
Geosci. Model Dev., 15, 365–378, 2022
https://doi.org/10.5194/gmd-15-365-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Inishell 2.0: semantically driven automatic GUI
generation for scientific models
Mathias Bavay1, Michael Reisecker1,2, Thomas Egger3, and Daniela Korhammer1

1WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland
2Alpine Software Michael Reisecker, Schiliftstraße 504, 5753 Saalbach, Austria
3Egger Consulting GmbH, Hohenstaufengasse 7, 1010 Vienna, Austria

Correspondence: Mathias Bavay (bavay@slf.ch)

Received: 7 October 2020 – Discussion started: 11 December 2020
Revised: 22 November 2021 – Accepted: 8 December 2021 – Published: 18 January 2022

Abstract. As numerical model developers, we have experi-
enced first hand how most users struggle with the configu-
ration of the models, leading to numerous support requests.
Such issues are usually mitigated by offering a graphical user
interface (GUI) that flattens the learning curve. Developing
a GUI, however, requires a significant investment for the
model developers, as well as a specific skill set. Moreover,
this does not fit with the daily duties of model developers. As
a consequence, when a GUI has been created – usually within
a specific project and often relying on an intern – the mainte-
nance either constitutes a major burden or is not performed.
This also tends to limit the evolution of the numerical models
themselves, since the model developers try to avoid having to
change the GUI.

In this paper we describe an approach based on an XML
description of the required numerical model configuration el-
ements (i.e., the data model of the configuration data) and a
C++/Qt tool (Inishell) that populates a GUI based on this de-
scription on the fly. This makes the maintenance of the GUI
very simple and enables users to easily get an up-to-date GUI
for configuring the numerical model. The first version of this
tool was written almost 10 years ago and showed that the
concept works very well for our own surface process models.
A full rewrite offering a more modern interface and extended
capabilities is presented in this paper.

1 Introduction

1.1 Numerical models

Numerical models can be defined as computational models
designed to simulate and predict the behavior of real-world
or physical systems. As illustrated in Fig. 1, given a set of
input data (e.g., meteorological measurements) and configu-
ration parameters (e.g., the simulation time step and spatial
resolutions), the numerical model will produce a set of out-
puts, for example snow cover and hydrological response of a
catchment after simulating the physical processes leading to
snow cover development and runoff generation. Numerical
models are very powerful tools that are widely used in di-
verse fields, such as medicine, energy and environment, ma-
terials, industry, defense, and homeland security (Oden et al.,
2006). Naturally, they also see widespread use in research.

1.2 Configuring numerical models

When using numerical models, one of the major issues for
new users is the configuration of the model (Jamieson et al.,
2010; Schlögl et al., 2016; Mortezapour et al., 2020). Of-
ten the numerical models are configured using multiple con-
figuration files filled with obscure configuration parameters,
making for a steep learning curve. Moreover, users tend to
overlook even the best-written documentation (Mendoza and
Novick, 2005; Ceaparu et al., 2004) and resort to copying and
tweaking example files. This is not satisfactory, as it leads to
underperforming simulations and large numbers of questions
directed to the model developers. The intrinsic complexity of
configuring a numerical model may also make its end users

Published by Copernicus Publications on behalf of the European Geosciences Union.



366 M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models

Figure 1. Numerical models from the user point of view.

highly dependent on direct support from the models’ devel-
opers (Havens et al., 2020).

As the WSL Institute for Snow and Avalanche Research
(WSL/SLF) develops and maintains the open-source Snow-
pack model (Lehning et al., 2002) and its pre-processor Me-
teoIO (Bavay and Egger, 2014; Bavay et al., 2018) – two
of the numerical models Inishell was originally developed
for – it has first-hand experience in supporting a relatively
large number of end users. A small fraction of the end users
could be described as “power users” that are able to au-
tonomously run the most complex simulation setups (includ-
ing fully autonomous model toolchains for operational ap-
plications; Sato et al., 2004; Côté et al., 2014; Bair et al.,
2020), implement their own ideas in the model, and support
other users they work with. The bulk of the user base is made
of researchers that want to use these models to expand their
research field (Rasmus et al., 2016; Haberkorn et al., 2017;
Grünewald et al., 2018; Köhler et al., 2018) and that possess
varying degrees of computer fluency. Finally, there are prac-
titioners who mostly do not run the models themselves but
rely on outputs from model toolchains set up by somebody
else (Morin et al., 2020). The first category of users usually
rely on the provided online documentation and only contact
the model developers for strategic questions regarding future
developments or collaborations. The third category of users
usually rely on their internal model experts when they have
questions, while the second category of users requests sup-
port from the WSL/SLF. An internal survey conducted in the
fall of 2019 at the WSL/SLF showed that user support repre-
sented around 75 % of a full-time equivalent (FTE) work-
load when the development team represents at most three
FTE. The requested user support would have almost been
fully covered in the provided online documentation if the end
users would have read it. Another short survey conducted af-
ter completion of a 2-week doctoral school snow physics and
modeling course (Stockholm, Sweden) brought forth a major
criticism, i.e., the user-unfriendliness of the command line
and text configuration of the numerical model.

1.3 Graphical user interfaces (GUIs)

As reported by Fellmann and Kavakli (2007) for configur-
ing virtual reality (VR) environments, even technical users
require less support and need to spend less time looking into
the documentation when a graphical user interface (GUI) is
available to perform the task. Surprisingly, Voronkov et al.
(2019) found that system administrators favor GUIs for con-
figuring firewall rules (70 % of the respondents) as they are
perceived as good for occasional use, do not have the same
long learning curve as command line interfaces (CLIs), and
have better usability than CLIs. Similarly, the configuration
of numerical models can benefit from a GUI that contains in-
line help and input validation and also allows the most com-
mon settings to be predominantly shown.

Unfortunately, developing a GUI hardly fits the job de-
scription of the modelers and is a very time-consuming pro-
cess because of the potentially large number of configura-
tion parameters: for example, the Snowpack model and its
pre-processor MeteoIO define more than 350 configuration
keys. Developing a traditional GUI for such numerical mod-
els, where each input widget is manually laid out, would re-
quire a significant time, money, and code investment (Ken-
nard and Leaney, 2010). Although not specifically aimed at
recent scientific software, Myers and Rosson (1992) found
that on average 48 % of the code in graphical applications
was dedicated to the user interface, representing 50 % of the
development time in the implementation phase and 47 % of
the maintenance time. Moreover, as numerical models might
evolve quickly, new configuration options would frequently
be added that would also require a rework of the GUI. This
is hardly sustainable for small development teams and leads
to either out-of-date GUIs or no GUIs at all.

