Model description paper 23 Dec 2021
Model description paper | 23 Dec 2021
HydroPy (v1.0): a new global hydrology model written in Python
Tobias Stacke and Stefan Hagemann
Related authors
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Philipp de Vrese, Tobias Stacke, Thomas Kleinen, and Victor Brovkin
The Cryosphere, 15, 1097–1130, https://doi.org/10.5194/tc-15-1097-2021, https://doi.org/10.5194/tc-15-1097-2021, 2021
Short summary
Short summary
With large amounts of carbon stored in frozen soils and a highly energy-limited vegetation the Arctic is very sensitive to changes in climate. Here our simulations with the land surface model JSBACH reveal a number of offsetting factors moderating the Arctic's net response to global warming. More importantly we find that the effects of climate change may not be fully reversible on decadal timescales, leading to substantially different CH4 emissions depending on whether the Arctic warms or cools.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Philipp de Vrese, Tobias Stacke, and Stefan Hagemann
Earth Syst. Dynam., 9, 393–412, https://doi.org/10.5194/esd-9-393-2018, https://doi.org/10.5194/esd-9-393-2018, 2018
Short summary
Short summary
The potential food supply depends strongly on climatic conditions, while agricultural activity has substantial impacts on climate. Using an Earth system model, we investigate the climate–agriculture interactions resulting from a maximization of the global cropland area during the 21st century. We find that the potential food supply can be increased substantially, but guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult.
Liangjing Zhang, Henryk Dobslaw, Tobias Stacke, Andreas Güntner, Robert Dill, and Maik Thomas
Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, https://doi.org/10.5194/hess-21-821-2017, 2017
Short summary
Short summary
Global numerical models perform differently, as has been found in some model intercomparison studies, which mainly focused on components like evapotranspiration, soil moisture or runoff. We have applied terrestrial water storage that is estimated from a GRACE-based state-of-art post-processing method to validate four global numerical models and try to identify the advantages and deficiencies of a certain model. GRACE-based TWS demonstrates its additional benefits to improve the models in future.
T. Stacke and S. Hagemann
Earth Syst. Dynam., 7, 1–19, https://doi.org/10.5194/esd-7-1-2016, https://doi.org/10.5194/esd-7-1-2016, 2016
Short summary
Short summary
This study evaluates the lifetime of soil moisture perturbations using an atmosphere-land GCM. We find memory of up to 9 months for root zone soil moisture. Interactions with other surface states result in significant but short-lived anomalies in surface temperature and more stable anomalies in leaf carbon content. As these anomalies can recur repeatedly, e.g. due to interactions with a deep-soil moisture reservoir, we conclude that soil moisture initialization may impact climate predictions.
B. Mayer, T. Stacke, I. Stottmeister, and T. Pohlmann
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-863-2015, https://doi.org/10.5194/osd-12-863-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The Indonesian Sunda Shelf (average depth 48 m) is subject to many physical and biogeochemical processes with a strong impact from human activities. For investigation of marine environmental water properties, it is important to know characteristic water exchange rates. With realistic computer model results, analytical flushing rates and tracer residence times were compared for different shelf regions. Only the latter give detailed 3D pictures with times of less than 30 days to more than 2 years.
J. C. S. Davie, P. D. Falloon, R. Kahana, R. Dankers, R. Betts, F. T. Portmann, D. Wisser, D. B. Clark, A. Ito, Y. Masaki, K. Nishina, B. Fekete, Z. Tessler, Y. Wada, X. Liu, Q. Tang, S. Hagemann, T. Stacke, R. Pavlick, S. Schaphoff, S. N. Gosling, W. Franssen, and N. Arnell
Earth Syst. Dynam., 4, 359–374, https://doi.org/10.5194/esd-4-359-2013, https://doi.org/10.5194/esd-4-359-2013, 2013
A. Loew, T. Stacke, W. Dorigo, R. de Jeu, and S. Hagemann
Hydrol. Earth Syst. Sci., 17, 3523–3542, https://doi.org/10.5194/hess-17-3523-2013, https://doi.org/10.5194/hess-17-3523-2013, 2013
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Philipp de Vrese, Tobias Stacke, Thomas Kleinen, and Victor Brovkin
The Cryosphere, 15, 1097–1130, https://doi.org/10.5194/tc-15-1097-2021, https://doi.org/10.5194/tc-15-1097-2021, 2021
Short summary
Short summary
With large amounts of carbon stored in frozen soils and a highly energy-limited vegetation the Arctic is very sensitive to changes in climate. Here our simulations with the land surface model JSBACH reveal a number of offsetting factors moderating the Arctic's net response to global warming. More importantly we find that the effects of climate change may not be fully reversible on decadal timescales, leading to substantially different CH4 emissions depending on whether the Arctic warms or cools.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Thomas Riddick, Victor Brovkin, Stefan Hagemann, and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4291–4316, https://doi.org/10.5194/gmd-11-4291-2018, https://doi.org/10.5194/gmd-11-4291-2018, 2018
Short summary
Short summary
During the Last Glacial Maximum, many rivers were blocked by the presence of large ice sheets and thus found new routes to the sea. This resulted in changes in the pattern of freshwater discharge into the oceans and thus would have significantly affected ocean circulation. Also, rivers found routes across the vast exposed continental shelves to the lower coastlines of that time. We propose a model for such changes in river routing suitable for use in wider models of the last glacial cycle.
Philipp de Vrese, Tobias Stacke, and Stefan Hagemann
Earth Syst. Dynam., 9, 393–412, https://doi.org/10.5194/esd-9-393-2018, https://doi.org/10.5194/esd-9-393-2018, 2018
Short summary
Short summary
The potential food supply depends strongly on climatic conditions, while agricultural activity has substantial impacts on climate. Using an Earth system model, we investigate the climate–agriculture interactions resulting from a maximization of the global cropland area during the 21st century. We find that the potential food supply can be increased substantially, but guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult.
Axel Lauer, Colin Jones, Veronika Eyring, Martin Evaldsson, Stefan Hagemann, Jarmo Mäkelä, Gill Martin, Romain Roehrig, and Shiyu Wang
Earth Syst. Dynam., 9, 33–67, https://doi.org/10.5194/esd-9-33-2018, https://doi.org/10.5194/esd-9-33-2018, 2018
Liangjing Zhang, Henryk Dobslaw, Tobias Stacke, Andreas Güntner, Robert Dill, and Maik Thomas
Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, https://doi.org/10.5194/hess-21-821-2017, 2017
Short summary
Short summary
Global numerical models perform differently, as has been found in some model intercomparison studies, which mainly focused on components like evapotranspiration, soil moisture or runoff. We have applied terrestrial water storage that is estimated from a GRACE-based state-of-art post-processing method to validate four global numerical models and try to identify the advantages and deficiencies of a certain model. GRACE-based TWS demonstrates its additional benefits to improve the models in future.
