics grid. This is a purely element-local operation.
First, the linear operator described in Hannah et al. (2021,
Sect. 2.2.1) is applied to the tracer density. Second, the
element-local CAAS algorithm is applied on the physics
grid, with the extremal mixing ratio values in the element
on the tracer grid as the bounds. For the same reason as in
Step::tendency-f2t::CAAS, the constraint set is assuredly
non-empty.

Step::state-t2v. The dynamics solver needs one or more
mixing ratios on the dynamics grid, e.g., specific humidity.
In addition, in our numerical results in Sect. 4, we compute
all errors, except as indicated, on the dynamics grid, so we
use this step to obtain those errors. First, in an element, I t→v

interpolates the tracer-grid mixing ratio to the nv
p-basis. Sec-

ond, the element-local CAAS algorithm is applied on the dy-
namics grid to preserve shape and conserve mass; the de-
tails are as in Step::state-t2f but with GLL nodes instead of
finite-volume subcells. The result is (qv)n+1. Third, the stan-
dard DSS is applied to (ρv)n+1

� (qv)n+1, where (ρv)n+1 is
the continuous air density from the dynamical core to obtain
continuous tracer density and mixing ratio fields.

Step::state-v2t. In verification problems in Sect. 4, we
need to remap a mixing ratio initial condition from the dy-
namics grid to the tracer grid. The algorithm is the same as
Step::state-t2v except that the DSS follows the procedure
in Step::tendency-f2t::DSS because the air density on the
tracer grid is and remains discontinuous at element bound-
aries.

If nt
p = n

v
p, then tracer transport p-refinement (TTPR) is

not enabled. In this case, identity maps replace a subset of the
algorithms described in this subsection: Step::density-d2t,
the interpolation part of Step::advect-interp::trajectory,
Step::state-t2v, and Step::state-v2t. When describing nu-
merical experiments, we indicate when TTPR is not enabled.

4 Numerical results

This section presents results for a number of verification
problems. Except in Sect. 4.3, the equation is the source-
less advection equation, Eq. (4). Two-dimensional, time-
dependent flow, u(x, t), is prescribed on the sphere.

In most figures, we show results for nt
p = 4, 6, 8, 9, 12. The

nt
p = n

v
p = 4 case provides a reference because it does not use

the TTPR algorithms. The nt
p = 6 case has the smallest value

of nt
p providing order of accuracy (OOA) greater than 2, in

this case, 4. The nt
p = 8 case provides OOA 5 and has four

times as many nodes as the nt
p = 4 basis in two dimensions.

The nt
p = 9 case provides OOA 6. Finally, the nt

p = 12 case
provides OOA 8 and has four times as many nodes as the
nt

p = 6 basis.
Tests follow the procedures detailed in Lauritzen et al.

(2012). Results can be compared with those from many mod-
els described in Lauritzen et al. (2014). We refer to these
articles frequently and thus abbreviate them as TS12 (“test
suite”) and TR14 (“test results”), respectively. Initial condi-
tions are generated on the dynamics grid. Similarly, error di-
agnostics are computed on the dynamics grid in most cases;
we state the exceptions when they occur. In most cases, we
omit results for simulations without property preservation as
tracer transport modules in earth system models are expected
to be property preserving. We have not attempted to make
this section self-contained as describing details of the large
number of verification problems would take too much space.
We recommend the reader not familiar with these problems
read TS12. In addition, we refer to specific figures in TR14
and sometimes TS12 so the reader can compare our results
with those from previously documented methods.
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We briefly summarize the key characteristics of the ver-
ification problems. There are two prescribed flows: a non-
divergent one and a divergent one. Each prescribes a flow that
lasts for T = 12 d and such that at time T , the exact solution
is the same as the initial condition. This 12 d prescribed flow
can be run for multiple cycles to lengthen the simulation. The
non-divergent flow creates a filament of maximum aspect ra-
tio at time T/2. The divergent flow tests treatment of diver-
gence. There are four initial conditions that share the feature
of placing two circular shapes at two points along the equa-
tor: theC∞ Gaussian hills, theC1 cosine bells, the correlated
cosine bells used in the mixing diagnostic, and the discontin-
uous slotted cylinders. Assessing the behavior of a transport
method on tracers having various degrees of smoothness is
important because atmosphere tracers can be smooth or non-
smooth.

This article does not study time integration methods to
generate the dynamics-grid departure points. Thus, to remove
temporal errors due to time integration algorithms, we use an
adaptive Runge–Kutta method (Dormand and Prince, 1980;
Shampine and Reichelt, 1997) with a tight tolerance (10−8

with an exception noted later) to integrate trajectories very
accurately. All tests for nt

p > 4 use TTPR with nv
p = 4 un-

less we state otherwise. Because nv
p = 4 in these verification

problems, the nt
p = 4 configuration does not use TTPR.

As we discussed in Sect. 2.2.3, there are two natural ap-
proaches when applying CAAS globally, which we refer to
as CAAS–CAAS and CAAS–point. CAAS–CAAS tends to
give slightly more accuracy than CAAS–point. However, it
does not permit the bound relaxations in the element-local
CAAS applications that improve the solution quality when
simulating source terms sensitive to round-off errors, as dis-
cussed in Sect. 2.2.4. However, because it provides slightly
more accurate results, we use CAAS–CAAS for nt

p = 4, ex-
cept where noted, while using CAAS–point for all other nt

p
values, thus maximizing the accuracy obtained with nt

p = 4
to provide the best baseline (nt

p = n
v
p = 4) accuracy.