The choice of tools to develop GUIs for numerical mod-
els is less than satisfying in the long term. One possibility
consists of using a rapid application development environ-
ment (RAD; Spreitzhofer et al., 2004). This is easy and can
appropriately be assigned to an intern or a short-term stu-
dent. However, this is risky in the long term since such RAD
implementations are often proprietary and therefore depen-
dent on the goodwill of its developer to maintain compatibil-
ity or even to just maintain their product, potentially forcing
the model developers to perform a full rewrite of the GUI.
Another possibility is using UI toolkits and programming
languages to develop such an interface. This requires more
investment and expertise from the developer but increases
the long-term availability of the GUI. However, maintaining
the product also requires some technical knowledge that is
usually not found in model developers. At the very least, it
adds a considerable workload that may have to be put off
until later. Practically this means that upgrades (such as in-
troducing new configuration options) will only happen (typi-
cally in an academic context) when another intern or student
with the proper skill set can be found and funded. Delegat-
ing this task to a temporary employee, however, means that

Geosci. Model Dev., 15, 365–378, 2022 https://doi.org/10.5194/gmd-15-365-2022



M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models 367

the first-hand knowledge about these newly introduced op-
tions is eventually lost. Thus, the graphical user interface be-
comes a hindrance for the model itself since it prevents the
fast deployment of new configuration options. Another pos-
sibility relies on declarative user interface model (Da Silva,
2000) or model-based UI development (Paterno, 1999), an
approach that has been steadily maturing over the last sev-
eral decades (Meixner et al., 2011). However, the down-
side of this approach is that it can be highly theoretical and
hard to understand and implement by designers and develop-
ers (Bogdan, 2017). Data-driven GUI generation might be a
middle way to reduce this complexity as it generates GUI
elements from templates or from pre-existing components
(component-based development; Brown, 2000), thus provid-
ing the automatic customization of the GUI for the task to be
performed based on the data that is provided (Gambino et al.,
2018).

Finally, numerical models are getting more and more mod-
ular, including through coupling of existing numerical mod-
els. This leads to modules that can be used standalone or
within a wider numerical model. As such, there is no cen-
tralization of the configuration data that has been provided
by the end user, and a centralized data model for the config-
uration data is not possible: the main module does not have
any insight into the data model of its sub-modules. More-
over, there is usually no explicit data model for the configu-
ration data, it is only implicitly expressed through the source
code as assumptions and enforced requirements. It might also
be explicitly laid out in the documentation (that must prop-
erly link to the documentation of each sub-module) or in a
GUI (that must include the configuration options for all sub-
modules), but they must then be kept synchronized with the
implementation in the source code in order to be useful to the
end user. As mentioned above, manually designed GUIs tend
to lose this synchronization very quickly because of the in-
volved workload. Therefore, a solution to lighten this work-
load helps keeping the data model expressed in the GUI up
to date and relevant for the end user.

1.4 Reproducible science considerations

Although the topic of reproducible science (Munafò et al.,
2017) is very broad even when restricted to numerical simu-
lations (Fitzpatrick, 2019), a GUI that is easy to keep up to
date can be a technical means to help address some of the
key issues. As a side effect, having an easy to maintain GUI
at their disposal gives an incentive to model developers to ex-
plicitly describe the data model of the configuration data (as
a GUI layout and logic) and encourages them to document
new features (as help text in the GUI) and avoid hard-coded
values (Cuntz et al., 2016) since making a dynamic setting
be read from a user-editable configuration file is easy and
quickly done and can be shown in the GUI. This contributes
to making the research more reproducible (Martin, 2009) be-
cause as the numerical model code remains independent of

the simulations that are performed, it does not need to be
edited for each research project. It is then advised to manage
the source code with a code versioning system that allows
citing the specific version of the model that has been used
(Fitzpatrick, 2019).

On the numerical model side, in order to allow for high
modularity of the numerical models with respect to their sub-
modules, the configuration data are centrally read as key–
value pairs of strings into a C++ map data structure (ISO,
1998; Meyers, 1992, similar to a dictionary in Python, for
example) but not processed any further. This data structure
is then provided to each sub-module to extract and parse
its supported configuration keys. Therefore the data model
is delegated to the sub-modules which enforce data types,
ranges, and validation and dependencies between configura-
tion keys, keeping each sub-module independent of the oth-
ers (Bavay and Egger, 2014). This redundant validation (in
the GUI and in the numerical model) also ensures that manu-
ally edited configuration files are supported, as in such a case
no GUI could perform input validation.

In order to further improve the quality of the numerical
modeling work and constrain the problem, numerical model
developers are strongly encouraged to rely on a single con-
figuration file for the whole model and all its sub-modules,
including as much of the pre- and post-processing as pos-
sible (but in their own sections for clarity). For example, it
is possible with the MeteoIO pre-processor (Bavay and Eg-
ger, 2014; Bavay et al., 2018) to start from raw data files (as
they come from the data logger) and perform complex simu-
lations such as alpine catchment hydrology. This has the ad-
vantage that a copy of the said configuration file kept together
with the generated model outputs and raw inputs is then a re-
producible description of the numerical simulation that has
been performed (Bavay et al., 2020a). Enforcing in the GUI
that the end user saves the configuration into a configuration
file before running the numerical model (contrary to many
interactive software often used for exploratory data analy-
sis; Peng, 2011) thus makes the configuration file equivalent
to some sort of a numerical simulation notebook. Moreover,
having a GUI makes providing long, descriptive configura-
tion keys painless for the end user as they can be graphically
selected. This helps for the very long-term reproducibility:
descriptive configuration keys that provide parameters for a
classical algorithm will be understandable in half a century
even if the exact numerical model itself is very difficult to
rerun by then.

In order to increase the possibility of rerunning the ex-
act same numerical model in the future, there are several
approaches: for example, as a Docker image that contains
every element necessary to the reproducibility of the nu-
merical work as laid out by Havens et al. (2020) or as an-
other approach by working on the numerical model and
its dependencies following the Reproducible Builds (https:
//reproducible-builds.org/, last access: 14 January 2022) ap-
proach (Lamb and Zacchiroli, 2021) or ReScience efforts

https://doi.org/10.5194/gmd-15-365-2022 Geosci. Model Dev., 15, 365–378, 2022

https://reproducible-builds.org/
https://reproducible-builds.org/


368 M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models

(Rougier et al., 2017). The former assumes that the users
know how to use Docker, while the long-term stability of
the container file format remains to be evaluated (Rougier
et al., 2017; Navarro Leija et al., 2020), and the latter requires
systematic tracking of all components of the toolchain. Al-
though mature programming languages might develop some
incompatibilities over time (Brunner et al., 2016), this is of
concern for a very limited subset of the language, and the
standard tooling should be able to offer conformance to the
various versions of the standard over the very long term (as
is currently the case for example with C or Fortran com-
pilers). Both approaches thus benefit from standard compli-
ance to the programming language of the numerical model, a
strongly restricted use of external dependencies (Bavay and
Egger, 2014) and good software engineering practice in order
to be easy enough to deploy or recompile from source in the
future (including recompilation within a docker image). If
these assumptions are fulfilled, the long-term reproducibility
should be adequate by providing the raw data, the configu-
ration files in a text format, and the exact source code (and
fully documented dependencies) of the numerical tools.

2 Methodology

2.1 GUI requirements

Ideally, model developers would like to offer a user-friendly
graphical interface for configuring their numerical model that
requires very little initial investment and expertise and where
new configuration options are quickly deployed. This config-
uration interface should provide explanations of every con-
figuration parameter, validate the user input (to avoid pos-
sible misconfigurations), easily integrate new options, and
output the complete configuration in a standard configuration
file format. This GUI should also be able to transparently in-
tegrate the configuration options for each sub-module with-
out requiring any duplication of efforts and to easily support
multiple numerical models.