Jarmo Mäkelä, Jouni Susiluoto, Tiina Markkanen, Mika Aurela, Heikki Järvinen, Ivan Mammarella, Stefan Hagemann, and Tuula Aalto
Nonlin. Processes Geophys., 23, 447–465, https://doi.org/10.5194/npg-23-447-2016, https://doi.org/10.5194/npg-23-447-2016, 2016
Short summary
Short summary
The land-based hydrological cycle is one of the key processes controlling the growth and wilting of plants and the amount of carbon vegetation can assimilate. Recent studies have shown that many land surface models have biases in this area. We optimized parameters in one such model (JSBACH) and were able to enhance the model performance in many respects, but the response to drought remained unaffected. Further studies into this aspect should include alternative stomatal conductance formulations.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Stefan Hagemann, Tanja Blome, Altug Ekici, and Christian Beer
Earth Syst. Dynam., 7, 611–625, https://doi.org/10.5194/esd-7-611-2016, https://doi.org/10.5194/esd-7-611-2016, 2016
Short summary
Short summary
The present study analyses how cold-region physical soil processes, especially freezing of soil water, impact large-scale hydrology and climate over Northern Hemisphere high-latitude land areas. For this analysis, an atmosphere–land global climate model was used. It is shown that including these processes in the model leads to improved discharge in spring and a positive land–atmosphere feedback to precipitation over the high latitudes that has previously not been noted for the high latitudes.
Veronika Eyring, Mattia Righi, Axel Lauer, Martin Evaldsson, Sabrina Wenzel, Colin Jones, Alessandro Anav, Oliver Andrews, Irene Cionni, Edouard L. Davin, Clara Deser, Carsten Ehbrecht, Pierre Friedlingstein, Peter Gleckler, Klaus-Dirk Gottschaldt, Stefan Hagemann, Martin Juckes, Stephan Kindermann, John Krasting, Dominik Kunert, Richard Levine, Alexander Loew, Jarmo Mäkelä, Gill Martin, Erik Mason, Adam S. Phillips, Simon Read, Catherine Rio, Romain Roehrig, Daniel Senftleben, Andreas Sterl, Lambertus H. van Ulft, Jeremy Walton, Shiyu Wang, and Keith D. Williams
Geosci. Model Dev., 9, 1747–1802, https://doi.org/10.5194/gmd-9-1747-2016, https://doi.org/10.5194/gmd-9-1747-2016, 2016
Short summary
Short summary
A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) in CMIP has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations.
Y. Gao, T. Markkanen, T. Thum, M. Aurela, A. Lohila, I. Mammarella, M. Kämäräinen, S. Hagemann, and T. Aalto
Hydrol. Earth Syst. Sci., 20, 175–191, https://doi.org/10.5194/hess-20-175-2016, https://doi.org/10.5194/hess-20-175-2016, 2016
T. Stacke and S. Hagemann
Earth Syst. Dynam., 7, 1–19, https://doi.org/10.5194/esd-7-1-2016, https://doi.org/10.5194/esd-7-1-2016, 2016
Short summary
Short summary
This study evaluates the lifetime of soil moisture perturbations using an atmosphere-land GCM. We find memory of up to 9 months for root zone soil moisture. Interactions with other surface states result in significant but short-lived anomalies in surface temperature and more stable anomalies in leaf carbon content. As these anomalies can recur repeatedly, e.g. due to interactions with a deep-soil moisture reservoir, we conclude that soil moisture initialization may impact climate predictions.
B. Poulter, N. MacBean, A. Hartley, I. Khlystova, O. Arino, R. Betts, S. Bontemps, M. Boettcher, C. Brockmann, P. Defourny, S. Hagemann, M. Herold, G. Kirches, C. Lamarche, D. Lederer, C. Ottlé, M. Peters, and P. Peylin
Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, https://doi.org/10.5194/gmd-8-2315-2015, 2015
Short summary
Short summary
Land cover is an essential variable in earth system models and determines conditions driving biogeochemical, energy and water exchange between ecosystems and the atmosphere. A methodology is presented for mapping plant functional types used in global vegetation models from a updated land cover classification system and open-source conversion tool, resulting from a consultative process among map producers and modelers engaged in the European Space Agency’s Land Cover Climate Change Initiative.
B. Mayer, T. Stacke, I. Stottmeister, and T. Pohlmann
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-863-2015, https://doi.org/10.5194/osd-12-863-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The Indonesian Sunda Shelf (average depth 48 m) is subject to many physical and biogeochemical processes with a strong impact from human activities. For investigation of marine environmental water properties, it is important to know characteristic water exchange rates. With realistic computer model results, analytical flushing rates and tracer residence times were compared for different shelf regions. Only the latter give detailed 3D pictures with times of less than 30 days to more than 2 years.
A. Ekici, C. Beer, S. Hagemann, J. Boike, M. Langer, and C. Hauck
Geosci. Model Dev., 7, 631–647, https://doi.org/10.5194/gmd-7-631-2014, https://doi.org/10.5194/gmd-7-631-2014, 2014
J. C. S. Davie, P. D. Falloon, R. Kahana, R. Dankers, R. Betts, F. T. Portmann, D. Wisser, D. B. Clark, A. Ito, Y. Masaki, K. Nishina, B. Fekete, Z. Tessler, Y. Wada, X. Liu, Q. Tang, S. Hagemann, T. Stacke, R. Pavlick, S. Schaphoff, S. N. Gosling, W. Franssen, and N. Arnell
Earth Syst. Dynam., 4, 359–374, https://doi.org/10.5194/esd-4-359-2013, https://doi.org/10.5194/esd-4-359-2013, 2013
A. Loew, T. Stacke, W. Dorigo, R. de Jeu, and S. Hagemann
Hydrol. Earth Syst. Sci., 17, 3523–3542, https://doi.org/10.5194/hess-17-3523-2013, https://doi.org/10.5194/hess-17-3523-2013, 2013
S. Hagemann, C. Chen, D. B. Clark, S. Folwell, S. N. Gosling, I. Haddeland, N. Hanasaki, J. Heinke, F. Ludwig, F. Voss, and A. J. Wiltshire
Earth Syst. Dynam., 4, 129–144, https://doi.org/10.5194/esd-4-129-2013, https://doi.org/10.5194/esd-4-129-2013, 2013
Related subject area
Hydrology
Computation of backwater effects in surface waters of lowland catchments including control structures – an efficient and re-usable method implemented in the hydrological open-source model Kalypso-NA (4.0)
Inishell 2.0: semantically driven automatic GUI generation for scientific models
Irrigation quality and management determine salinization in Israeli olive orchards
Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment
GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models
SELF v1.0: a minimal physical model for predicting time of freeze-up in lakes
POET (v0.1): speedup of many-core parallel reactive transport simulations with fast DHT lookups
Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States
Cosmic-Ray neutron Sensor PYthon tool (crspy 1.2.1): an open-source tool for the processing of cosmic-ray neutron and soil moisture data
SuperflexPy 1.3.0: an open-source Python framework for building, testing, and improving conceptual hydrological models
DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance
HydroBlocks v0.2: enabling a field-scale two-way coupling between the land surface and river networks in Earth system models
GSTools v1.3: A toolbox for geostatistical modelling in Python
GP-SWAT (v1.0): a two-level graph-based parallel simulation tool for the SWAT model
Effects of dimensionality on the performance of hydrodynamic models
