Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-7175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2
Institute for Environmental Decisions, ETH Zürich, 8092 Zürich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, 8058 Zürich Airport, Switzerland
Gabriela Aznar-Siguan
Federal Office of Meteorology and Climatology MeteoSwiss, 8058 Zürich Airport, Switzerland
Christopher Fairless
Institute for Environmental Decisions, ETH Zürich, 8092 Zürich, Switzerland
David N. Bresch
Institute for Environmental Decisions, ETH Zürich, 8092 Zürich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, 8058 Zürich Airport, Switzerland
Related authors
Samuel Eberenz, Samuel Lüthi, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, https://doi.org/10.5194/nhess-21-393-2021, 2021
Short summary
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Robin Noyelle, Matthias Röthlisberger, and Heini Wernli
Weather Clim. Dynam., 6, 1027–1043, https://doi.org/10.5194/wcd-6-1027-2025, https://doi.org/10.5194/wcd-6-1027-2025, 2025
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assess whether these regime frequency changes are relevant to understanding climate change signals in precipitation. At least in our example application, in most regions, regime frequency changes explain little of the projected precipitation changes.
Christophe Lienert, Andreas Paul Zischg, Horst Kremers, Jamie McCaughey, Lara Zinkl, and David N. Bresch
Abstr. Int. Cartogr. Assoc., 9, 1, https://doi.org/10.5194/ica-abs-9-1-2025, https://doi.org/10.5194/ica-abs-9-1-2025, 2025
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Samuel Eberenz, Samuel Lüthi, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, https://doi.org/10.5194/nhess-21-393-2021, 2021
Short summary
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Christoph Welker, Thomas Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021, https://doi.org/10.5194/nhess-21-279-2021, 2021
Short summary
Short summary
How representative are local building insurers' claims to assess winter windstorm risk? In our case study of Zurich, we use a risk model for windstorm building damages and compare three different inputs: insurance claims and historical and probabilistic windstorm datasets. We find that long-term risk is more robustly assessed based on windstorm datasets than on claims data only. Our open-access method allows European building insurers to complement their risk assessment with modelling results.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Cited articles
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change
on wildfire across western US forests, Proceedings of the National Academy
of Sciences, National Acad. Sciencesm., 113, 11770–11775, ISBN 0027-8424, 2016. a
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H.,
Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J.,
Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P.,
Tapper, N. J., and Boer, M. M.: Connections of climate change and variability to large and extreme forest fires in southeast Australia, Communications Earth & Environment, 2, 8, https://doi.org/10.1038/s43247-020-00065-8, 2021. a
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate risk assessment platform, CLIMADA v1, Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, 2019. a, b, c, d
Aznar, G., Eberenz, S., Steinmann, C. B., Vogt, T., Roosli, T. ingajsa, Lüthi, S., Evelyn-M, Hartman, J., emanuel-schmid, Guillod, B. P., Stalhandske, Z., Ciullo, A., Kropf, C., Bresch, D. N., Pui Man (Mannie) Kam, wjan262, Fairless, C., Meiler, S., and DarioStocker: CLIMADA-project/climada_python: v2.2.0 (v2.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.5084352, 2021. a
Bakkensen, L. A., Shi, X., and Zurita, B. D.: The Impact of Disaster Data on Estimating Damage Determinants and Climate Costs, Econ. Dis. Cli. Cha., 2, 49–71, https://doi.org/10.1007/s41885-017-0018-x, 2018. a
Bevere, L.: Yet more wildfires, Swiss Re Institute, available at: https://www.swissre.com/risk-knowledge/mitigating-climate-risk/yet-more-wildfires.html, last access: 22 November 2021. a
Bresch, D. N. and Aznar-Siguan, G.: CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool, Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, 2021. a, b
Cao, X., Meng, Y., and Chen, J.: Mapping grassland wildfire risk of the world, in: World Atlas of Natural Disaster Risk, 277–283, Springer, Berlin, Heidelberg, 2015. a
De la Barrera, F., Barraza, F., Favier, P., Ruiz, V., and Quense, J.: Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems, Sci. Total Environ., 637, 1526–1536, https://doi.org/10.1016/j.scitotenv.2018.05.119, 2018. a, b, c
Diaz, J. M.: Economic impacts of wildfire, Southern Fire Exchange, 498,