Keeping the concept of a configuration file is important for
reproducibility as well as since such models are often config-
ured on one system and then sent to run on some clusters to
perform the heavy-duty computing. This file should be man-
ually editable in order to allow for copy-pasting of part of
it between similar simulations (keeping in mind that several
hundred lines might be copied that represent hours of care-
fully choosing the options), for modifying it with text termi-
nals through remote sessions (as is typically the case when
running on a computing cluster), or for generating at least
some parts of the configuration with scripts (e.g., to study the
sensitivity of certain configuration parameters). It is therefore
necessary to support the use of both a GUI and of manual
editing of a text file.

Finally, the users would also benefit from being able to
run their numerical models from within the GUI even if this

kind of integration is only very loose (meaning that there is
only very limited feedback from the numerical model to the
GUI and no interactive control of the numerical model once
started) as it avoids having to open a command line terminal
to run the numerical model, which would add unnecessary
friction in the workflow.

2.2 General principles of Inishell

The Inishell open-source software alongside numerical
model design considerations is our technical answer to the
previously laid out requirements. It is written in C++ with
the Qt framework (https://www.qt.io/, last access: 14 January
2022) as a way to provide a cross-platform GUI with native
look and feel that can be reused for multiple numerical mod-
els and that is sustainable over many years. It aims to feel
familiar to the end users while considerably lowering the re-
quired skill set and time investment for the model developers
and also shifting support requests away from IT tasks to work
directly concerning the models. It is an open-source software
under a GPLv3 license and works on Linux, Microsoft Win-
dows, and Apple MacOS, among others.

A reasonable standard is enforced for the user-provided
configuration data, as it would not be feasible to support all
possible configuration file syntax choices. The INI (https://
en.wikipedia.org/wiki/INI_file, last access: 14 January 2022)
informal standard has been chosen as it is a text format that
is very easy to read and parse with various programming lan-
guages and is also interoperable with some existing numeri-
cal models. Its syntax is also supported by many text editors,
making manual editing convenient on multiple platforms.
However its simplistic structure can not contain enough in-
formation to define a data model, and as it is created by the
end user, all inputs coming from an INI file must be checked
by the numerical model. The INI syntax is described in de-
tail in Appendix A. Over the longer term, Inishell has been
written in a modular way so it is possible to develop parsers
to support other, more modern configuration file standards,
such as YAML.

The Inishell software is a simplified derivative of declara-
tive user interface models that focuses on the data that has to
be provided by the end user (high-level semantic description)
instead of the appearance of the GUI (low-level interface at-
tributes such as exact positioning or complex layout of the
GUI). As laid out in Fig. 2, the data model of the config-
uration data are explicitly defined in an XML file that sup-
ports including other XML files to merge the data models of
various sub-modules together. The XML syntax defines for
each configuration key the key name itself, the data type of
the value that should be provided by the end user (includ-
ing units), and a help text. This basic data model of the con-
figuration data provided by the numerical model developer
is then used by the Inishell software to automatically popu-
late its GUI that is presented to the end user to input the nu-
merical model configuration data. Inishell enforces the user

Geosci. Model Dev., 15, 365–378, 2022 https://doi.org/10.5194/gmd-15-365-2022

https://www.qt.io/
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file


M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models 369

Figure 2. Overview of the Inishell workflows for model users and
model developers.

input validations at data entry time and therefore the writ-
ing of a configuration file that the numerical model can rely
upon to run (more details in Sect. 3.2). The servicing of ex-
isting GUIs and the creation of new GUIs is still decoupled
from the release cycle of Inishell itself. Input validation is
supported through data types, optional range checking, and
regular expressions. This is similar to the input validation
provided by common JavaScript libraries such as Angular
(https://angular.io/api/forms/Validators, last access: 14 Jan-
uary 2022) or React (https://react-hook-form.com, last ac-
cess: 14 January 2022): data type, min, max, required or not,
pattern.

Inishell is therefore similar to JSONForm (https://
jsonforms.io/, last access: 14 January 2022) or Json-GUI
(Galizia et al., 2019), and it is a higher-level view of the GUI
than in previous efforts such as XUL (XML User Interface
Language; Goodger et al., 2001) that is still focused on low-
level widgets or even UIML (User Interface Markup Lan-
guage; Abrams et al., 1999) that still keeps low-level widgets
as basic building blocks. It can be best compared to Atomic
Design (Frost, 2016) since it is also built around a hierarchi-
cal point of view, but keep in mind that here the focus is not
the entry widget type but data semantics of the data that have
to be retrieved from the user.

The user workflow is described in Fig. 3: the user selects
from within Inishell for which numerical model to config-
ure a simulation, which loads the numerical model’s associ-
ated XML file. Inishell can then populate its GUI with input
widgets that allow the user to fill configuration data or load
and edit a previously written INI configuration file. Inishell
performs input validation as the data is entered in order to

provide the user with quick feedback if necessary. Then the
user saves the configuration file and can run the numerical
model from within the GUI (which spawns a new process in
the background). After completion of this external process,
the user has the possibility to trigger the visualization of the
simulation results from within the GUI through a call to an
external viewer.

3 Implementation

3.1 Overview of the interface

The overall interface (Fig. 4) is made of three areas and a
standard top menu bar. Area 1 controls the whole user work-
flow: at the top (Applications), the users select which model
they want to configure. Below (Simulations), it is possible
to open a pre-configured pair of numerical model profile and
configuration file (i.e., the XML file for a model associated
with an INI file for the same model). One drawer lower (INI
files), it is possible to open an existing configuration file. Fi-
nally, for numerical models that support it, the lowest drawer
(METEOIO, shown in blue) enables running the simulation
and potentially opening the simulated results.

Area 2 in Fig. 4 contains all configuration widgets for the
selected numerical model profile, as provided in the XML
file. It is therefore empty when starting Inishell and gets pop-
ulated after loading an XML file. Once the XML file has been
loaded, this area is where the end users fill their configura-
tion parameters for the numerical model. Area 3 is a status
bar that shows error messages or warnings (such as for miss-
ing mandatory configuration keys) or the status of a currently
running simulation. Messages are also logged for unattended
runs.

In order to further encourage end users to rely on Inishell
to configure and run their simulations, a text editor is offered
within Inishell under the name “Preview Editor”. It is pow-
ered by Inishell’s INI format parsing and as such provides op-
erations specifically targeted to INI files in addition to more
common text editor functionality. It also keeps snapshots of
the file throughout the editing process every time it is called.
Hence, the Preview Editor incorporates several Inishell fea-
tures into a text editor like every user will have seen and used
while still minimizing classical user errors (such as by mark-
ing unrecognized or deprecated keys as unknown with syntax
highlighting).

3.2 General architecture

Following the steps exposed in the activity diagram in Fig. 3,
the users are first presented with only the static parts of the
GUI (classes seen in green in Fig. 5). These provide the most
generic features, such as opening the XML file for a numer-
ical model (“XMLParser” class), loading a specific INI file
(“INIParser” class), inspecting the logs (“Logger” class), or
previewing the generated INI file (“PreviewWindow” class).

https://doi.org/10.5194/gmd-15-365-2022 Geosci. Model Dev., 15, 365–378, 2022

https://angular.io/api/forms/Validators
https://react-hook-form.com
https://jsonforms.io/
https://jsonforms.io/


370 M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models

Figure 3. Inishell end user workflow: activity diagram.