Development of a coupled simulation framework representing the lake and river continuum of mass and energy (TCHOIR v1.0)
Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products
Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0
DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates
Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication
LISFLOOD-FP 8.0: the new discontinuous Galerkin shallow-water solver for multi-core CPUs and GPUs
InundatEd-v1.0: a height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system
Fluxes from soil moisture measurements (FluSM v1.0): a data-driven water balance framework for permeable pavements
Parametrization of a lake water dynamics model MLake in the ISBA-CTRIP land surface system (SURFEX v8.1)
The global water resources and use model WaterGAP v2.2d: model description and evaluation
Shyft v4.8: a framework for uncertainty assessment and distributed hydrologic modeling for operational hydrology
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)
KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms
Simulating human impacts on global water resources using VIC-5
The Ensemble Framework For Flash Flood Forecasting (EF5) v1.2: description and case study
ML-SWAN-v1: a hybrid machine learning framework for the concentration prediction and discovery of transport pathways of surface water nutrients
The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France
A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0)
MFIT 1.0.0: Multi-Flow Inversion of Tracer breakthrough curves in fractured and karst aquifers
Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method
HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources
TIER version 1.0: an open-source Topographically InformEd Regression (TIER) model to estimate spatial meteorological fields
Automated Monte Carlo-based quantification and updating of geological uncertainty with borehole data (AutoBEL v1.0)
glmGUI v1.0: an R-based graphical user interface and toolbox for GLM (General Lake Model) simulations
The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview
WAYS v1: a hydrological model for root zone water storage simulation on a global scale
TOPMELT 1.0: a topography-based distribution function approach to snowmelt simulation for hydrological modelling at basin scale
MELPF version 1: Modeling Error Learning based Post-Processor Framework for Hydrologic Models Accuracy Improvement
Beo v1.0: numerical model of heat flow and low-temperature thermochronology in hydrothermal systems
A parallel workflow implementation for PEST version 13.6 in high-performance computing for WRF-Hydro version 5.0: a case study over the midwestern United States
r.sim.terrain 1.0: a landscape evolution model with dynamic hydrology
The probabilistic hydrological MARCSHYDRO (the MARkov Chain System) model: its structure and core version 0.2
A Python-enhanced urban land surface model SuPy (SUEWS in Python, v2019.2): development, deployment and demonstration
The multiscale routing model mRM v1.0: simple river routing at resolutions from 1 to 50 km
Sandra Hellmers and Peter Fröhle
Geosci. Model Dev., 15, 1061–1077, https://doi.org/10.5194/gmd-15-1061-2022, https://doi.org/10.5194/gmd-15-1061-2022, 2022
Short summary
Short summary
A hydrological method to compute backwater effects in surface water streams and on adjacent lowlands caused by mostly complex flow control systems is presented. It enables transfer of discharges to water levels and calculation of backwater volume routing along streams and lowland areas by balancing water level slopes. The developed, implemented and evaluated method extends the application range of hydrological models significantly for flood-routing simulation in backwater-affected catchments.
Mathias Bavay, Michael Reisecker, Thomas Egger, and Daniela Korhammer
Geosci. Model Dev., 15, 365–378, https://doi.org/10.5194/gmd-15-365-2022, https://doi.org/10.5194/gmd-15-365-2022, 2022
Short summary
Short summary
Most users struggle with the configuration of numerical models. This can be improved by relying on a GUI, but this requires a significant investment and a specific skill set and does not fit with the daily duties of model developers, leading to major maintenance burdens. Inishell generates a GUI on the fly based on an XML description of the required configuration elements, making maintenance very simple. This concept has been shown to work very well in our context.
Vladimir Mirlas, Yaakov Anker, Asher Aizenkod, and Naftali Goldshleger
Geosci. Model Dev., 15, 129–143, https://doi.org/10.5194/gmd-15-129-2022, https://doi.org/10.5194/gmd-15-129-2022, 2022
Short summary
Short summary
Salinization owing to irrigation water quality causes soil degradation and soil fertility reduction that with poor drainage conditions impede plant development and manifest in economic damage. This study provided a soil salting process evaluation procedure through a combination of soil salinity monitoring, field experiments, remote sensing, and unsaturated soil profile saline water movement modeling. The modeling results validated the soil salinization danger from using brackish irrigation.
Niccolò Tubini and Riccardo Rigon
Geosci. Model Dev., 15, 75–104, https://doi.org/10.5194/gmd-15-75-2022, https://doi.org/10.5194/gmd-15-75-2022, 2022
Short summary
Short summary
This paper presents WHETGEO and its 1D deployment: a new physically based model simulating the water and energy budgets in a soil column. WHETGEO-1D is intended to be the first building block of a new customisable land-surface model that is integrated with process-based hydrology. WHETGEO is developed as an open-source code and is fully integrated into the GEOframe/OMS3 system, allowing the use of the many ancillary tools it provides.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Marco Toffolon, Luca Cortese, and Damien Bouffard
Geosci. Model Dev., 14, 7527–7543, https://doi.org/10.5194/gmd-14-7527-2021, https://doi.org/10.5194/gmd-14-7527-2021, 2021
Short summary
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.
Marco De Lucia, Michael Kühn, Alexander Lindemann, Max Lübke, and Bettina Schnor
Geosci. Model Dev., 14, 7391–7409, https://doi.org/10.5194/gmd-14-7391-2021, https://doi.org/10.5194/gmd-14-7391-2021, 2021
Short summary
Short summary
POET is a parallel reactive transport simulator which implements a mechanism to store and reuse previous results of geochemical simulations through distributed hash tables. POET parallelizes chemistry using a master/worker design with noncontiguous grid partitions to maximize its efficiency and load balance on shared-memory machines and compute clusters.
Mary M. F. O'Neill, Danielle T. Tijerina, Laura E. Condon, and Reed M. Maxwell
Geosci. Model Dev., 14, 7223–7254, https://doi.org/10.5194/gmd-14-7223-2021, https://doi.org/10.5194/gmd-14-7223-2021, 2021
Short summary
Short summary
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible opportunity and challenge for hydrologists. In this paper, we present the results of a high-resolution hydrologic simulation configured over the contiguous United States. We discuss simulated water fluxes through groundwater, soil, plants, and over land, and we compare model results to in situ observations and satellite products in order to build confidence and guide future model development.