The air density on the dynamics grid, ρv, is not needed
for the advection of mixing ratios, but it and its remapped
versions are needed for property preservation. In these ver-
ification problems, we have no independent computation of
density ρv as occurs when transport is coupled to a full dy-
namical core. For the non-divergent flow problem, we could
set ρv to a constant, but for the divergent flow problem, a
constant is incorrect. Thus, within our standalone verifica-
tion code, we need a means to compute ρv as a surrogate for
a dynamics solver. Appendix B describes the linear advection
part of computing ρv. After the linear advection operator is
applied, because it is not mass-conserving, the density is cor-
rected by adding 1m/atotal to each grid point, where 1m is
the global mass discrepancy after advection, and atotal is the
total area of the grid. Negative density does not occur in these
verification problems. The algorithm for ρv has OOA 2 for
nv

p = 4.

We use a quasiuniform, equiangular cubed-sphere element
grid. Let a cube face of the cubed-sphere element grid have
ne×ne elements. Each element has an nv

p×n
v
p tensor grid of

GLL nodes and, thus, nv
p− 1 intervals between GLL nodes

along each direction of an element. GLL nodes are mapped
to the sphere using the isoparametric map for a bilinear el-
ement, as described in Appendix A of Guba et al. (2014)
and Eq. (7). Long tracer time steps correspond to 6ne steps
per T ; short, 30ne. For the test flows, these correspond to,
respectively, approximately 5.5 and 1 times the maximum
Courant number. These are the same time step settings as the
two Conservative Semi-Lagrangian Multi-tracer (CSLAM)
(Lauritzen et al., 2010) model configurations used in TR14.
Essentially all SL methods, particularly when given exact tra-
jectory data, exhibit greater error with smaller time step, e.g.,
CSLAM in TR14. This is because the only source of error
given exact trajectories is the remap error. Smaller time steps
correspond to more remaps to reach a fixed simulation time.

Figures 3–9 and 15 show convergence plots, and we ex-
plain the format of these figures here. A curve’s marker cor-
responds to nt

p, as listed in the legend. To maximize font size
and minimize notational clutter in figures, in figures, we use
np rather than nt

p , and omit “=”; e.g., “nt
p = 8” is written

“np 8”. Additionally, the legend omits “np” entirely. The x
axis is the average dynamics-grid node spacing at the equa-
tor in degrees for a cubed-sphere grid with north and south
cube faces centered at the poles. Thus, for example, ne = 5
and nv

p = 4 correspond to the resolution

360◦

4 cube faces
·

1 cube face
5 elements

·
1 element

(4− 1) intervals
=

6◦

interval
.

The y axis is log10 of the relative error, with the norm or
norms indicated in each figure. The title of a plot lists details
of the configuration: the test flow, the initial condition (IC),
the time step (short or long), and, if property preservation is
disabled, an extra line stating that. Many plots have a dotted
line showing the slope for OOA 2.

4.1 Accuracy for C∞ and C1 tracers

4.1.1 Accuracy limited only by trajectories

The first experiment tests the OOA limit due to comput-
ing trajectories on the tracer grid using velocities from the
dynamics grid. Because the dynamics grid uses nv

p = 4 and
Iv→t uses the natural GLL basis, we expect this OOA limit to
be 4. Property preservation is turned off to expose this OOA
limit.

Sometimes verification problems have unexpected fea-
tures that interact with a method to produce higher-accuracy
solutions than would occur in a more realistic problem. Of
particular concern is the symmetry of the flow in time around
the midpoint time, 6 d. To be sure our trajectory interpolation
procedure is not interacting with this symmetry to produce
artificially higher accuracy, in this experiment, we compute
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Figure 3. Comparison of relative errors calculated at the test simu-
lation’s midpoint time of 6 d (1/2 cycle, dashed lines) and endpoint
time of 12 d (1 cycle, solid lines). Each number at the right side of
the plot is the empirical OOA computed using the final two points
of the one-cycle result.

the solution error at the midpoint time as well as the final
time.

The test uses the non-divergent flow, the Gaussian hills IC,
and the long time step. The midpoint reference solution is
computed using one 6 d step and the natural GLL basis. The
time integrator’s relative error tolerance is set to 10−14 rather
than its usual 10−8 for this step. One remap step with the
natural GLL basis provides a midpoint solution much more
accurate than the time-stepped case, thus serving as an ap-
propriate reference.

Figure 3 shows the results. The dashed curves show the
errors measured at the midpoint, half of a cycle of the 12 d
problem; the solid curves, the usual endpoint. The numbers
at the right side of the plot show empirical OOA computed
using the final two points of the one-cycle results. Numbers
for the half-cycle curves are omitted because each pair of
curves has almost exactly parallel lines for resolution at least
as fine as 0.75◦. In addition, the empirical OOA for nt

p = 12
is omitted because the curves nearly overlap those for nt

p = 9.
For fine enough resolution, all curves should have empirical
OOA limited to 4, but for nt

p = 8, the full convergence regime
is not reached in this plot, thus giving OOA 5 for nt

p = 8. The
nt

p = 4 curves have OOA less than 4 due to a spatial OOA
limit of 2 in the full convergence regime. We see OOA at

Figure 4. Accuracy diagnostic. Compare with Figs. 1 and 2 in
TR14.

about 4 for nt
p = 9 and 12. The nt

p = 9 curve shows at coarse
resolution higher OOA, governed by the spatial error, and
then a drop to 4 as the temporal error becomes dominant.
Importantly, the half- and full-cycle errors are very close for
each value of nt

p, demonstrating that the endpoint error met-
rics are valid measurements for the Islet method.

4.1.2 Accuracy data for other standard configurations

The next figures show accuracy for standard configurations
used in TR14. Although we explain how each figure can be
compared with corresponding ones in TR14, these figures
also stand on their own as simply convergence plots for vari-
ous test cases.