Once an XML file has been selected and parsed (XMLParser
class), the “SectionTab” class that handles Area 2 in Fig. 4
recursively calls an object factory to generate widgets inher-
iting the “Atomic” class (that contains the properties com-
mon to all widgets) in order to populate its area of the GUI
(all data that came from the XML file are then contained in
the widgets). The mapping of the XML elements to GUI el-
ements is done at this stage and is detailed later starting in
Sect. 3.3. These widgets can be input widgets or grouping
widgets (by creating new tabs, the SectionTab class also acts
as a grouping element). When the users save their configu-
ration, the INIParser class is called to write out the INI file,

collecting the properties from each input widget. In order to
keep other user content in the INI files such as comments,
line breaks (that help visually group keys together), or un-
supported keys (e.g., belonging to another numerical model
that will read its configuration from the same configuration
file), all content that could not be stored in the input widgets
is kept in the INIParser and merged back before writing out.

Inishell has a hierarchical approach both in its handling
of the widgets and in the underlying architecture (where In-
ishell mirrors the XML structure). The most atomic elements
(“atoms” in Atomic Design) are the widgets provided by
the Qt toolkit. These are never exposed to the model de-

Geosci. Model Dev., 15, 365–378, 2022 https://doi.org/10.5194/gmd-15-365-2022



M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models 371

Figure 4. Overview of the Inishell software with the MeteoIO numerical model profile loaded (here on Linux with the light theme).

Figure 5. Simplified class diagram of Inishell: only the most relevant classes and relations have been represented. The classes shown in green
show a set of static widgets in the GUI, the classes shown in blue are used to dynamically build widgets (based on the XML file), and the
classes shown in black do not draw in the GUI.

veloper, instead they are grouped into higher-level elements
(“molecules” in Atomic Design) by Inishell for each param-
eter type in the XML file (most often consisting on a label,
an input widget, and a help text, which allows a big subset
of HTML supporting quite advanced typesetting). In effect,

by writing a succession of parameters belonging to sections
in the XML file, the model developers set up all parameters
necessary for the configuration of a module of their model,
distributed over one or more tabs in the GUI, that act as the
next hierarchical level and are mapped to sections in the re-

https://doi.org/10.5194/gmd-15-365-2022 Geosci. Model Dev., 15, 365–378, 2022



372 M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models

sulting INI file. These will then be grouped together under an
application name that might also receive a workflow (step-
by-step instructions to configure and run some model) and
an icon. This is the highest hierarchical level as it matches a
specific numerical model.

This hierarchical approach is simplified by relying on two
modularity constructs: parameter groups and includes. Pa-
rameter groups allow for giving an internal name to any
group of parameters. This internal name can then be referred
to later on to call this group one or multiple times. This is
even more meaningful when used with the built-in inclusion
system: an arbitrary number of files can be included, and
from them it is possible to only select the needed subset of
parameters thanks to parameter groups. Several applications
sharing most of the same configuration keys for any subset
of their configuration can then include one file that defines
all possibilities and only call the parameter groups that are
relevant. In fact it is recommended to heavily rely on this
system for increased modularity and decreased verbosity. In
the same way models that rely on other models (e.g., in the
form of libraries) can simply include this lower level model
and freely extend upon it.

3.3 Basic building blocks

Inishell supports the following data types: strings, dates and
times, paths to files and paths, decimal numbers, integral
numbers, and Booleans, usually with several display options.
Strings are less strictly defined, as this type can accommo-
date free text entry or a selection among a preset list of
choices (that can potentially be extended by the end user).
Geographic coordinates are matched within strings through
a regular expression that triggers the generation of an ad-
ditional button that shows the provided coordinates on an
online map. Strings can be validated by means of a regular
expression, as well as through an expression parser to make
them suitable for mathematical formulas.

For each data type, Inishell generates a low-level entry
widget (Fig. 6) prefixed with a label that shows the match-
ing INI configuration key (or another, better suited label cho-
sen by the model developer) and followed by a help text
(that may also contain hyperlinks to a more exhaustive online
documentation). Hence, Inishell manages several abstraction
layers for the programmer, and adequately adding and de-
scribing a model setting in the right place is now as easy
as adding an XML text node without the need to recompile
any software. Several properties for each INI configuration
key can be declared. Among those, the XML property “op-
tional” when set to “false” visually emphasizes the widget
and displays a warning message when saving the file without
setting it. In such a case, all the mandatory keys that have
not been set by the end user will be highlighted, listed in a
message, and the user can cancel saving. Manual styling of
all of the used fonts is possible. Colors can be chosen freely
with an RGB hexadecimal representation, but Inishell also

Figure 6. The basic building block for a numerical model configura-
tion GUI, such as for integer entry. The panels show the declaration
in the XML file, how it is shown in the GUI, and the generated INI
file after user entry.

offers a set of predefined colors with symbolic names (such
as “warning” and “info”) that have been designed to keep
good visibility if the end user changes the GUI theme, for
example when using the dark theme or system-wide accessi-
bility settings.

3.4 Grouping elements

The first grouping element is matched to an INI structure:
sections. It is either expressly declared in the XML or indi-
rectly, as the basic building blocks can declare which section
they belong to. In the GUI, this is represented by a tab, and
thus all INI keys belonging to a given section will have their
matching widgets appear in the same tab. The end user has
an overview of all the sections with the list of tabs on the top
of Inishell (Fig. 4, on top of Area 2).

Another grouping element is available that does not match
any INI structure: frames (Fig. 7). A frame is used to graphi-
cally group basic elements that belong together, for example
a set of configuration parameters that are all related to the
same concept in the numerical model. A frame can have its
own help text, which can be convenient for describing the
feature that is configured by the keys within the frame in de-
tail.

3.5 Templates

Some fragments of the INI configuration file might have to
be repeated multiple times, for example to iterate over mul-
tiple input files or over meteorological parameters. In this
case, a base key is defined (e.g., “STATION”), and multiple
versions derived from this base key will be generated as re-
quested by the user (by clicking on a “+” button to generate
“STATION1”, “STATION2”, etc.). This lets the end user pro-
vide as many variants as necessary without having to hard-
code the configuration keys for each variant. In the XML file,
it is handled with a system of templates where the iterators
are defined first (e.g., as integral numbers or as a fixed list
of strings) followed by the group of configuration keys con-
taining a wildcard character (Fig. 8). Inishell will then dy-

Geosci. Model Dev., 15, 365–378, 2022 https://doi.org/10.5194/gmd-15-365-2022



M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models 373

Figure 7. Constructs to visually group elements together: sections
and frames (panels a, b, and c are similar to those of Fig. 6).

Figure 8. Simple example of templates to generate as many in-
put widgets as the user deems necessary with an auto-numbering
scheme (panels a, b, and c are similar to those of Fig. 6).

namically generate as many entry widgets (or groups) as it is
asked to by the end user and will write all resulting INI keys
into the output file.

3.6 Nested widgets

Some dedicated widgets offer the possibility to include more
configuration options that will be shown only when a cer-
tain choice is selected by the user (Fig. 9). This allows for
offering more configuration options related to a given sub-
module if the said sub-module has been enabled (e.g., ticking
a checkbox could show further options of the same INI sec-
tion and so could the selection of specific list entries). This is
a recursive process and allows for indefinite nesting.