Daniel Power, Miguel Angel Rico-Ramirez, Sharon Desilets, Darin Desilets, and Rafael Rosolem
Geosci. Model Dev., 14, 7287–7307, https://doi.org/10.5194/gmd-14-7287-2021, https://doi.org/10.5194/gmd-14-7287-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensors estimate root-zone soil moisture at sub-kilometre scales. There are national-scale networks of these sensors across the globe; however, methods for converting neutron signals to soil moisture values are inconsistent. This paper describes our open-source Python tool that processes raw sensor data into soil moisture estimates. The aim is to allow a user to ensure they have a harmonized data set, along with informative metadata, to facilitate both research and teaching.
Marco Dal Molin, Dmitri Kavetski, and Fabrizio Fenicia
Geosci. Model Dev., 14, 7047–7072, https://doi.org/10.5194/gmd-14-7047-2021, https://doi.org/10.5194/gmd-14-7047-2021, 2021
Short summary
Short summary
This paper introduces SuperflexPy, an open-source Python framework for building flexible conceptual hydrological models. SuperflexPy is available as open-source code and can be used by the hydrological community to investigate improved process representations, for model comparison, and for operational work.
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
Nathaniel W. Chaney, Laura Torres-Rojas, Noemi Vergopolan, and Colby K. Fisher
Geosci. Model Dev., 14, 6813–6832, https://doi.org/10.5194/gmd-14-6813-2021, https://doi.org/10.5194/gmd-14-6813-2021, 2021
Short summary
Short summary
Although there have been significant advances in river routing and sub-grid heterogeneity (i.e., tiling) schemes in Earth system models over the past decades, there has yet to be a concerted effort to couple these two concepts. This paper aims to bridge this gap through the development of a two-way coupling between tiling schemes and river networks in the HydroBlocks land surface model. The scheme is implemented and tested over a 1 arc degree domain in Oklahoma, United States.
Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-301, https://doi.org/10.5194/gmd-2021-301, 2021
Preprint under review for GMD
Short summary
Short summary
The GSTools package provides a Python-based platform for gesotatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.
Dejian Zhang, Bingqing Lin, Jiefeng Wu, and Qiaoying Lin
Geosci. Model Dev., 14, 5915–5925, https://doi.org/10.5194/gmd-14-5915-2021, https://doi.org/10.5194/gmd-14-5915-2021, 2021
Short summary
Short summary
GP-SWAT is a two-layer model parallelization tool for a SWAT model based on the graph-parallel Pregel algorithm. It can be employed to perform both individual and iterative model parallelization, endowing it with a range of possible applications and great flexibility in maximizing performance. As a flexible and scalable tool, it can run in diverse environments, ranging from a commodity computer with a Microsoft Windows, Mac or Linux OS to a Spark cluster consisting of a large number of nodes.
Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-250, https://doi.org/10.5194/gmd-2021-250, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
Reservoir hydrodynamic is often described in numerical models differing in dimensionality. 1D and 2D models assume homogeneity along the unresolved dimension. We compare the performance of three models: 1 to 3 dimensions. All models presented reasonable results for seasonal temperature dynamics. Neglecting longitudinal transport resulted in the largest deviations in temperature. Flow velocity could only reproduced by the 3D model. Our results support the selection of models and their assessment.
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021, https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Short summary
We developed TCHOIR, a hydrologic simulation framework, to solve fluvial- and thermodynamics of the river–lake continuum. This provides an algorithm for upscaling high-resolution topography as well, which enables the representation of those interactions at the global scale. Validation against in situ and satellite observations shows that the coupled mode outperforms river- or lake-only modes. TCHOIR will contribute to elucidating the role of surface hydrology in Earth’s energy and water cycle.
Marko Kallio, Joseph H. A. Guillaume, Vili Virkki, Matti Kummu, and Kirsi Virrantaus
Geosci. Model Dev., 14, 5155–5181, https://doi.org/10.5194/gmd-14-5155-2021, https://doi.org/10.5194/gmd-14-5155-2021, 2021
Short summary
Short summary
Different runoff and streamflow products are freely available but may come with unsuitable spatial units. On the other hand, starting a new modelling exercise may require considerable resources. Hydrostreamer improves the usability of existing runoff products, allowing runoff and streamflow estimates at the desired spatial units with minimal data requirements and intuitive workflow. The case study shows that Hydrostreamer performs well compared to benchmark products and observation data.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Marco De Lucia and Michael Kühn
Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021, https://doi.org/10.5194/gmd-14-4713-2021, 2021
Short summary
Short summary
DecTree evaluates a hierarchical coupling method for reactive transport simulations in which pre-trained surrogate models are used to speed up the geochemical subprocess, and equation-based
full-physicssimulations are called only if the surrogate predictions are implausible. Furthermore, we devise and evaluate a decision tree surrogate approach designed to inject domain knowledge of the surrogate by defining engineered features based on law of mass action or stoichiometric reaction equations.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
James Shaw, Georges Kesserwani, Jeffrey Neal, Paul Bates, and Mohammad Kazem Sharifian
Geosci. Model Dev., 14, 3577–3602, https://doi.org/10.5194/gmd-14-3577-2021, https://doi.org/10.5194/gmd-14-3577-2021, 2021
Short summary
Short summary
LISFLOOD-FP has been extended with new shallow-water solvers – DG2 and FV1 – for modelling all types of slow- or fast-moving waves over any smooth or rough surface. Using GPU parallelisation, FV1 is faster than the simpler ACC solver on grids with millions of elements. The DG2 solver is notably effective on coarse grids where river channels are hard to capture, improving predicted river levels and flood water depths. This marks a new step towards real-world DG2 flood inundation modelling.
Chiranjib Chaudhuri, Annie Gray, and Colin Robertson
Geosci. Model Dev., 14, 3295–3315, https://doi.org/10.5194/gmd-14-3295-2021, https://doi.org/10.5194/gmd-14-3295-2021, 2021
Short summary
Short summary
A flood risk estimation model for two study watersheds in Canada and an interactive visualization platform using publicly available hydrometric data are presented. The risk model uses a height above nearest drainage (HAND)-based solution for Manning’s formula and is implemented on a big-data discrete global grid system framework. Overall, the novel data model decreases processing time and provides easy parallelization, resulting in performance gains in online flood analytics.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Geosci. Model Dev., 14, 2127–2142, https://doi.org/10.5194/gmd-14-2127-2021, https://doi.org/10.5194/gmd-14-2127-2021, 2021
Short summary
Short summary
This paper presents FluSM, an algorithm to derive the water balance from soil moisture and metrological measurements. This data-driven water balance framework uses soil moisture as an input and therefore is applicable for cases with unclear processes and lacking parameters. In a case study, we apply FluSM to derive the water balance of 15 different permeable pavements under field conditions. These findings are of special interest for urban hydrology.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, https://doi.org/10.5194/gmd-14-1037-2021, 2021
Short summary
Short summary
In a globalized world with large flows of virtual water between river basins and international responsibilities for the sustainable development of the Earth system and its inhabitants, quantitative estimates of water flows and storages and of water demand by humans are required. Global hydrological models such as WaterGAP are developed to provide this information. Here we present a thorough description, evaluation and application examples of the most recent model version, WaterGAP v2.2d.
