Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-365-2022
https://doi.org/10.5194/gmd-15-365-2022
Model description paper
 | 
18 Jan 2022
Model description paper |  | 18 Jan 2022

Inishell 2.0: semantically driven automatic GUI generation for scientific models

Mathias Bavay, Michael Reisecker, Thomas Egger, and Daniela Korhammer

Related authors

Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
The Cryosphere, 18, 5323–5345, https://doi.org/10.5194/tc-18-5323-2024,https://doi.org/10.5194/tc-18-5323-2024, 2024
Short summary
Monitoring snow wetness evolution from satellite with Sentinel-1 multi-track composites
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510,https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Unlocking the Potential of Melting Calorimetry: A Field Protocol for Liquid Water Content Measurement in Snow
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
EGUsphere, https://doi.org/10.5194/egusphere-2023-2892,https://doi.org/10.5194/egusphere-2023-2892, 2024
Preprint archived
Short summary
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022,https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Cold-to-warm flow regime transition in snow avalanches
Anselm Köhler, Jan-Thomas Fischer, Riccardo Scandroglio, Mathias Bavay, Jim McElwaine, and Betty Sovilla
The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018,https://doi.org/10.5194/tc-12-3759-2018, 2018
Short summary

Related subject area

Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024,https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary

Cited articles

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster, J. E.: UIML: an appliance-independent XML user interface language, Comput. Netw., 31, 1695–1708, https://doi.org/10.1016/S1389-1286(99)00044-4, 1999. a
Bair, E. H., Rittger, K., Ahmad, J. A., and Chabot, D.: Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan, The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020, 2020. a
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014. a, b, c, d
Bavay, M., Fiddes, J., Fierz, C., Lehning, M., Monti, F., and Egger, T.: The METEOIO pre-processing library for operational applications, in: International Snow Science Workshop ISSW, 7–12 October 2018, Innsbruck, Austria, https://doi.org/10.5281/zenodo.5718629, 2018. a, b
Bavay, M., Fiddes, J., and Godøy, Ø.: Automatic Data Standardization for the Global Cryosphere Watch Data Portal, Data Science Journal, 19, p. 6, https://doi.org/10.5334/dsj-2020-006, 2020a. a
Download
Short summary
Most users struggle with the configuration of numerical models. This can be improved by relying on a GUI, but this requires a significant investment and a specific skill set and does not fit with the daily duties of model developers, leading to major maintenance burdens. Inishell generates a GUI on the fly based on an XML description of the required configuration elements, making maintenance very simple. This concept has been shown to work very well in our context.