Figures 4 and 5 can be compared with Figs. 1 and 2 in
TR14. They evaluate error on an infinitely smooth IC. The
Islet method with a high-order basis compares extremely fa-
vorably with the methods in TR14. For example, the most
accurate shape-preserving method in TR14 for the non-
divergent flow with the Gaussian hills IC is the Hybrid Eule-
rian Lagrangian–Non-Diffusive (HEL-ND) method run with
Courant number 1.0 (HEL-ND-CN1.0) by a substantial mar-
gin (cyan curves in Fig. 1, bottom right, of TR14). The nt

p =

12 Islet scheme with the long time step, Fig. 4, is approx-
imately three times more accurate than HEL-ND-CN1.0 in
the l2 norm at resolution 0.375◦, and approximately twice as
accurate at resolution 3◦. Yet, HEL-ND is, quoting TR14, an
“unphysical” method. It is run for comparison with the prac-
tically useful HEL scheme. After HEL-ND, the next most ac-
curate method in the l2 norm at 0.375◦ resolution is CSLAM-
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Figure 5. Accuracy diagnostic. Compare with Figs. 1 and 2 in
TR14.

Figure 6. Accuracy diagnostic. Compare with Fig. 3 in TR14.

CN5.0. The Islet method with the long time step, the same
as that of CSLAM-CN5.0, is at least as accurate for nt

p ≥ 8.
With the short time step, the same as that of CSLAM-CN1.0,
the Islet method is at least as accurate as CSLAM-CN1.0
for nt

p ≥ 6. At 3◦ resolution, no method other than HEL-ND-
CN1.0 provides l2 norm below 10−2; the Islet method does

Figure 7. Accuracy diagnostic. Compare with Fig. 3 in TR14.

Figure 8. Accuracy diagnostic. Compare with Fig. 16 in TR14.

for nt
p ≥ 8 with the long time step, and nt

p ≥ 10 (only nt
p = 12

is shown) with the short time step.
Now we must remind the reader that, in this article, we

use nearly exact trajectories on the dynamics grid because
the description of practical trajectory methods is outside the
scope of this article. However, first, many of the schemes in
TR14 use nearly exact trajectories, as well, e.g., CSLAM.

Geosci. Model Dev., 15, 6285–6310, 2022 https://doi.org/10.5194/gmd-15-6285-2022



A. M. Bradley et al.: Islet: interpolation semi-Lagrangian element-based transport 6299

Figure 9. Accuracy diagnostic. Compare with Fig. 16 in TR14.

Second, when using a practical trajectory algorithm, highly
accurate, even if not exact, trajectories are possible because
a trajectory over a tracer time step can be computed from
multiple dynamics time steps. Thus, the use of exact trajec-
tories is only slightly unrealistic. Third, the diagnostic values
in Sect. 4.1.3, 4.1.4, and 4.3.2 are roughly independent of
temporal errors.

Figures 6 and 7 provide data that can be compared with
the top panel of Fig. 3 in TR14. They evaluate error on a C1

IC. The horizontal dash-dotted line provides the relative l2-
error-norm value of 0.033 by which the “minimal resolution”
diagnostic value is determined; the coordinate of the inter-
section between the l2-norm curve and this reference line is
the value. A larger value is better. For example, with a long
time step, for nt

p = 8, this value is a little coarser than 3◦;
for nt

p = 12, approximately 6◦. For comparison, no model in
TR14 reports a value larger than 2.5◦.

Figures 8 and 9 provide data that can be compared with
the top two panels in Fig. 16 of TR14 given the minimum
resolutions plotted in Fig. 3 of TR14. They are like Figs. 6
and 7 but, here, the divergent flow is used.

4.1.3 Filament diagnostic

Figure 10 shows results for the filament diagnostic described
in Sect. 3.3 of TS12 to compare with Fig. 5 in TR14. The
two dynamics grid resolutions are as prescribed in TR14. We
used the code distributed with TS12 to compute the results.
The diagnostic uses the non-divergent flow and the cosine
bells IC. In this test, the midpoint solution is analyzed to de-
termine the quality of the filamentary structure. See Fig. 13

for an illustration of the filamentary structure at the simu-
lation midpoint, although with the slotted cylinders IC. For
each possible value τ of the tracer mixing ratio at the ini-
tial time, the area over which the mixing ratio is at least τ
at the midpoint time is computed. For the cosine bells IC,
τ ∈ [0.1,1]. The diagnostic is then this area divided by the
correct area, which for any non-divergent flow is the area at
the initial time. The perfect diagnostic value is 100% for all
τ ∈ [0.1,1] and 0 otherwise. In each plot in Fig. 10, the x
axis is τ and the y axis is the diagnostic value. The diagnos-
tic is computed for the dynamics-grid resolutions and time
step lengths listed in the legend. Note that the y axis limits
are tighter with increasing nt

p.
A subtlety with this diagnostic is that the area calculation

must use the quadrature method of the discretization. On the
dynamics grid, the resulting curve is noisier than is implied
by the underlying solution on the tracer grid. Thus, in Fig. 10,
we show the diagnostic as computed on the dynamics grid in
the top row of plots; on the tracer grid, in the bottom row.

There is no summary number that can be compared di-
rectly with the results in Fig. 5 of TR14, but, visually, the
curves for nt

p ≥ 8, the resolution 1.5◦, and on the tracer grid
are among the best of those in TR14 at the resolution 1.5◦.

4.1.4 Mixing diagnostic

Figures 11 and 12 show results for the mixing diagnostics
described in Sect. 3.5 of TS12 to compare with Figs. 11–
14 in TR14. Again, the two dynamics grid resolutions are as
prescribed in TR14.

The test uses the non-divergent flow with two ICs. The
diagnostics assess preservation of the nonlinear correlation
of two tracers; one mixing ratio is a nonlinear function of the
other. The mixing ratio of each tracer is on an axis, cosine
bells on the x axis, and the correlated cosine bells field on
the y axis. Each dot is a grid-point sample from the dynamics
grid of the two mixing ratios. Like the filament diagnostic,
the analysis is done at the solution midpoint rather than the
endpoint. Also as for the filament diagnostic, we used the
code distributed with TS12 to compute the results. nt

p and
the time step length are printed in each plot. The diagnostic
values lr and lu, explained in a moment, are also printed in
each plot; the parenthesized “(v)” suffix means the value is
measured on the dynamics grid, while the un-suffixed values
are measured on the tracer grid.