John F. Burkhart, Felix N. Matt, Sigbjørn Helset, Yisak Sultan Abdella, Ola Skavhaug, and Olga Silantyeva
Geosci. Model Dev., 14, 821–842, https://doi.org/10.5194/gmd-14-821-2021, https://doi.org/10.5194/gmd-14-821-2021, 2021
Short summary
Short summary
We present a new hydrologic modeling framework for interactive development of inflow forecasts for hydropower production planning and other operational environments (e.g., flood forecasting). The software provides a Python user interface with an application programming interface (API) for a computationally optimized C++ model engine, giving end users extensive control over the model configuration in real time during a simulation. This provides for extensive experimentation with configuration.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020, https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
Short summary
Incorporating bioenergy crops into the well-established global hydrological models is seldom seen today. Here, we successfully enhance a state-of-the-art global hydrological model H08 to simulate bioenergy crop yield. We found that unconstrained irrigation more than doubled the yield under rainfed conditions while simultaneously reducing the water use efficiency by 32 % globally. Our enhanced model provides a new tool for the future assessment of bioenergy–water tradeoffs.
Matthew T. Perks
Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020, https://doi.org/10.5194/gmd-13-6111-2020, 2020
Short summary
Short summary
KLT-IV v1.0 offers a user-friendly graphical interface for the determination of river flow velocity and river discharge using videos acquired from both fixed and mobile remote sensing platforms. Platform motion can be accounted for using ground control points and/or stable features or a GPS device and inertial measurement unit sensor. Examples of the KLT-IV workflow are provided for two case studies where footage is acquired using unmanned aerial systems and fixed cameras.
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020, https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
Short summary
Our study aims to include both both societal and natural water requirements and uses into a hydrological model in order to enable worldwide assessments of sustainable water use. The model was extended to include irrigation, domestic, industrial, energy, and livestock water uses as well as minimum flow requirements for natural systems. Initial results showed competition for water resources between society and nature, especially with respect to groundwater withdrawals.
Zachary L. Flamig, Humberto Vergara, and Jonathan J. Gourley
Geosci. Model Dev., 13, 4943–4958, https://doi.org/10.5194/gmd-13-4943-2020, https://doi.org/10.5194/gmd-13-4943-2020, 2020
Short summary
Short summary
The Ensemble Framework For Flash Flood Forecasting (EF5) is used in the US National Weather Service for operational monitoring and short-term forecasting of flash floods. This article describes the hydrologic models supported by the framework and evaluates their accuracy by comparing simulations of streamflow from 2001 to 2011 at 4 366 observation sites with catchments less than 1000 km2. Overall, the uncalibrated models reasonably simulate flash flooding events.
Benya Wang, Matthew R. Hipsey, and Carolyn Oldham
Geosci. Model Dev., 13, 4253–4270, https://doi.org/10.5194/gmd-13-4253-2020, https://doi.org/10.5194/gmd-13-4253-2020, 2020
Short summary
Short summary
Surface water nutrients are essential to manage water quality, but it is hard to analyse trends. We developed a hybrid model and compared with other models for the prediction of six different nutrients. Our results showed that the hybrid model had significantly higher accuracy and lower prediction uncertainty for almost all nutrient species. The hybrid model provides a flexible method to combine data of varied resolution and quality and is accurate for the prediction of nutrient concentrations.
Patrick Le Moigne, François Besson, Eric Martin, Julien Boé, Aaron Boone, Bertrand Decharme, Pierre Etchevers, Stéphanie Faroux, Florence Habets, Matthieu Lafaysse, Delphine Leroux, and Fabienne Rousset-Regimbeau
Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, https://doi.org/10.5194/gmd-13-3925-2020, 2020
Short summary
Short summary
The study describes how a hydrometeorological model, operational at Météo-France, has been improved. Particular emphasis is placed on the impact of climatic data, surface, and soil parametrizations on the model results. Model simulations and evaluations carried out on a variety of measurements of river flows and snow depths are presented. All improvements in climate, surface data, and model physics have a positive impact on system performance.
Yilin Fang, Xingyuan Chen, Jesus Gomez Velez, Xuesong Zhang, Zhuoran Duan, Glenn E. Hammond, Amy E. Goldman, Vanessa A. Garayburu-Caruso, and Emily B. Graham
Geosci. Model Dev., 13, 3553–3569, https://doi.org/10.5194/gmd-13-3553-2020, https://doi.org/10.5194/gmd-13-3553-2020, 2020
Short summary
Short summary
Surface water quality along river corridors can be improved by the area of the stream bed and stream bank in which stream water mixes with shallow groundwater or hyporheic zones (HZs). These zones are ubiquitous and dominated by microorganisms that can process the dissolved nutrients exchanged at this interface of these zones. The modulation of surface water quality can be simulated by connecting the channel water and HZs through hyporheic exchanges using multirate mass transfer representation.
Jacques Bodin
Geosci. Model Dev., 13, 2905–2924, https://doi.org/10.5194/gmd-13-2905-2020, https://doi.org/10.5194/gmd-13-2905-2020, 2020
Short summary
Short summary
Fractured and karst aquifers constitute important groundwater reservoirs worldwide but are particularly vulnerable to anthropogenic pollution. MFIT is a new GUI-based software for the analytical modeling of artificial tracer tests in such media. It integrates four transport models that are all capable of simulating complex (multimodal and/or heavy-tailed) tracer breakthrough curve responses and includes advanced tools for the automatic calibration and uncertainty analysis of model parameters.
Lele Shu, Paul A. Ullrich, and Christopher J. Duffy
Geosci. Model Dev., 13, 2743–2762, https://doi.org/10.5194/gmd-13-2743-2020, https://doi.org/10.5194/gmd-13-2743-2020, 2020
Short summary
Short summary
Hydrologic modeling is an essential strategy for understanding and predicting natural flows. The paper introduces the design of Simulator for Hydrologic Unstructured Domains (SHUD), from the conceptual and mathematical description of hydrologic processes in a watershed to the model's computational structures. To demonstrate and validate the model performance, we employ three hydrologic experiments: the V-Catchment experiment, Vauclin's experiment, and a model study of the Cache Creek Watershed.
Harsh Beria, Joshua R. Larsen, Anthony Michelon, Natalie C. Ceperley, and Bettina Schaefli
Geosci. Model Dev., 13, 2433–2450, https://doi.org/10.5194/gmd-13-2433-2020, https://doi.org/10.5194/gmd-13-2433-2020, 2020
Short summary
Short summary
We develop a Bayesian mixing model to address the issue of small sample sizes to describe different sources in hydrological mixing applications. Using composite likelihood functions, the model accounts for an often overlooked bias arising due to unweighted mixing. We test the model efficacy using a series of statistical benchmarking tests and demonstrate its real-life applicability by applying it to a Swiss Alpine catchment to obtain the proportion of groundwater recharged from rain vs. snow.
Andrew J. Newman and Martyn P. Clark
Geosci. Model Dev., 13, 1827–1843, https://doi.org/10.5194/gmd-13-1827-2020, https://doi.org/10.5194/gmd-13-1827-2020, 2020
Short summary
Short summary
This paper introduces the Topographically InformEd Regression (TIER) model, which uses terrain attributes to turn observations of precipitation and temperature into spatial maps. TIER allows our understanding of complex atmospheric processes such as terrain-enhanced precipitation to be modeled in a very simple way. TIER lets users change the model so they can experiment with different ways of making maps. A key conclusion is that small changes in TIER will change the final map.
Zhen Yin, Sebastien Strebelle, and Jef Caers
Geosci. Model Dev., 13, 651–672, https://doi.org/10.5194/gmd-13-651-2020, https://doi.org/10.5194/gmd-13-651-2020, 2020
Short summary
Short summary
We provide completely automated Bayesian evidential learning (AutoBEL) for geological uncertainty quantification. AutoBEL focuses on model falsification, global sensitivity analysis, and statistical learning for joint model uncertainty reduction by borehole data. Application shows fast and robust uncertainty reduction in geological models and predictions for large field cases, showing its applicability in subsurface applications, e.g., groundwater, oil, gas, and geothermal or mineral resources.
Thomas Bueche, Marko Wenk, Benjamin Poschlod, Filippo Giadrossich, Mario Pirastru, and Mark Vetter
Geosci. Model Dev., 13, 565–580, https://doi.org/10.5194/gmd-13-565-2020, https://doi.org/10.5194/gmd-13-565-2020, 2020
Short summary
Short summary
The R-based graphical user interface glmGUI provides tools for pre- and postprocessing of General Lake Model (GLM) simulations. This includes an autocalibration, parameter sensitivity analysis, and several plot options. The model parameters can be analyzed and calibrated for the simulation output variables water temperature and lake level. The toolbox is tested for two sites (lake Ammersee, Germany, and lake Baratz, Italy).
Christopher B. Marsh, John W. Pomeroy, and Howard S. Wheater
Geosci. Model Dev., 13, 225–247, https://doi.org/10.5194/gmd-13-225-2020, https://doi.org/10.5194/gmd-13-225-2020, 2020
Short summary
Short summary
The Canadian Hydrological Model (CHM) is a next-generation distributed model. Although designed to be applied generally, it has a focus for application where cold-region processes, such as snowpacks, play a role in hydrology. A key feature is that it uses a multi-scale surface representation, increasing efficiency. It also enables algorithm comparisons in a flexible structure. Model philosophy, design, and several cold-region-specific examples are described.
Ganquan Mao and Junguo Liu
Geosci. Model Dev., 12, 5267–5289, https://doi.org/10.5194/gmd-12-5267-2019, https://doi.org/10.5194/gmd-12-5267-2019, 2019
Mattia Zaramella, Marco Borga, Davide Zoccatelli, and Luca Carturan
Geosci. Model Dev., 12, 5251–5265, https://doi.org/10.5194/gmd-12-5251-2019, https://doi.org/10.5194/gmd-12-5251-2019, 2019
Short summary
Short summary
This paper presents TOPMELT, a parsimonious snowpack simulation model integrated into a basin-scale hydrological model. TOPMELT implements the full spatial distribution of clear-sky potential solar radiation by means of a statistical representation: this approach reduces computational burden, which is a key potential advantage when parameter sensitivity and uncertainty estimation procedures are carried out. The model is assessed by examining different resolutions of its domain.
Rui Wu, Lei Yang, Chao Chen, Sajjad Ahmad, Sergiu M. Dascalu, and Frederick C. Harris Jr.
Geosci. Model Dev., 12, 4115–4131, https://doi.org/10.5194/gmd-12-4115-2019, https://doi.org/10.5194/gmd-12-4115-2019, 2019
Short summary
Short summary
The paper mainly has two contributions. First, a post-processor framework is proposed to improve hydrologic model accuracy. The key is to characterize possible connections between model inputs and errors. Based on results, it is also possible to replace the time-consuming model calibration step using our post-processor framework. Second, a window selection method is proposed to handle nonstationary data. A window size is chosen containing stable data using a measure named
DSproposed by us.
Elco Luijendijk
Geosci. Model Dev., 12, 4061–4073, https://doi.org/10.5194/gmd-12-4061-2019, https://doi.org/10.5194/gmd-12-4061-2019, 2019
Short summary
Short summary
This paper presents a new model code that can be used to date the flow of hot fluids in the crust and the age of hot springs. It does so by modelling the thermal effects of fluid flow in the subsurface and by comparing the results with low-temperature thermochronology, which is a widely used method to quantify the temperature history of minerals and rocks. The model also demonstrates the effects of the depth and angle of permeable faults on temperatures of hot springs.
Jiali Wang, Cheng Wang, Vishwas Rao, Andrew Orr, Eugene Yan, and Rao Kotamarthi
Geosci. Model Dev., 12, 3523–3539, https://doi.org/10.5194/gmd-12-3523-2019, https://doi.org/10.5194/gmd-12-3523-2019, 2019
Short summary
Short summary
WRF-Hydro needs to be calibrated to optimize its output with respect to observations. However, when applied to a relatively large domain, both WRF-Hydro simulations and calibrations require intensive computing resources and are best performed in parallel. This study ported an independent calibration tool (parameter estimation tool – PEST) to high-performance computing clusters and adapted it to work with WRF-Hydro. The results show significant speedup for model calibration.
Brendan Alexander Harmon, Helena Mitasova, Anna Petrasova, and Vaclav Petras
Geosci. Model Dev., 12, 2837–2854, https://doi.org/10.5194/gmd-12-2837-2019, https://doi.org/10.5194/gmd-12-2837-2019, 2019
Short summary
Short summary
The numerical model, r.sim.terrain, simulates how overland flows of water and sediment shape topography over short periods of time. We tested the model by comparing runs of the simulation against a time series of airborne lidar surveys for our study landscape. Through these tests, we demonstrated that the model can simulate gully evolution including processes such as channel incision, channel widening, and the development of scour pits, rills, and depositional ridges.
Elena Shevnina and Andrey Silaev
Geosci. Model Dev., 12, 2767–2780, https://doi.org/10.5194/gmd-12-2767-2019, https://doi.org/10.5194/gmd-12-2767-2019, 2019
Short summary
Short summary
The paper provides a theory and assumptions behind an advance of frequency analysis (AFA) approach in long-term hydrological forecasting. In this paper, a new core of the probabilistic hydrological model MARkov Chain System (MARCSHYDRO) was introduced, together with the code and an example of a climate-scale prediction of an exceedance probability curve of river runoff with low computational costs.
Ting Sun and Sue Grimmond
Geosci. Model Dev., 12, 2781–2795, https://doi.org/10.5194/gmd-12-2781-2019, https://doi.org/10.5194/gmd-12-2781-2019, 2019
Short summary
Short summary
A Python-enhanced urban land surface model, SuPy (SUEWS in Python), is presented with its development (the SUEWS interface modification, F2PY configuration and Python frontend implementation), cross-platform deployment (PyPI, Python Package Index) and demonstration (online tutorials in Jupyter notebooks for users of different levels). SuPy represents a significant enhancement that supports existing and new model applications, reproducibility and enhanced functionality.
Stephan Thober, Matthias Cuntz, Matthias Kelbling, Rohini Kumar, Juliane Mai, and Luis Samaniego
Geosci. Model Dev., 12, 2501–2521, https://doi.org/10.5194/gmd-12-2501-2019, https://doi.org/10.5194/gmd-12-2501-2019, 2019
Short summary
Short summary
We present a model that aggregates simulated runoff along a river
(i.e. a routing model). The unique feature of the model is that it
can be run at multiple resolutions without any modifications to the
input data. The model internally (dis-)aggregates all input data to
the resolution given by the user. The model performance does not
depend on the chosen resolution. This allows efficient model
calibration at coarse resolution and subsequent model application at
fine resolution.
Cited articles
Alcamo, J., Döll, P., Kaspar, F., and Siebert, S.: Global change and global
scenarios of water use and availability: an application of WaterGAP 1.0,
Center for environmental systems research, University of Kassel, Kassel,
Germany, 1997. a
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration:
guidelines for computing crop water requirements, FAO Irrigation and Drainage
Paper No 56, FAO, Rome, Italy, p. 300, 1998. a
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures,
Data Sources and Analysis,
technical Memorandum NESDIS NGDC-24, National Geophysical Data Center [data set], NOAA, https://doi.org/10.7289/V5C8276M,
2009. a, b, c, d
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area
hydrologic modeling and assessment Part I: Model development, J. Am. Water Resour. As., 34,
73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. a
Bauer, H., Heise, E., Pfaendtner, J., Renner, V., and Schmidt, P.: Entwicklung
und Erprobung eines ökonomischen Erdbodenmodells zur Vorhersage von
Oberflächenparametern im Rahmen eines Klimamodells, Tech. rep., final report for contract CLI-001-80-D (B), DWD,
Offenbach, Germany, 1983. a
Bergström, S.: The HBV model-its structure and applications, Tech. Rep. 4,
Swedish Meteorological and Hydrological Institute, Norrköping, Sweden,
1992. a
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen,
P. M., Volk, M., and Srinivasan, R.: Introduction to SWAT+, A Completely
Restructured Version of the Soil and Water Assessment Tool, J. Am. Water Resour. As., 53,
115–130, https://doi.org/10.1111/1752-1688.12482, 2016. a
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water
Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015wr017173, 2015. a, b
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:
GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land
Surface, B. Am. Meteorol. Soc., 87, 1381–1398,
https://doi.org/10.1175/bams-87-10-1381, 2006. a
Do, H. X., Zhao, F., Westra, S., Leonard, M., Gudmundsson, L., Boulange, J. E. S., Chang, J., Ciais, P., Gerten, D., Gosling, S. N., Müller Schmied, H., Stacke, T., Telteu, C.-E., and Wada, Y.: Historical and future changes in global flood magnitude – evidence from a model–observation investigation, Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, 2020. a
Dümenil, L. and Todini, E.: Chapter 9 – A rainfall-runoff scheme for use in
the Hamburg climate model, in: Advances in Theoretical Hydrology, edited by:
O'Kane, J. P., European Geophysical Society Series on Hydrological Sciences,
Elsevier, Amsterdam, 129–157, https://doi.org/10.1016/b978-0-444-89831-9.50016-8,
1992. a
Forsythe, W. C., Rykiel, E. J., Stahl, R. S., Wu, H., and Schoolfield, R. M.:
A model comparison for daylength as a function of latitude and day of year,
Ecol. Modell., 80, 87–95, https://doi.org/10.1016/0304-3800(94)00034-f, 1995. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Gädeke, A., Krysanova, V., Aryal, A., Chang, J., Grillakis, M., Hanasaki, N.,
Koutroulis, A., Pokhrel, Y., Satoh, Y., Schaphoff, S., Schmied, H. M.,
Stacke, T., Tang, Q., Wada, Y., and Thonicke, K.: Performance evaluation of
global hydrological models in six large Pan-Arctic watersheds, Climatic Change,
163, 1329–1351, https://doi.org/10.1007/s10584-020-02892-2, 2020. a
Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell,
N. W., Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling,
S. N., Hagemann, S., Hanasaki, N., Harding, R., Heinke, J., Kabat, P.,
Koirala, S., Oki, T., Polcher, J., Stacke, T., Viterbo, P., Weedon, G. P.,
and Yeh, P.: Multimodel Estimate of the Global Terrestrial Water Balance:
Setup and First Results, J. Hydrometeorol., 12, 869–884,
https://doi.org/10.1175/2011jhm1324.1, 2011. a, b
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N.,
Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z. D.,
Wada, Y., and Wisser, D.: Global water resources affected by human
interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256,
https://doi.org/10.1073/pnas.1222475110, 2014. a
Hagemann, S. and Dümenil, L.: Documentation for the Hydrological Discharge
Model, Tech. Rep. 17, Deutsches Klimarechenzentrum, Hamburg, Germany, 1998. a
Hagemann, S. and Stacke, T.: Impact of the soil hydrology scheme on simulated
soil moisture memory, Clim. Dynam., 44, 1731–1750,
https://doi.org/10.1007/s00382-014-2221-6, 2015. a, b, c, d
Hagemann, S., Botzet, M., Dümenil, L., and Machenhauer, B.: Derivation of
global GCM boundary conditions from 1 km land use satellite data, Tech. Rep.