3.7 Workflows

In order to allow the end user to run the numerical model
from within Inishell, it is possible to declare the necessary

Figure 9. Example of nested widgets (panels a, b, and c are similar
to those of Fig. 6; for clarity, the help texts have been removed).
Please note that the METEO key uses an alternate label and is de-
fined as mandatory. Once it is selected as SMET, more widgets ap-
pear, including the METEOPATH that is then also mandatory.

workflow in the XML file (Fig. 10). This includes command
line programs as well as their command line options (based
on the data types that are provided by the end user), directory
views (e.g., to open the model results directory), or open-
ing URLs (e.g., to open an online viewer). As mentioned in
Sect. 2.2, running command line programs is performed by
spawning a new process for said command line program and
is currently only supported on the current computer (i.e., no
remote execution) and does not support running through a
batch scheduler (such as Sun Grid Engine or SLURM). The
terminal outputs of the applications started by Inishell are
captured and shown in Inishell’s main window with some ba-
sic syntax highlighting in order to highlight error messages
or warnings.

3.8 Applications

Since multiple profiles of numerical models can be loaded
into Inishell by opening their respective XML files, it is nec-
essary to visually show which choices of numerical model
profiles are supported and easily change between them. This
is achieved by providing some metadata of the applications’
properties in the XML files that define the previously de-
scribed XML elements for the configuration widgets (and
potentially a workflow). An application will therefore con-
sist of a name and an icon in the applications panel, several

https://doi.org/10.5194/gmd-15-365-2022 Geosci. Model Dev., 15, 365–378, 2022



374 M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models

Figure 10. Example of a workflow panel: a few command line pa-
rameters must be provided by the user, who can then run the numer-
ical model and open a visualization application.

tabs with configuration options in the main panel and often a
workflow to run the application.

Combining the features listed here (choosing an applica-
tion from a list and optionally auto-loading an INI file and
a coupled workflow), developers can set up a list of all their
models’ workflows and simulations. Inishell can then handle
everything from configuring, running, and performing main-
tenance work on the model (by executing user-defined sys-
tem commands) – all with the click of a button within one
uniform GUI and without any programming necessary.

4 Discussion

Although fully automatic GUI generation by declarative user
interface models requires complex modeling (Machado et al.,
2017; Meixner et al., 2011), Inishell fully automatically gen-
erates a GUI based on a simple, high-level description of the
data model. This has been made possible by restricting In-
ishell to the narrow and simple use case of configuring scien-
tific numerical models, contrary to more generic approaches
such as that in Díaz et al. (2021). In this use case, the nu-
merical models run from a static configuration file without
feedback to the GUI other than textual information (such as
progression indicators, warnings, and errors) and no inter-
active coupling: the user can not change the configuration

data while the numerical model is running, and the numerical
model can not change its configuration data (as is typically
the case when simulating over a domain defined in time and
space). This has several important consequences that lead to
a great reduction in complexity. First, the palette of inter-
action patterns is reduced (Machado et al., 2017) to Create,
Read, Update, and Delete (CRUD; Martin, 1983) operations.
The reduction in application domain to a narrow scope then
allows for reducing the required descriptive capabilities of
the data model (Schaefer et al., 2006; Meixner et al., 2011)
and data model description file and syntax (Galizia et al.,
2019). This in turn makes the data model map to a very lim-
ited palette of input widgets (as shown in Sect. 3.2), and the
event model is even simpler (feedback stemming from input
validation and hiding or showing elements based on another
element’s value). The focus is also not on the visual appear-
ance of the GUI but on the data that have to be provided
by the end user. Finally, the selection of supported platforms
is restricted to traditional desktop computers, removing the
need for one layer of abstraction (Paterno’ et al., 2009). In-
ishell is therefore a practice-driven simplification of declara-
tive user interface models or model-based UI development to
make this approach usable by non-specialists, similar to other
efforts for web-based forms such as Galizia et al. (2019), Far-
doun et al. (2018), or JSONForm.

As the web is becoming the platform of choice for more
and more complex tools, a web version of Inishell that could
be integrated within a system processing the generated con-
figuration files directly on the web certainly would have its
benefits. However, a major negative feedback from some of
the scientific numerical models that we develop is that the
users had to open a terminal, go to the proper directory, and
run the numerical model from the command line. This has
created many support requests and frustration from the users.
Due to sandboxing and obvious security reasons, running a
local executable is not permissible from a web application,
which is the main reason the implementation as a native
client was the preferred choice. Moreover, as web technolo-
gies evolve quickly, the long-term maintenance and evolution
of web applications is a hurdle for research groups that must
rely on external contractors for their development (or even
for trivial bug fixes). Furthermore, the interaction of a local
web application with files in arbitrary locations on the system
remains cumbersome.

The choice of file formats for the configuration files (cur-
rently INI) has been the result of compromises between ease
of use and robustness for manual editing by the end users
on the one hand and expressiveness and compatibility with
existing standards on the other hand. The legacy numerical
models and tools have also weighted in for an easy transition
to this new system and for a less risky migration. A similar
project starting from scratch without any retro-compatibility
issue would most probably rely on more modern and better-
defined standard file formats. Future developments of In-
ishell could benefit from supporting several output formats

Geosci. Model Dev., 15, 365–378, 2022 https://doi.org/10.5194/gmd-15-365-2022



M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models 375

in order to generate configuration files for a wider range of
scientific numerical models.

Since the first version of Inishell was written in the Java
programming language in 2011, it is possible to draw some
conclusions related to its real life impact. Overall it has
worked well, allowing multiple numerical models to evolve
freely without worrying about tedious redesigns of the GUI.
Most of the additionally introduced configuration keys could
be declared in Inishell in a matter of minutes, and the possi-
bilities offered by the XML elements recognized by Inishell
have been mostly adequate. Support requests by end users
of numerical models have dramatically dropped for users of
Inishell since it was launched. However, some issues have
been identified and addressed in the current version. First, as
the Java environment is often no longer installed by default
on personal computers, it has started to cause more support
requests related to the installation and configuration of Java;
the move to C++ is a response to this issue. Moreover, the
original version of Inishell missed the possibility to run the
numerical models directly from within its own interface, and
this has been identified as a major hindrance towards hav-
ing more users rely on Inishell for their day-to-day simula-
tions. This new capability has been brought through the ex-
pansion of the descriptive capabilities of the XML elements
so Inishell now offers a fully self sufficient environment for
configuring and running the numerical models that rely on
it. This means that end users do not need to work through a
combination of tools that tended to encourage them to man-
ually tweak the configuration files (and therefore introduce
errors) but find everything they need in one integrated pack-
age. This has also significantly improved the uptake of new
numerical model features as end users now visually see new
options in the GUI instead of having to read through many
pages of documentation or detailed changelogs (similar to
what was reported for technical users in Sect. 1.3).

The new version has since been used in complex oper-
ational simulation toolchains with completely different nu-
merical models than it was originally developed for. Merely
by adhering to the INI syntax it was possible to adequately
set up the models’ parameters through Inishell, document
them, and offer an easy to use and familiar GUI to the people
running the models.

5 Conclusions

Scientific numerical models require a large number of con-
figuration parameters to operate that are generally quite com-
plex to set up. Providing a graphical user interface (GUI)
to set up such configuration parameters improves the con-
trol that the end users have over the numerical models be-
yond what a standard documentation would provide. How-
ever, standard GUIs are very time-consuming projects to pro-
gram for these large numbers of configuration parameters
and often require a skill set that is not found in such numer-

ical model developers. By relying on an approach derived
from declarative user interface models and restricting itself
to the narrow use case of scientific numerical model config-
uration (a low-complexity use case), Inishell allows model
developers to quickly define the configuration parameters in
an XML file that must be provided by the users (along with a
few properties) and then generate a GUI based on these def-
initions on the fly. The maintenance of the GUI solely con-
sists of editing this XML file, for example to add new con-
figuration parameters. Now, 10 years after the first version of
Inishell was deployed in the field, this concept has worked
well globally and has been efficient from the point of view of
both the end user and numerical model developers. Enforcing
a well-defined syntax and a single configuration file has also
brought added benefits, such as improved reproducibility.

Appendix A: Supported INI file syntax

Although best practices have emerged that make the INI in-
formal standard reasonably usable as a configuration file syn-
tax, it is too loosely specified to be easily automatically gen-
erated and therefore has been defined more strictly for this
work and extended to better suit the needs of numerical mod-
els.

The general format consists of a list of key–value pairs,
delimited by an “=” sign (line 3 in Fig. A1). The values can
be of type doubles, integers, Booleans (“true”/“false” or 0/1),
or strings. It is possible to add comments; all characters fol-
lowing “#” or “;” will be considered to be comments until the
end of the line is reached (lines 2 and 3 in Fig. A1). The keys
can be grouped by sections in order to bring more clarity and
structure to the configuration file, each section being marked
by a section name between square brackets (lines 1 and 9 in
Fig. A1). Spaces and tabs can be used freely between words
(either keys or values). Each key must appear only once per
section, but the same key can appear in several sections: for
example, time zone information can appear in an input and
an output section.

In order to keep the uniqueness of the keys in each section
while allowing semantically identical keys to coexist, several
extensions have been defined. A first possibility is to simply
add a number after the key, making it in effect unique but
clearly showing the user that all these keys participate to the
same concept (lines 6 and 7 in Fig. A1). Another possibility
is that a key may receive several values by providing the dif-
ferent values space-delimited after the equals sign (line 11 in
Fig. A1). Finally, a weak concept of namespaces has been in-
troduced: a key can be prefixed by a namespace so that multi-
ple keys belonging to different namespaces can coexist in the
same section. This makes it possible for example to declare
keys for specific meteorological parameters by using the me-
teorological parameter abbreviation as a namespace (lines 10
and 11 in Fig. A1).

https://doi.org/10.5194/gmd-15-365-2022 Geosci. Model Dev., 15, 365–378, 2022



376 M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models

Figure A1. Syntax of the INI file with numbered lines.

Code availability. The current version of Inishell is available from
the project forge https://code.wsl.ch/snow-models/inishell (last ac-
cess: 14 January 2022) under the GNU General Public License v3.0
(GPL v3) license. The exact version of Inishell presented in this pa-
per is archived at https://doi.org/10.16904/envidat.194 (Bavay et al.,
2020b).

Data availability. No data sets were used in this article.

Author contributions. MB led the project from the beginning and
contributed to maintenance and development on all versions. He
also wrote the bulk of the paper. MR provided the bulk of the devel-
opment of the new Inishell and maintenance since its introduction
and has also contributed to the paper. TE assisted with the imple-
mentation of the first version, helped maintain it over many years,
and contributed to the paper. DK co-designed and implemented
most of the original Inishell.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors are very thankful for the contin-
ued support of Charles Fierz and Michael Lehning, who trusted us
with our vision. Four anonymous reviewers helped to improve the
paper significantly with their very insightful and constructive com-
ments.

Review statement. This paper was edited by Heiko Goelzer and re-
viewed by four anonymous referees.

References

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams,
S. M., and Shuster, J. E.: UIML: an appliance-independent
XML user interface language, Comput. Netw., 31, 1695–1708,
https://doi.org/10.1016/S1389-1286(99)00044-4, 1999.

Bair, E. H., Rittger, K., Ahmad, J. A., and Chabot, D.: Comparison
of modeled snow properties in Afghanistan, Pakistan, and Tajik-
istan, The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-
14-331-2020, 2020.

Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library
for meteorological data, Geosci. Model Dev., 7, 3135–3151,
https://doi.org/10.5194/gmd-7-3135-2014, 2014.

Bavay, M., Fiddes, J., Fierz, C., Lehning, M., Monti, F., and
Egger, T.: The METEOIO pre-processing library for op-
erational applications, in: International Snow Science
Workshop ISSW, 7–12 October 2018, Innsbruck, Austria,
https://doi.org/10.5281/zenodo.5718629, 2018.

Bavay, M., Fiddes, J., and Godøy, Ø.: Automatic Data Standardiza-
tion for the Global Cryosphere Watch Data Portal, Data Science
Journal, 19, p. 6, https://doi.org/10.5334/dsj-2020-006, 2020a.

Bavay, M., Reisecker, M., Egger, T., and Korhammer, D.: Inishell-
2.0.4, EnviDat [code], https://doi.org/10.16904/envidat.194,
2020b.

Bogdan, C.: Declarative interaction towards evolutionary user
interface prototyping, in: IFIP Conference on Human-Computer
Interaction, INTERACT 2017 IFIP TC 13 Workshops,
25–27 September 2017, Mumbai, India, Springer, 83–90,
https://doi.org/10.1007/978-3-319-92081-8_8, 2017.

Brown, A. W.: Large-scale, component-based development, vol. 1,
Prentice Hall PTR Englewood Cliffs, 320 pp., ISBN 0-13-
088720-X, 2000.

Brunner, T., Pataki, N., and Porkoláb, Z.: Backward compatibil-
ity violations and their detection in C++ legacy code using
static analysis, Acta Electrotechnica et Informatica, 16, 12–19,
https://doi.org/10.15546/aeei-2016-0009, 2016.

Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., and Shnei-
derman, B.: Determining causes and severity of end-
user frustration, I. J. Hum.-Comput. Int., 17, 333–356,
https://doi.org/10.1207/s15327590ijhc1703_3, 2004.

Côté, K., Madore, J.-B., and Langlois, A.: Evaluating the
potential of using Snowpack and Alpine3D simulations
in three Canadian mountain climates, in: International
Snow Science Workshop ISSW, 2014, Banff, Canada,
https://doi.org/10.13140/2.1.3463.9363, 2014.

Geosci. Model Dev., 15, 365–378, 2022 https://doi.org/10.5194/gmd-15-365-2022

https://code.wsl.ch/snow-models/inishell
https://doi.org/10.16904/envidat.194
https://doi.org/10.1016/S1389-1286(99)00044-4
https://doi.org/10.5194/tc-14-331-2020
https://doi.org/10.5194/tc-14-331-2020
https://doi.org/10.5194/gmd-7-3135-2014
https://doi.org/10.5281/zenodo.5718629
https://doi.org/10.5334/dsj-2020-006
https://doi.org/10.16904/envidat.194
https://doi.org/10.1007/978-3-319-92081-8_8
https://doi.org/10.15546/aeei-2016-0009
https://doi.org/10.1207/s15327590ijhc1703_3
https://doi.org/10.13140/2.1.3463.9363


M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models 377

Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V.,
Branch, O., Attinger, S., and Thober, S.: The impact of standard
and hard-coded parameters on the hydrologic fluxes in the Noah-
MP land surface model, J. Geophys. Res.-Atmos., 121, 10676–
10700, https://doi.org/10.1002/2016JD025097, 2016.

Da Silva, P. P.: User interface declarative models and develop-
ment environments: A survey, in: International Workshop on De-
sign, Specification, and Verification of Interactive Systems, 7th
International Workshop, DSV-IS 2000, 5–6 June 2000, Limer-
ick, Ireland, Springer, 207–226, https://doi.org/10.1007/3-540-
44675-3_13, 2000.

Díaz, E., Panach, J. I., Rueda, S., and Vanderdonckt, J.: An em-
pirical study of rules for mapping BPMN models to graph-
ical user interfaces, Multimed. Tools Appl., 80, 9813–9848,
https://doi.org/10.1007/s11042-020-09651-6, 2021.

Fardoun, H. M., Tesoriero, R., Sebastian, G., and Safa, N.: A
Simplified MbUID Process to Generate Web Form-based UIs,
in: Proceedings of the 13th International Conference on Soft-
ware Technologies (ICSOFT 2018), 26–28 July 2018, Porto,
Portugal, Science and Technology Publications, Lda, 835–842,
https://doi.org/10.5220/0006943908010808, 2018.

Fellmann, T. and Kavakli, M.: A command line interface versus
a graphical user interface in coding VR systems, in: Proceed-
ings of the Second IASTED International Conference on Human
Computer Interaction (IASTED-HCI ’07), 14–16 March 2007,
Chamonix, France, ACTA Press, USA, 142–147, ISBN 978-0-
88986-655-3, 2007.

Fitzpatrick, B. G.: Issues in reproducible simulation research, B.
Math. Biol., 81, 1–6, https://doi.org/10.1007/s11538-018-0496-
1, 2019.

Frost, B.: Atomic design, Brad Frost Pittsburgh, available at: https:
//atomicdesign.bradfrost.com/ (last access: 14 January 2022),
2016.

Galizia, A., Zereik, G., Roverelli, L., Danovaro, E., Clematis, A.,
and D’Agostino, D.: Json-GUI – A module for the dynamic
generation of form-based web interfaces, SoftwareX, 9, 28–34,
https://doi.org/10.1016/j.softx.2018.11.007, 2019.

Gambino, O., Rundo, L., Cannella, V., Vitabile, S., and Pirrone, R.:
A framework for data-driven adaptive GUI generation based on
DICOM, J. Biomed. Inform., 88, 37–52, 2018.

Goodger, B., Hickson, I., Hyatt, D., and Waterson, C.: XML User
Interface Language (XUL) 1.0, Tech. rep., Mozilla.org, available
at: https://www-archive.mozilla.org/projects/xul/xul (last access:
14 January 2022), 2001.

Grünewald, T., Wolfsperger, F., and Lehning, M.: Snow farming:
conserving snow over the summer season, The Cryosphere, 12,
385–400, https://doi.org/10.5194/tc-12-385-2018, 2018.

Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner,
R., Bavay, M., and Lehning, M.: Distributed snow and rock
temperature modelling in steep rock walls using Alpine3D,
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-
585-2017, 2017.

Havens, S., Marks, D., Sandusky, M., Hedrick, A., Johnson,
M., Robertson, M., and Trujillo, E.: Automated Water Sup-
ply Model (AWSM): Streamlining and standardizing applica-
tion of a physically based snow model for water resources
and reproducible science, Comput. Geosci., 144, 104571,
https://doi.org/10.1016/j.cageo.2020.104571, 2020.

ISO: ISO/IEC 14882:1998: Programming languages – C++, In-
ternational Organization for Standardization, 1st edn., 732 pp.,
available at: https://www.iso.org/standard/25845.html (last ac-
cess: 14 January 2022), 1998.

Jamieson, R. A., Beaumont, C., Warren, C., and Nguyen,
M.: The Grenville Orogen explained? Applications and lim-
itations of integrating numerical models with geological
and geophysical data, Can. J. Earth Sci., 47, 517–539,
https://doi.org/10.1139/E09-070, 2010.

Kennard, R. and Leaney, J.: Towards a general purpose archi-
tecture for UI generation, J. Syst. Software, 83, 1896–1906,
https://doi.org/10.1016/j.jss.2010.05.079, 2010.

Köhler, A., Fischer, J.-T., Scandroglio, R., Bavay, M., McEl-
waine, J., and Sovilla, B.: Cold-to-warm flow regime tran-
sition in snow avalanches, The Cryosphere, 12, 3759–3774,
https://doi.org/10.5194/tc-12-3759-2018, 2018.

Lamb, C. and Zacchiroli, S.: Reproducible Builds: Increasing
the Integrity of Software Supply Chains, IEEE Software,
https://doi.org/10.1109/MS.2021.3073045, 2021.

Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A
physical SNOWPACK model for the Swiss avalanche warning:
Part II. Snow microstructure, Cold Reg. Sci. Technol., 35, 147–
167, https://doi.org/10.1016/S0165-232X(02)00073-3, 2002.

Machado, M., Couto, R., and Campos, J. C.: MODUS: Model-
Based User Interfaces Prototyping, in: Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, EICS ’17, 26–29 June 2017, Lisbon, Portugal, Associa-
tion for Computing Machinery, New York, NY, USA, 111–116,
https://doi.org/10.1145/3102113.3102146, 2017.

Martin, J.: Managing the data base environment, Prentice Hall PTR,
ISBN 978-0-13-550582-3, 1983.

Martin, R. C.: Clean code: a handbook of agile software craftsman-
ship, Pearson Education, ISBN 978-0132350884, 2009.

Meixner, G., Paternò, F., and Vanderdonckt, J.: Past, Present, and
Future of Model-Based User Interface Development, i-com, 10,
2–11, https://doi.org/10.1524/icom.2011.0026, 2011.

Mendoza, V. and Novick, D. G.: Usability over time, in: Proceed-
ings of the 23rd annual international conference on Design of
communication: documenting & designing for pervasive infor-
mation, 21-=23 September 2005, Coventry, United Kingdom,
151–158, https://doi.org/10.1145/1085313.1085348, 2005.

Meyers, S.: Effective C++: 50 Specific Ways to Improve Your Pro-
grams and Designs, 2nd edn., Addison-Wesley Publishing Com-
pany, ISSN 0-201-56364-9, 1992.

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz,
C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Ližar, M., Mit-
terer, Ch., Monti, F., Karsten, M., Olefs, M., Snook, J. S.,
van Herwijnen, A., and Vionnet, V.: Application of physical
snowpack models in support of operational avalanche hazard
forecasting: A status report on current implementations and
prospects for the future, Cold Reg. Sci. Technol., 170, 102910,
https://doi.org/10.1016/j.coldregions.2019.102910, 2020.

Mortezapour, M., Menounos, B., Jackson, P. L., Erler, A. R., and
Pelto, B. M.: The role of meteorological forcing and snow
model complexity in winter glacier mass balance estimation,
Columbia River basin, Canada, Hydrol. Process., 34, 5085–5103,
https://doi.org/10.1002/hyp.13929, 2020.

Munafò, M. R., Nosek, B. A., Bishop, D. V., Button, K. S., Cham-
bers, C. D., Du Sert, N. P., Simonsohn, U., Wagenmakers, E.-J.,

https://doi.org/10.5194/gmd-15-365-2022 Geosci. Model Dev., 15, 365–378, 2022

https://doi.org/10.1002/2016JD025097
https://doi.org/10.1007/3-540-44675-3_13
https://doi.org/10.1007/3-540-44675-3_13
https://doi.org/10.1007/s11042-020-09651-6
https://doi.org/10.5220/0006943908010808
https://doi.org/10.1007/s11538-018-0496-1
https://doi.org/10.1007/s11538-018-0496-1
https://atomicdesign.bradfrost.com/
https://atomicdesign.bradfrost.com/
https://doi.org/10.1016/j.softx.2018.11.007
https://www-archive.mozilla.org/projects/xul/xul
https://doi.org/10.5194/tc-12-385-2018
https://doi.org/10.5194/tc-11-585-2017
https://doi.org/10.5194/tc-11-585-2017
https://doi.org/10.1016/j.cageo.2020.104571
https://www.iso.org/standard/25845.html
https://doi.org/10.1139/E09-070
https://doi.org/10.1016/j.jss.2010.05.079
https://doi.org/10.5194/tc-12-3759-2018
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1016/S0165-232X(02)00073-3
https://doi.org/10.1145/3102113.3102146
https://doi.org/10.1524/icom.2011.0026
https://doi.org/10.1145/1085313.1085348
https://doi.org/10.1016/j.coldregions.2019.102910
https://doi.org/10.1002/hyp.13929


378 M. Bavay et al.: Inishell 2.0: semantically driven automatic GUI generation for scientific models

Ware, J. J., and Ioannidis, J. P.: A manifesto for reproducible sci-
ence, Nature human behaviour, 1, 1–9, 2017.

Myers, B. A. and Rosson, M. B.: Survey on user interface pro-
gramming, in: Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM, Publ by ACM, 195–202,
https://doi.org/10.1145/142750.142789, 1992.

Navarro Leija, O. S., Shiptoski, K., Scott, R. G., Wang, B., Renner,
N., Newton, R. R., and Devietti, J.: Reproducible Containers, in:
Proceedings of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, 16–20 March 2020, Lausanne, Switzer-
land, 167–182, https://doi.org/10.1145/3373376.3378519, 2020.

Oden, J. T., Belytschko, T., Fish, J., Hugues, T. J., Johnson,
C., Keyes, D., Laub, A., Petzold, L., Srolovitz, D., Yip, S.,
and Bass, J.: Simulation-based engineering sciences, Tech.
rep., National Science Foundation, available at: https://www.nsf.
gov/pubs/reports/sbes_final_report.pdf (last access: 14 January
2022), 2006.

Paterno, F.: Model-based design and evaluation of inter-
active applications, Springer Science & Business Media,
https://doi.org/10.1007/978-1-4471-0445-2, 1999.

Paterno’, F., Santoro, C., and Spano, L. D.: MARIA: A
Universal, Declarative, Multiple Abstraction-Level Language
for Service-Oriented Applications in Ubiquitous Environ-
ments, ACM Trans. Comput.-Hum. Interact., 16, 1–30,
https://doi.org/10.1145/1614390.1614394, 2009.

Peng, R. D.: Reproducible research in computational science, Sci-
ence, 334, 1226–1227, https://doi.org/10.1126/science.1213847,
2011.

Rasmus, S., Kivinen, S., Bavay, M., and Heiskanen, J.: Local
and regional variability in snow conditions in northern Fin-
land: a reindeer herding perspective, Ambio, 45, 398–414,
https://doi.org/10.1007/s13280-015-0762-5, 2016.

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L.
A., Benureau, F. C. Y., Brown, C. T., de Buyl, P., Caglayan,
O., Davison, A. P., Delsuc, M., Detorakis, G., Diem, A. K.,
Drix, D., Enel, P., Girard, B., Guest, O., Hall, M. G., Hen-
riques, R. N., Hinaut, X., Jaron, K. S., Khamassi, M., Klein, A.,
Manninen, T., Marchesi, P., McGlinn, D., Metzner, C., Petchey,
O., Plesser, H. E., Poisot, T., Ram, K., Ram, Y., Roesch, E.,
Rossant, C., Rostami, V., Shifman, A., Stachelek, J., Stimberg,
M., Stollmeier, F., Vaggi, F., Viejo, G., Vitay, J., Vostinar, A.
E., Yurchak, R., and Zito, T.: Sustainable computational sci-
ence: the ReScience initiative, PeerJ Computer Science, 3, e142,
https://doi.org/10.7717/peerj-cs.142, 2017.

Sato, A., Ishizaka, M., Shimizu, M., Kobayashi, T., Nishimura, K.,
Nakai, S., Sato, T., Abe, O., Kosugi, K., Yamaguchi, S., and
Iwamoto, K.: Construction of snow disaster forecasting system in
Japan, Snow Engineering V, 235–238, ISBN 9058096343, 2004.

Schaefer, R., Bleul, S., and Mueller, W.: Dialog modeling for
multiple devices and multiple interaction modalities, in: In-
ternational Workshop on Task Models and Diagrams for
User Interface Design, 5th International Workshop, TAMODIA
2006, 23–24 October 2006, Hasselt, Belgium, Springer, 39–53,
https://doi.org/10.1007/978-3-540-70816-2_4, 2006.

Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sen-
sitivity of Alpine3D modeled snow cover to modifica-
tions in DEM resolution, station coverage and meteorolog-
ical input quantities, Environ. Model. Softw., 83, 387–396,
https://doi.org/10.1016/j.envsoft.2016.02.017, 2016.

Spreitzhofer, G., Fierz, C., and Lehning, M.: SN_GUI: a graphi-
cal user interface for snowpack modeling, Comput. Geosci., 30,
809–816, https://doi.org/10.1016/j.cageo.2004.05.011, 2004.

Voronkov, A., Martucci, L. A., and Lindskog, S.: System admin-
istrators prefer command line interfaces, don’t they? an ex-
ploratory study of firewall interfaces, in: Fifteenth Symposium
on Usable Privacy and Security (SOUPS 2019), 11–13 Au-
gust 2019, Santa Clara, CA, USA, USENIX Association, 259–
271, available at: https://www.usenix.org/conference/soups2019/
presentation/voronkov (last access: 14 January 2022), 2019.

Geosci. Model Dev., 15, 365–378, 2022 https://doi.org/10.5194/gmd-15-365-2022

https://doi.org/10.1145/142750.142789
https://doi.org/10.1145/3373376.3378519
https://www.nsf.gov/pubs/reports/sbes_final_report.pdf
https://www.nsf.gov/pubs/reports/sbes_final_report.pdf
https://doi.org/10.1007/978-1-4471-0445-2
https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1126/science.1213847
https://doi.org/10.1007/s13280-015-0762-5
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.1007/978-3-540-70816-2_4
https://doi.org/10.1016/j.envsoft.2016.02.017
https://doi.org/10.1016/j.cageo.2004.05.011
https://www.usenix.org/conference/soups2019/presentation/voronkov
https://www.usenix.org/conference/soups2019/presentation/voronkov

	Abstract
	Introduction
	Numerical models
	Configuring numerical models
	Graphical user interfaces (GUIs)
	Reproducible science considerations

	Methodology
	GUI requirements
	General principles of Inishell

	Implementation
	Overview of the interface
	General architecture
	Basic building blocks
	Grouping elements
	Templates
	Nested widgets
	Workflows
	Applications

	Discussion
	Conclusions
	Appendix A: Supported INI file syntax
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