2012–7, available at https://fireadaptednetwork.org/wp-content/uploads/2014/03/economic_costs_of_wildfires.pdf (last access: 22 November 2021), 2012. a
Eberenz, S., Lüthi, S., and Bresch, D. N.: Regional tropical cyclone impact functions for globally consistent risk assessments, Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, 2020a. a, b, c, d
Eberenz, S., Stocker, D., Röösli, T., and Bresch, D. N.: Asset exposure data for global physical risk assessment, Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, 2020b. a, b, c, d
Emanuel, K.: Global warming effects on US hurricane damage, Weather, Climate, and Society, 3, 261–268, https://doi.org/10.1175/WCAS-D-11-00007.1, 2011. a
Filkov, A. I., Ngo, T., Matthews, S., Telfer, S., and Penman, T. D.: Impact of Australia's catastrophic 2019/20 bushfire season on communities and
environment, Retrospective analysis and current trends, Journal of Safety
Science and Resilience, 1, 44–56, https://doi.org/10.1016/j.jnlssr.2020.06.009, 2020. a
Finney, M. A.: FARSITE, Fire Area Simulator – model development and
evaluation, US Department of Agriculture, Forest Service, Rocky Mountain
Research Station, 1998. a
Finney, M. A.: An overview of FlamMap fire modeling capabilities, in: Fuels Management – how to Measure Success: Conference Proceedings, edited by: Andrews, P. L., Butler, B. W., 28–30 March 2006; Portland, OR, Proceedings RMRS-P-41, Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 41, 213–220, 2006. a
Geiger, T., Frieler, K., and Levermann, A.: High-income does not protect
against hurricane losses, Environ. Res. Lett., 11, 084012, https://doi.org/10.1088/1748-9326/11/8/084012, 2016. a
GNU: The GNU General Public License v3.0, GNU Project, Free Software Foundation, available at: https://www.gnu.org/licenses/gpl-3.0.html (last access: 22 November 2021), 2007. a
Guha-Sapir, D. and Below, R.: The quality and accuracy of disaster data: A
comparative analyse of 3 global data sets, Centre for Research on the
Epidemiology of Disasters (CRED) Working Paper, Brussels: CRED, 2002. a
Guha-Sapir, D. and Checchi, F.: Science and politics of disaster death tolls,
BMJ Brit. Med. J., 362, k4005, https://doi.org/10.1136/bmj.k4005, 2018. a
Hantson, S., Kelley, D. I., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Rabin, S. S., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., and Yue, C.: Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project, Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, 2020. a
Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., and Shcherbatyi, I.: scikit-optimize/scikit-optimize (v0.8.1), Zenodo, https://doi.org/10.5281/zenodo.4014775, 2020. a
Smith, K., Woodward, A., Campbell-Lendrum, D., Chadee, D., Honda, Y., Liu, Q., Olwoch, J., Revich, B., Sauerborn, R., Aranda, C. and Berry, H.: IPCC - IPPC AR5: Human health: impacts, adaptation, and co-benefits, in: Climate Change 2014: impacts, adaptation, and vulnerability, Part A: global and sectoral aspects, Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change, 709–754, Cambridge University Press, 2014. a
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda, M.,
Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A.,
Christensen, O. B., Christensen, J. H., Coppola, E., De Cruz, L., Davin,
E. L., Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M. A.,
García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K., Gómez-Navarro,
J. J., Alemán, J. J. G., Gutiérrez, C., Gutiérrez, J. M., Güttler, I.,
Haensler, A., Halenka, T., Jerez, S., Jiménez-Guerrero, P., Jones, R. G.,
Keuler, K., Kjellström, E., Knist, S., Kotlarski, S., Maraun, D., van
Meijgaard, E., Mercogliano, P., Montávez, J. P., Navarra, A., Nikulin, G.,
de Noblet-Ducoudré, N., Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli,
E., Pietikäinen, J.-P., Prein, A. F., Preuschmann, S., Rechid, D., Rockel,
B., Romera, R., Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec,
L., Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi,
K., and Wulfmeyer, V.: Regional climate downscaling over Europe:
perspectives from the EURO-CORDEX community, Reg. Environ. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-9, 2020. a
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J.,
Williamson, G. J., and Bowman, D. M.: Climate-induced variations in global
wildfire danger from 1979 to 2013, Nat. Commun., 6, 1–11, 2015. a
Kam, P. M., Aznar-Siguan, G., Schewe, J., Milano, L., Ginnetti, J., Willner,
S., McCaughey, J. W., and Bresch, D. N.: Global warming and population change both heighten future risk of human displacement due to river floods,
Environ. Res. Lett., 16, 044026, https://doi.org/10.1088/1748-9326/abd26c, 2021. a