289, Max Planck Institute for Meteorology, Hamburg, Germany, 1999. a
Hagemann, S., Stacke, T., and Ho-Hagemann, H. T. M.: High Resolution Discharge
Simulations Over Europe and the Baltic Sea Catchment, Front. Earth Sci., 8, 12,
https://doi.org/10.3389/feart.2020.00012, 2020. a, b
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hoyer, S. and Hamman, J. J.: xarray: N-D labeled Arrays and Datasets in Python,
J. Open Res. Softw., 5, 11, https://doi.org/10.5334/jors.148, 2017. a
Kleidon, A.: Global Datasets of Rooting Zone Depth Inferred from Inverse
Methods, J. Climate, 17, 2714–2722,
https://doi.org/10.1175/1520-0442(2004)017<2714:gdorzd>2.0.co;2, 2004. a
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019. a, b
Lehner, B. and Döll, P.: Development and validation of a global database of
lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004. a, b, c, d
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res., 99, 14415,
https://doi.org/10.1029/94jd00483, 1994. a
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens.,
21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000. a
Manabe, S.: Climate and the ocean circulation: I. The atmospheric circulation
and the hydrology of the earth's surface, Mon. Weather Rev., 97, 739–774,
https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2, 1969. a
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. a, b
Matthews, E. and Fung, I.: Methane emission from natural wetlands: Global
distribution, area, and environmental characteristics of sources, Global
Biogeochem. Cy., 1, 61–86, https://doi.org/10.1029/gb001i001p00061, 1987. a, b
Mbaye, M. L., Hagemann, S., Haensler, A., Stacke, T., Gaye, A. T., and Afouda,
A.: Assessment of Climate Change Impact on Water Resources in the Upper
Senegal Basin (West Africa), Am. J. Clim. Change, 4, 77–93,
https://doi.org/10.4236/ajcc.2015.41008, 2015. a
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011. a, b
Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D.,
and Veith, T. L.: Model Evaluation Guidelines for Systematic Quantification
of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900,
https://doi.org/10.13031/2013.23153, 2007. a
Nossent, J. and Bauwens, W.: Optimising the convergence of a Sobol' sensitivity
analysis for an environmental model: application of an appropriate estimate
for the square of the expectation value and the total variance, in: 6th
International Congress on Environmental Modelling and Software, Conference
proceedings, Leipzig, Germany, 2012. a
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A.,
Gerten, D., Gosling, S. N., Grillakis, M., Gudmundsson, L., Hanasaki, N.,
Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Schmied,
H. M., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F., and
Wada, Y.: Global terrestrial water storage and drought severity under climate
change, Nat. Clim. Change, 11, 226–233, https://doi.org/10.1038/s41558-020-00972-w, 2021. a
Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W.,
Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N.,
Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T.,
Wada, Y., and Wisser, D.: Hydrological droughts in the 21st century, hotspots
and uncertainties from a global multimodel ensemble experiment, P. Natl.
Acad. Sci. USA, 111, 3262–3267, https://doi.org/10.1073/pnas.1222473110, 2013. a
Rasche, L., Schneider, U. A., Lobato, M. B., Diego, R. S. D., and Stacke, T.:
Benefits of Coordinated Water Resource System Planning in the Cauca-Magdalena
River Basin, Water Econ. Policy, 4, 1, https://doi.org/10.1142/s2382624x1650034x, 2018. a
Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M.,
Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U.,
Schubert, S., and Windelband, M.: Simulation of the present-day climate with
the ECHAM model: impact of model physics and resolution, Tech. Rep. 93,
Max-Planck-Institute for Meteorology, Hamburg, Germany, 1992. a
Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M.,
Dümenil, L., Esch, M., Giorgetta, M. A., Schlese, U., and Schulzweida,
U.: The atmospheric general circulation model ECHAM-4: Model description and
simulation of present-day climate, Tech. Rep. 218, Max-Planck-Institute for
Meteorology, Hamburg, Germany, 1996. a
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B.,
Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J.,
Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y.,
Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K.,
Piontek, F., Warszawski, L., and Kabat, P.: Multimodel assessment of water
scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250,
https://doi.org/10.1073/pnas.1222460110, 2013. a
Stacke, T. and Hagemann, S.: Development and evaluation of a global dynamical wetlands extent scheme, Hydrol. Earth Syst. Sci., 16, 2915–2933, https://doi.org/10.5194/hess-16-2915-2012, 2012. a, b
Stacke, T. and Hagemann, S.: Land surface parameter fields at 0.5deg
resolution for use with the HydroPy model, Zenodo, https://doi.org/10.5281/zenodo.4541239 [data set],
2021a. a, b
Stacke, T. and Hagemann, S.: Source code for the global hydrological model
HydroPy, Zenodo [code], https://doi.org/10.5281/zenodo.4541380, 2021b. a, b, c
Stacke, T. and Hagemann, S.: HydroPy and MPI-HM simulation data driven with GSWP3 meteorological forcing, World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/HydroPy_MPI-HM_hist_sim, 2021c. a
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
a
Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M., Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz, F.: Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication, Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, 2021. a
Wada, Y., Wisser, D., Eisner, S., Flörke, M., Gerten, D., Haddeland, I.,
Hanasaki, N., Masaki, Y., Portmann, F. T., Stacke, T., Tessler, Z., and
Schewe, J.: Multimodel projections and uncertainties of irrigation water
demand under climate change, Geophys. Res. Lett., 40, 4626–4632,
https://doi.org/10.1002/grl.50686, 2013. a
Warrilow, D. A., Sangster, A. B., and Slingo, A.: Modelling of landsurface
processes and their influence on European climate, Met O 20 Tech Note
DCTN 38, Meteorological Office, Bracknell, UK, 1986. a
Weiland, F. S., Lopez, P., Van Dijk, A., and Schellekens, J.: Global
high-resolution reference potential evaporation, in: 21st International
Congress on Modelling and Simulation, Conference Proceedings, Broadbeach,
Queensland, Australia, 2015. a
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed
hydrology-vegetation model for complex terrain, Water Resour. Res., 30,
1665–1679, https://doi.org/10.1029/94wr00436, 1994. a, b
Zhang, L., Dobslaw, H., Stacke, T., Güntner, A., Dill, R., and Thomas, M.: Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations, Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, 2017. a
Zhao, F., Veldkamp, T. I. E., Frieler, K., Schewe, J., Ostberg, S., Willner,
S., Schauberger, B., Gosling, S. N., Schmied, H. M., Portmann, F. T., Leng,
G., Huang, M., Liu, X., Tang, Q., Hanasaki, N., Biemans, H., Gerten, D.,
Satoh, Y., Pokhrel, Y., Stacke, T., Ciais, P., Chang, J., Ducharne, A.,
Guimberteau, M., Wada, Y., Kim, H., and Yamazaki, D.: The critical role of
the routing scheme in simulating peak river discharge in global hydrological
models, Environ. Res. Lett., 12, 7, https://doi.org/10.1088/1748-9326/aa7250, 2017. a
Short summary
HydroPy is a new version of an established global hydrology model. It was rewritten from scratch and adapted to a modern object-oriented infrastructure to facilitate its future development and application. With this study, we provide a thorough documentation and evaluation of our new model. At the same time, we open our code base and publish the model's source code in a public software repository. In this way, we aim to contribute to increasing transparency and reproducibility in science.
HydroPy is a new version of an established global hydrology model. It was rewritten from scratch...