At the initial time, all points are on the curve. Perfect non-
linear correlation corresponds to staying on the upper curve
as the simulation proceeds. Points that drop into the convex
hull of the starting points can be interpreted as physical mix-
ing of air parcels, since such mixing results in a linear com-
bination of two points on the curve. The diagnostic value lr
measures this type of error; smaller is better. In Figs. 11–14
in TR14, the smallest value of lr at 1.5◦ among the property-
preserving methods is 2.15× 10−4 by the University of Cal-
ifornia, Irvine, Second-Order Moments (UCISOM) method
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Figure 10. Filament diagnostic following Sect. 3.3 of TS12. Compare with Fig. 5 in TR14. The top row shows the diagnostic measured on
the nv

p = 4 dynamics grid; the bottom row on the tracer grid. The legend describes the dynamics-grid resolution and the time step length. The
prescribed verification problem is the non-divergent flow with cosine bells IC. Property preservation is on. The x axis is τ , the mixing ratio
threshold. The y axis is the percent area having mixing ratio at least τ relative to that at the initial time.

Figure 11. Mixing diagnostic following Sect. 3.5 of TS12. Compare with Figs. 11–14 in TR14. This figure shows results for dynamics-grid
resolution of 1.5◦. lo is exactly 0 in all cases because shape preservation is on, and so is not shown. See text for further details.

run with Courant number 5.5 (UCISOM-CN5.5), except for
a value of 0 by HEL-ND, which, again, cannot be used in
practice. For the long time step, the Islet method gives at least
as small a value for nt

p ≥ 6; for the short time step, nt
p ≥ 8.

Values outside the triangle are overshoots, possible only if
the method is not strictly shape preserving. Since our method
is, this diagnostic value, lo, is always 0, and is not displayed
in the figures.

Values outside the convex hull cannot be described as
physical mixing of parcels and, thus, are purely numerical
artifacts of a method. The corresponding diagnostic is lu
and, again, smaller is better. This diagnostic is more diffi-
cult to compare than lr because very dissipative methods tend
to have a large value of lr and, consequently, a very small
value for lu. In contrast, a very accurate method, for which
lr is small, can have a larger lu value than a very dissipative

method. One means of comparison is to consider the best
lu values among methods that obtain, say, lr ≤ 5× 10−4. In
Figs. 11–14 in TR14, the smallest value of lu at 1.5◦ under
this restriction is 0 obtained by the HEL-CN1.0 and HEL-
CN5.5 methods. These HEL variants are practically usable
unlike HEL-ND, and are designed to preserve tracer corre-
lations exactly. Other than the HEL methods, the next best
value is 4.80× 10−5, again by the UCISOM-CN5.5 method.
For both the long and short time steps, at 1.5◦, the Islet
method gives at least as small a value for nt

p ≥ 8. However,
even with the constraint on lr , comparison is not straightfor-
ward as the UCISOM methods are not strictly shape preserv-
ing and so have lo > 0.
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Figure 12. Same as Fig. 11 but with dynamics-grid resolution 0.75◦.

4.2 Slotted cylinders

We observe that in both the filament and mixing diagnostics
of TS12, nt

p ≥ 6 gives excellent results; nt
p = 12, nearly per-

fect. Figures 13 and 14 show solution quality using latitude–
longitude images and further underscore these observations.
The problem is the non-divergent flow with the slotted cylin-
ders IC, at resolutions 1.5 and 0.75◦, with the long and short
time steps. The text in the individual images in Fig. 14 pro-
vides normwise accuracy at the end of one cycle and devia-
tion from the initial extrema. φmin ≥ 0 and φmax ≤ 0 are con-
sistent with no global extrema violation. Compare Fig. 13
with Figs. 7–10 in TR14 and both figures with Fig. 7 in TS12.
Although TR14 does not provide error norm values for this
problem, those in Fig. 7 of TS12 can be compared with the
Islet method’s values at 1.5◦ resolution and the long time step
(left column of Fig. 14). The Islet method’s values of l2, linf,
φmin, and φmax are at least as good as those in Fig. 7 of TS12
for nt

p ≥ 6.

4.3 Source term

Now we move to verification problems that include a source
term: f 6= 0 in Eq. (3).

4.3.1 Accuracy

The first test verifies the property-preserving remaps be-
tween the physics and tracer grids. The test is constructed
as follows. Two tracer mixing ratios, a source q1 = s and
a manufactured tracer q2 =m, are paired. At time t = 0,
m(x, t) is set to 0, where x is position on the sphere. A ten-
dency 1m is applied to m on the physics grid: 1m(x, t)≡
−[cos(2π(t +1t)/T )− cos(2πt/T )]s(x, t)/2, so that the
exact solution is m(x, t)= (1− cos(2πt/T ))s(x, t)/2 and,
in particular, m(x,T /2)= s(x,T /2). To compute the ten-
dency, the state s(x, t)must be remapped to the physics grid.
Thus, the results for this test depend on both grid-transfer

directions. We measure the error at time T/2, on the dynam-
ics grid as usual, as in Fig. 3. Figure 15 shows the results.
We run this test with nf = n

t
p (dash-dotted lines) and nf = 2

(dashed lines). The solid lines show the error in s(x,T /2) as
a reference. The dotted line provides the OOA-2 reference.
We see that when nf = n

t
p, the errors are nearly the same as

those for s(x,T /2); for nt
p = nf = 4, the curves overlap at the

resolution of the plot. As one expects, when nf = 2, the er-
ror in m(x, t) is much larger than in s(x,T /2), but the OOA
remains 2.

4.3.2 Toy chemistry diagnostic

The toy chemistry verification problem is described in Lau-
ritzen et al. (2015), subsequently TC15. The problem con-
sists of two tracer mixing ratios, qi =Xi , i = 1,2, that inter-
act according to chemical kinetic equations that are nonlinear
in one of them: DXi(y, t)/Dt = fi(y,X1,X2), where y is
the spatial coordinate on the sphere. (We use y here to avoid
overlap with the species symbol, X, that is used in TC15.)
The tracers are composed of a monatomic and a diatomic
molecule, respectively, of the same atomic species. The re-
actions are extremely sensitive to solar insolation. The sun’s
position is held fixed with respect to the grid. As a result,
the largest-scale spatial pattern one sees in the fields is the
boundary dividing nonzero (day) and zero (night) solar in-
solation, the solar terminator; this boundary is particularly
visible in the right image of Fig. 17, a figure that we will
describe subsequently. The ICs are designed so that the sum
over the atomic mixing ratio at each point in space is a con-
stant, X̄T . The source terms have this property too, since they
model chemical reactions. Thus, in the exact solution, X̄T is
maintained at every point in space and time. Let XT with-
out a bar be the corresponding measured quantity. The toy
chemistry diagnostics are then c2(t), the l2 norm ofXT −X̄T
at time t normalized by X̄T , and c∞(t) the same but for the
l∞ norm.
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Figure 13. Images of the slotted cylinders IC advected by the non-divergent flow at the simulation’s midpoint. Each column corresponds to
a spatial resolution and time step length configuration, as stated at the top of each column. Each row corresponds to a particular value of nt

p,
as stated in the text at the top right of each image. We omit nt

p = 12 results for the 0.75◦ resolution because they are essentially identical at
the resolution of the figure to the nt

p = 8 images.

Figure 14. Same as Fig. 13 but for the simulation final point. Error measures are printed at the bottom left of each image; see text for details.
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Figure 15. Verification of the remap of tendencies from physics to
tracer grids and state from tracer to dynamics grids. See Sect. 4.3
for a description of the problem.

As explained in the context of Eq. (14) in TC15, any ad-
vection operator that is semi-linear will produce a perfect di-
agnostic value of 0 when using exact arithmetic. Linear op-
erators are semi-linear; the CEDR algorithms we use are as
well, as explained in Bradley et al. (2019); and a composi-
tion of semi-linear operators is too. Thus, the Islet method is
semi-linear, and deviation from 0 in the diagnostic values is
wholly due to the effects of finite precision arithmetic.

We compute the diagnostics, as usual, on the dynamics
grid. Following the Islet tracer transport method described
in Sect. 3.1, the source terms are computed on the physics
grid using states remapped from the tracer grid, and then the
computed tendencies are remapped to the tracer grid.

It is already known that the Eulerian spectral element
tracer transport method yields poor values for this diagnostic
due to finite-precision effects of the limiter (Lauritzen et al.,
2017). The Islet method with property preservation using
CAAS–CAAS does as well. Again, in exact arithmetic, each
of these methods would produce perfect values. The poor di-
agnostic values are due to quickly accumulating machine-
precision round-off errors that break semi-linearity in finite
precision. The interaction of the chemistry source term with
exact bounds in element-local limiter applications is respon-
sible for this fast accumulation. In contrast, the Islet method
using CAAS–point and relaxed-bound, element-local CAAS
applications produces good diagnostic values. The relaxed
bounds in the element-local part make unnecessary many
of the mixing ratio adjustments that lead to loss of semi-
linearity in finite precision. Recall that CAAS–point, applied

Figure 16. Toy chemistry diagnostic values as a function of time for
10 cycles of the non-divergent flow. Time is on the x axis and mea-
sured in cycles. Diagnostic values c2 (solid lines) and c∞ (dashed
lines) are on the y axis. Markers as listed in the bottom legend are
placed at the start of each cycle to differentiate the curves.

at the end of the step, imposes the exact bounds, so at the
end of a time step, shape preservation still holds to machine
precision. Clips to bounds must still occur, but adjustments
to other grid points to compensate are smaller because the
adjustments are spread over many more grid points.

Figure 16 shows the diagnostic values for the case of non-
divergent flow, 1◦ dynamics-grid resolution, and a 30 min
time step, where these configuration details are prescribed
in TC15. For the nt

p = 4 case, we use CAAS–point rather
than CAAS–CAAS as previously, since we already know
that CAAS–CAAS will produce poor values. The diagnostic
is usually plotted over the course of one cycle (12 d) of the
flow, but it is useful to view it over multiple cycles. Figure 16
shows 10 cycles on the x axis for a total of 120 d. The y axis
is the diagnostic value. Solid lines plot c2(t); dashed, c∞(t).
Markers are placed on the curves at the start of each cycle
to differentiate the curves. In each case, nf = n

t
p. We choose

this value of nf because the toy chemistry source term has an
extremely large gradient at the terminator and, thus, it makes
sense to compute the physics tendencies at high spatial res-
olution. The nt

p = 4 case with CAAS–point is greatly im-
proved relative to the Eulerian spectral element results shown
in Fig. 7 of TC15, even after 10 cycles instead of the one cy-
cle shown in that figure. In Fig. 7 of TC15, c2 ≈ 10−2 and
c∞ > 10−1 at the end of one cycle, compared with approxi-
mately 10−7 and 10−5, respectively, for nt

p = 4 at the end of
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Figure 17. Images of the monatomic tracer at the end of the first cycle. Text at the lower left of each image states the configuration. Text at
the upper right reports global extremal values.

Figure 18. Same as Fig. 17 but, now, the images are of (XT − X̄T )/X̄T .

10 cycles. For nt
p > 4, the growth in error is very small, with

c2 < 10−10 through 10 cycles.
To illustrate what these diagnostics measure, Fig. 17

shows latitude–longitude images of the monatomic tracer at
the end of the first cycle for nt

p = nf = 4 with CAAS–CAAS
(left) and nt

p = nf = 8 with CAAS–point (right). Note that
the images in TS12 and TR14 are plotted with longitude
ranging from 0 to 2π ; those in TC15, from −π to π . In our
latitude–longitude figures so far, we have chosen the con-
vention used in TS12 and TR14, and we continue to use it
in these toy-chemistry images. Thus, these images are cir-
cularly shifted horizontally by half the image width relative
to those in TC15. The globally extremal tracer values are
printed in the upper right quadrant of each image. The correct
maximum is 4× 10−6 and the correct minimum is at least 0.
The right image is free of noise and satisfies these bounds.
The left image shows substantial noise, as we expect when
using exact bounds in the local property preservation prob-
lems, and consistent with previous observations about spec-
tral element transport. Other than noise and some filaments
that grow from the noise, the two images are qualitatively
similar. Figure 18 shows images in the same format, but the
quantity is now (XT − X̄T )/X̄T at the end of the first cycle.
The correct value is 0 everywhere. In the right image, the
pointwise relative error is a little better than 10−11, consis-
tent with the l∞-norm diagnostic value for nt

p = 8 at the end
of the first cycle in Fig. 16.

5 Conclusions

We described the Islet method, a property-preserving tracer
transport method to support a three-grid atmosphere model,
one with a shared element grid but separate subelement grids
for physics parameterizations, dynamics, and tracer trans-
port. This configuration permits the modeler to create a dy-
namics grid with a tolerable CFL-limited time step indepen-
dent of the other two subcomponents, while physics param-
eterizations and tracer transport can run at resolutions po-
tentially substantially higher. The shared element grid mini-
mizes communication during remaps between grids, and al-
most all operations are local to each element, making the Islet
method extremely efficient.

Section 4 presented a number of verification problems
with diagnostics assessing accuracy, order of accuracy, nu-
merical mixing, filament preservation, and nonlinear correla-
tion preservation. The corresponding figures and diagnostic
values can be compared directly with those of several other
methods. The Islet method performs well in a number of de-
tailed comparisons.

Possible future work includes the following. First, because
all operations except the DSS are either local to the ele-
ment or act on element-level scalars, both the tracer and the
physics grids permit various types and subsets of spatially
and temporally adaptive and tracer-dependent refinement and
derefinement, possibly in combination with already existing
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E3SM regionally refined models (RRM). Future work could
develop procedures to permit spatially and temporally vary-
ing nt

p and nf values, and incorporate these into the Islet
method.

Second, this article focuses on the horizontal dimen-
sions or, more generally, 2D Lagrangian levels in a three-
dimensional discretization. However, it is necessary to in-
crease simultaneously both the horizontal and vertical reso-
lutions of a plume to capture and maintain its structure (East-
ham and Jacob, 2017). Future work using methods similar to
those in Sect. 3 should address the vertical dimension.

Third, it is possible to recover local mass conservation in
an ISL method by modifying the linear advection operator’s
coefficients so that the sum of the mass over all the target
points associated with a source element is consistent with
the source element’s total mass (Kaas, 2008). This coefficient
modification step might be compatible with the Islet method
and should be explored.

Finally, we predict that applications related to, in partic-
ular, aerosols will benefit from the Islet method. In future
work, we intend to integrate the Islet method into the E3SM
Atmosphere Model to investigate its impact on science ap-
plications.

Appendix A: Islet bases

The GLL basis functions yield an unstable ISL method for
np ≥ 4. We developed a set of bases on GLL nodes that yield
ISL methods that meet a necessary condition for stability on
the test problem of uniform periodic flow. We refer to these
as the Islet bases and use these bases in this article. Bradley
et al. (2021, Sects. 2 and 3) and a forthcoming article based
on that material detail the derivation of the Islet bases, while
this appendix summarizes the results of that derivation for
completeness. This article can be understood equally well by
assuming the standard GLL bases are used; only the numeri-
cal results depend on the details of the basis functions.

A 1D reference element has domain [−1,1]. Higher-
dimensional basis functions are tensor products of 1D basis
functions. The bases are nodal, meaning a basis function has
the value 1 at one node and 0 at all others. The nodes are
GLL. Let x

np
G (i), i ∈ {0, . . .,np− 1}, be the reference coordi-

nates of the GLL nodes. Let region r ∈ {0, . . .,np− 2} be the
segment [x

np
G (r),x

np
G (r + 1)]. A 1D basis function is a con-

tinuous piecewise polynomial over [−1,1]; in each region, it
is a polynomial. Each region r has an associated ordered list
of support nodes, denoted Inp

r . Each list Inp
r is a subset of

{0, . . .,np− 1}. Let |Inp
r | be the number of elements in Inp

r ,
let nsubmin

p ≡minr |I
np
r |, and let Inp

r (j) be the j th element.
In region r and thus for x ∈ [x

np
G (r),x

np
G (r + 1)], basis

function k is 0 if k 6∈ Inp
r and otherwise has the value given

by the Lagrange polynomial

φ
np
k (x)≡

∏
j∈{0,...,|Inp

r |−1},
Inp
r (j)6=k

x− x
np
G (I

np
r (j))

x
np
G (k)− x

np
G (I

np
r (j))

.

We construct a basis for each np ∈ {4, . . .,13}. Each basis
is described by a set of support node lists, one Inp

r per re-
gion. For np = 4, there are additional details that we describe
in Appendix A1. There are two types of bases, each corre-
sponding to a method of describing the support node lists.

The first type of basis is the offset nodal basis. Each list
Inp
r is given by an offset, which is the first index in the list

and its size, |Inp
r |. For example, np = 7, offset 2, and size

4 correspond to support nodes I7
r = {2,3,4,5}. In addition,

the basis is symmetric, meaning basis function φ
np
i (x)=

φ
np
np−1−i(−x). Thus, first, support nodes are specified for re-

gions 0 through bnp/2c− 1, and the support nodes for the
remaining regions are determined by symmetry. Second, if
np is even, then the middle region, r = np/2−1, has support
nodes Inp

r that are symmetric around reference coordinate 0.
The second type of basis is the nodal basis. An offset nodal

basis is a nodal basis whose support nodes all permit the
more compact description of offset and size. A general nodal
basis has at least one support nodal list that cannot be de-
scribed by just an offset and a size. Instead, the list is stated
explicitly. Again, all nodal bases are symmetric.

The order of accuracy of the ISL method using an Islet
GLL basis is nsubmin

p − 1 if there is no property preservation

step and the initial condition is Cn
submin
p −2.

If nsubmin
p = np, then the basis is the natural GLL basis.

Thus, any statement about an Islet GLL basis also holds for
the natural GLL basis.

A search procedure searches for nodal bases that provide
ISL methods that are stable on the test problem of uniform
flow on a uniform grid. An accuracy heuristic is used to find
the most accurate basis satisfying this stability condition. Ta-
ble A1 lists nodal bases, most of them offset nodal bases, for
np ∈ {5, . . .,13}. In addition, a special basis is constructed for
np = 4.

A1 np = 4 Islet basis

For np = 4, we boost the accuracy of the basis by com-
bining an offset nodal basis and the GLL basis. The mid-
dle region has support nodes I1 = {0,1,2,3}, i.e., all four
nodes. Region 0 convexly combines basis function k given
by I4

0 = {0,1,2} with GLL basis function k over the region
x ∈ [x4

G(0),x
4
G(1)], with convex combination function α(x).

α(x) is a quadratic polynomial having values 1, 0.306, and
0 at, respectively, the left side, middle, and right side of re-
gion 0. The combination is defined so that at the left side,
where α(−1)= 1, only the GLL basis function k is used; at
the right side, where α(x4

G(1))= 0, only the offset nodal ba-
sis function k is used. Region 2 is constructed by symmetry.
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Table A1. Islet GLL nodal subset bases. Each row provides a for-
mula for the row’s np value. Columns are np, order of accuracy
(OOA), the support sizes |Ir | for each region ordered left to mid-
dle, and the supports. For offset nodal subset bases, supports are
given by offsets. For general nodal subset bases, supports are given
by nodal subsets, again ordered from left region to middle. The case
np = 4 is described in Appendix A1. In all cases, the support points
are GLL nodes.

np OOA |Ir | Supports

4 2 see text see text

5 2 {3, 4} offsets {0, 0}

6 4 {5, 5, 6} nodal subsets
{{0, 1, 2, 3, 4},
{0, 1, 2, 3, 5},
{0, 1, 2, 3, 4, 5}}

7 4 {5, 5, 6} offsets {0, 0, 0}

8 5 {6, 6, 7, 6} offsets {0, 0, 0, 1}

9 6 {7, 8, 8, 7} nodal subsets
{{0, 1, 2, 3, 4, 5, 8},
{0, 1, 2, 3, 4, 5, 7, 8},
{0, 1, 2, 3, 4, 5, 6, 8},
{1, 2, 3, 4, 5, 6, 7}}

10 6 {7, 7, 7, 8, 8} offsets {0, 0, 0, 0, 1}

11 7 {8, 9, 8, 9, 8} offsets {0, 0, 0, 0, 1}

12 8 {9, 9, 10, offsets {0, 0, 0, 0, 1, 1}
10, 9, 10}

13 9 {10, 10, 10, offsets {0, 0, 0, 0, 0, 1}
10, 11, 10}

α(x) is determined to maximize the accuracy of the resulting
ISL method subject to the constraint of stability on the test
problem.

A2 Conservation when interpolating

The element-local conservation expressed in Eq. (15) holds
for the following reasons. First, for any Islet basis for which
(nt

p)
submin

≥ nv
p, the continuum field f is the same on each

grid, since the tracer grid can exactly represent polynomi-
als of degree nv

p− 1. Second, for nv
p even, such as the stan-

dard nv
p = 4, if (nt

p)
submin

= nv
p−1, the continuum field f is,

in general, different on each grid, but the integral of each
over an element has the same value. This is because for poly-
nomial degree d odd and f (x)≡

∑d
i=0aix

i ,
∫ 1
−1f (x) dx =∫ 1

−1(f (−x)+f (x))/2 dx, and g(x)≡ (f (−x)+f (x))/2 has
degree at least one less than f (x). g(x) is exactly represented
on the tracer grid and, thus, the integral of f , which is the
same as the integral of g, is the same on the tracer grid as
on the dynamics grid. These two reasons assure that Iv→t is
conservative for the Islet bases in Table A1 when nv

p = 4.

Figure A1. Stability of the Islet method with the Islet GLL bases
compared with the instability of the method with the natural GLL
bases. The x axis is the average dynamics-grid grid point spacing at
the equator in degrees for the quasiuniform cubed-sphere grid. The
y axis is log10l2 relative error. A curve’s line pattern corresponds to
the basis type and number of cycles, as listed in the top legend. A
curve’s marker corresponds to nt

p, as listed in the bottom legend.

A3 Unstable and stable integration

Figure A1, which has the format of the figures described in
Sect. 4, compares accuracy and stability between the natural
and Islet bases. The divergent flow, Gaussian hills IC, prop-
erty preservation, TTPR, and long time steps are used. To
test the stability of the ISL linear advection operator using
the Islet bases, we run the verification problem for both 1
cycle and 100 cycles. A curve’s line pattern corresponds to
basis type and number of cycles: solid, Islet basis for 1 cy-
cle; dashed, Islet basis for 100 cycles (or 12×100= 1200 d);
dash-dotted, natural basis for 1 cycle. For each nt

p, the l2
norm of the solution using the natural basis diverges with in-
creasing resolution within the first cycle, demonstrating that
the basis leads to an unstable ISL linear advection operator.
In the case of nt

p = 4, we see the start of the curve’s diver-
gence, but further element-grid refinement is needed to see
the curve fully diverge. In contrast, the curves for the Islet
method with the Islet bases converge at order of accuracy 2.
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Appendix B: Discretization of the continuity equation

Our primary interest is the advection equation and not the
continuity equation. However, to run tests with divergent
flow and property preservation enabled, we need to solve the
continuity equation for the air density to provide the ρ argu-
ment to CAAS. This appendix describes a discretization of
the continuity equation that differs in only one factor from
the discretization of the advection equation.

We start by following, e.g., Giraldo (1997, Sect. 3.3) and
Bosler et al. (2019, Sect. 3). The Reynolds transport theorem
for a Lagrangian fluid parcel �(t) containing a fluid having
density ρ(x, t) is

d
dt

∫
�(t)

ρ dx =
∫
�(t)

ρt +∇ · (ρu) dx. (B1)

To balance clarity and concision, we include or omit the po-
sition and time arguments depending on the context. Suppose
ρ satisfies the continuity equation,

ρt +∇ · (ρu)= 0. (B2)

In addition, consider a function φ(x, t) that satisfies the ad-
vection equation,

Dφ
Dt
= 0. (B3)

Then, by Eqs. (B1), (B2), and (B3),

d
dt

∫
�(t)

ρφ dx =
∫
�(t)

(ρφ)t +∇ · (ρφu) dx

=

∫
�(t)

φ[ρt +∇ · (ρu)] + ρ
Dφ

Dt
dx

= 0,

which, in turn, implies∫
�(t1)

ρφ dx =
∫
�(t0)

ρφ dx (B4)

for all times t0, t1.
Now we discretize Eq. (B4) in space. First, we write an

integral over a scalar f in terms of the element reference
coordinate system. Let �(t) be a quadrilateral element, with
�(t1) the arrival Eulerian element. Then,

∫
�(t)

f (x, t) dx =

1∫
−1

1∫
−1

f (x(r, t), t) J (r, t) dr. (B5)

Here, x(r, t)≡X(t;x(r, t1), t1) is the time-dependent map
from the reference element to the manifold, and satisfies

Eq. (6). J (r, t) is the absolute value of the Jacobian deter-
minant of this map, |det(∂x(r, t)/∂r)|.

Second, let the element have a tensor-product grid of GLL
nodes, with np the number of 1D nodes. We apply tensor-
product GLL quadrature with this value of np to the right
hand side of Eq. (B5). Then,

1∫
−1

1∫
−1

f (x(r, t), t) J (r, t) dr

≈

n2
p−1∑
i=0

f (x(r i, t), t) J (r i, t) wi,

where i iterates over nodes in the element, r i is the ith GLL
node, and wi is the ith GLL weight. Let xi(t)≡ x(r i, t).

Third, we combine the quadrature approximation with a
specific form of f , f = ρφ, where φ satisfies Eq. (B3). Let
φ(x, t1) be an element, GLL nodal, tensor-product np-basis
function on an Eulerian arrival element. Because φ is a nodal
basis function with the same nodes as the element, φ = 1 at
one node, say node k, and is 0 at all other nodes i 6= k. φ need
not be a natural GLL basis function; for example, it can be an
Islet GLL basis function. Because Dφ/Dt = 0, φ(xi(t), t)=
φ(xi(t1), t1) for any time t . Thus, the quadrature sum can be
simplified:

n2
p−1∑
i=0

ρ(xi(t), t) φ(xi(t), t) J (r i, t) wi

= ρ(xk(t), t) J (rk, t) wk.

Fourth, we apply quadrature to each side of Eq. (B4) to
obtain the discretization

ρ(xk(t1), t1) J (rk, t1) wk = ρ(xk(t0), t0) J (rk, t0) wk,

or,

ρ(xk(t1), t1)=
J (rk, t0)

J (rk, t1)
ρ(xk(t0), t0). (B6)

Equation (B6) differs from Eq. (5) in the appearance of the
density factor, the quotient of the two Jacobian determinants.
In this equation, both ρ values and the denominator of the
density factor are grid point values. Note that this simple
form depends on three different node sets being the same:
those for the element, the GLL quadrature, and the basis
function φ.

Fifth, to complete the discretization, the discretization
steps in Sect. 2.1.4 are applied to Eq. (B6) as they were to
Eq.(5), but now with the additional factor present.

Since Eq. (B6) is not the focus of this article, we omit
detailed analysis of the discretization. However, we note
some basic facts. Importantly, the Jacobian determinant of
the Lagrangian element appears in the numerator rather than
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the denominator of the density factor; thus, the denomina-
tor is always well-behaved if the Eulerian grid has reason-
able quality. Second, for certain simple flows such as uni-
form translational flow on the plane, J is constant in time,
and Eq. (B6) reduces to the discretization of the advection
equation, Eq. (5). For general non-divergent flow, J is time
dependent because of the spatial discretization error. Third,
only the density factor can make the order of accuracy of
the discretization Eq. (B6) differ from that of Eq. (5). Details
concerning the manifold on which flow occurs and the map
from the reference element to the manifold affect the order of
accuracy. In the verification problems in this article, the den-
sity ρ is approximated using the Islet np = 4 basis, the man-
ifold is the sphere, and the map from the reference element
to the sphere is the isoparametric map of the finite element
method for the np-basis. The discretization of the continuity
equation for ρ then has order of accuracy 2.

Code and data availability. Code and scripts for the algo-
rithms and figures presented in this paper are available at
https://doi.org/10.5281/zenodo.5595499 (Bradley, 2021a) and,
alternatively, https://github.com/E3SM-Project/COMPOSE/
releases/tag/v1.1.2 (last access: 3 September 2021). In this
repository, read methods/islet/readme.txt for fur-
ther instructions; in particular, this file points to detailed
instructions to recreate the data in this article in the file
methods/islet/figures/figs.tex. These data are
also available at https://doi.org/10.5281/zenodo.5595518 (Bradley,
2021b).
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