Lozano, O. M., Salis, M., Ager, A. A., Arca, B., Alcasena, F. J., Monteiro,
A. T., Finney, M. A., Del Giudice, L., Scoccimarro, E., and Spano, D.:
Assessing climate change impacts on wildfire exposure in Mediterranean
areas, Risk Anal., 37, 1898–1916, 2017. a
Lüthi, S.: Globally consistent assessment of economic impacts of wildfires, Zenodo [code], https://doi.org/10.5281/zenodo.4911382, 2021. a
Meng, Y., Deng, Y., and Shi, P.: Mapping forest wildfire risk of the world, in: World atlas of natural disaster risk, 261–275, Springer, Berlin, Heidelberg, 2015. a
Miller, C. and Ager, A. A.: A review of recent advances in risk analysis for
wildfire management, Int. J. Wildland Fire, 22, 1,
https://doi.org/10.1071/WF11114, 2013. a
Munich Re: Bushfire & wildfire risks, Munich Re, available at:
https://www.munichre.com/en/risks/ (last access: 22 November 2021), 2021. a
NASA: MCD14DL, Earth Data, https://doi.org/10.5067/FIRMS/MODIS/MCD14DL.NRT.006, 2021. a
Papakosta, P., Xanthopoulos, G., and Straub, D.: Probabilistic prediction of
wildfire economic losses to housing in Cyprus using Bayesian network
analysis, Int. J. Wildland Fire, 26, 10, https://doi.org/10.1071/WF15113, 2017. a
Parisien, M.-A., Dawe, D. A., Miller, C., Stockdale, C. A., and Armitage,
O. B.: Applications of simulation-based burn probability modelling: a review,
Int. J. Wildland Fire, 28, 913, https://doi.org/10.1071/WF19069, 2019. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Riley, K. L. and Loehman, R. A.: Mid‐21st‐century climate changes increase
predicted fire occurrence and fire season length, Northern Rocky
Mountains, United States, Ecosphere, 7, e01543, https://doi.org/10.1002/ecs2.1543, 2016. a
Risk Frontier: FireAUS – Detailed Loss Model – RISK
FRONTIERS, available at: https://riskfrontiers.com/models/fireaus/, last access: 22 November 2021. a
Sanderson, B. M. and Fisher, R. A.: A fiery wake-up call for climate science,
Nat. Clim. Change, 10, 175–177, https://doi.org/10.1038/s41558-020-0707-2, 2020. a
Sarricolea, P., Serrano-Notivoli, R., Fuentealba, M., Hernández-Mora, M.,
De la Barrera, F., Smith, P., and Meseguer-Ruiz, O.: Recent wildfires in
Central Chile: Detecting links between burned areas and population
exposure in the wildland urban interface, Sci. Total Environ.,
706, 135894, 2020. a
Sauer, I. J., Reese, R., Otto, C., Geiger, T., Willner, S. N., Guillod, B. P., Bresch, D. N., and Frieler, K.: Climate signals in river flood damages emerge under sound regional disaggregation, Nat. Commun., 12, 2128,
https://doi.org/10.1038/s41467-021-22153-9, 2021. a, b
Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment, Remote Sens. Environ., 143, 85–96, 2014. a
Souvignet, D. M., Wieneke, D. F., Mueller, L., and Bresch, D. D. N.: Economics of Climate Adaptation (ECA), Guidebook for Practitioners, p. 100, 2016. a
Swiss Re: sigma 2/2019: Secondary natural catastrophe risks on the front
line, Tech. Rep. 2/2019, Swiss Re, Zurich, available at: https://www.swissre.com/institute/research/sigma-research/sigma-2019-02.html (last access: 22 November 2021), 2019. a
Swiss Re: sigma 1/2021: Natural catastrophes in 2020, Tech. Rep., 1, Swiss Re, Zurich, available at: https://www.swissre.com/institute/research/sigma-research/sigma-2021-01.html, last access: 22 November 2021. a
Thompson, M. P. and Calkin, D. E.: Uncertainty and risk in wildland fire
management: a review, J. Environ. Manage., 92, 1895–1909, 2011. a
Thompson, M. P., Haas, J. R., Gilbertson-Day, J. W., Scott, J. H., Langowski,
P., Bowne, E., and Calkin, D. E.: Development and application of a geospatial wildfire exposure and risk calculation tool, Environ. Modell. Softw., 63, 61–72, 2015. a
Tymstra, C., Bryce, R. W., Wotton, B. M., Taylor, S. W., and Armitage, O. B.:
Development and structure of Prometheus: the Canadian wildland fire
growth simulation model, Information Report NOR-X-417, (Edmonton, AB), Natural Resources Canada, Canadian Forest Service,
Northern Forestry Centre, 2010. a
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, 2020. a, b, c
Welker, C., Röösli, T., and Bresch, D. N.: Comparing an insurer's perspective on building damages with modelled damages from pan-European winter windstorm event sets: a case study from Zurich, Switzerland, Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021, 2021.
a, b
Westcott, M., Ward, J., Surminski, S., Sayers, P., Bresch, D. N., and Claire,
B.: Be Prepared: Exploring Future Climate-Related Risk for
Residential and Commercial Real Estate Portfolios, The Journal of
Alternative Investments, 23, 24–34, https://doi.org/10.3905/jai.2020.1.100, 2020. a
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling...