
Geosci. Model Dev., 14, 7175–7187, 2021
https://doi.org/10.5194/gmd-14-7175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Globally consistent assessment of economic impacts of wildfires
in CLIMADA v2.2
Samuel Lüthi1,2, Gabriela Aznar-Siguan2, Christopher Fairless1, and David N. Bresch1,2

1Institute for Environmental Decisions, ETH Zürich, 8092 Zürich, Switzerland
2Federal Office of Meteorology and Climatology MeteoSwiss, 8058 Zürich Airport, Switzerland

Correspondence: Samuel Lüthi (samuel.luethi@usys.ethz.ch)

Received: 8 June 2021 – Discussion started: 29 July 2021
Revised: 15 October 2021 – Accepted: 19 October 2021 – Published: 25 November 2021

Abstract. In light of the dramatic increase in economic im-
pacts due to wildfires over recent years, the need for glob-
ally consistent impact modelling of wildfire damages is ever
increasing. Insurance companies, individual households, hu-
manitarian organizations, governmental authorities, and in-
vestors and portfolio owners are increasingly required to ac-
count for climate-related physical risks. In response to these
societal challenges, we present an extension to the open-
source and open-access risk modelling platform CLIMADA
(CLImate ADAptation) for modelling economic impacts of
wildfires in a globally consistent and spatially explicit ap-
proach. All input data are free, public and globally available,
ensuring applicability in data-scarce regions of the Global
South. The model was calibrated at resolutions of 1, 4 and
10 km using information on past wildfire damage reported
by the disaster database EM-DAT. Despite the large remain-
ing uncertainties, the model yields sound damage estimates
with a model performance well in line with the results of
other natural catastrophe impact models, such as for tropi-
cal cyclones. To complement the global perspective of this
study, we conducted two case studies on the recent megafires
in Chile (2017) and Australia (2020). The model is made
available online as part of a Python package, ready for appli-
cation in practical contexts such as disaster risk assessment,
near-real-time impact estimates or physical climate risk dis-
closure.

1 Introduction

Wildfire risk is rapidly increasing globally, leading to dra-
matic impacts on ecosystems, biodiversity and society. Eco-
nomic damages threaten individual households, insurance
companies and governmental authorities alike. Over the past
few years, (re-)insurance firms and government agencies an-
nounced record losses due to wildfire hazards (Swiss Re,
2019). While insured losses due to wildfire accounted for
less than 2 % of total insured losses during the period from
1985 to 2015, this number is up to 12.4 % for the period from
2016 to 2020 (Swiss Re, 2021). While changing land use
and management, increasing climate extremes, and lengthen-
ing of fire seasons show clear human influence (Jolly et al.,
2015; Abatzoglou and Williams, 2016), it is very possible
that climate models still underestimate the rapid risk increase
of wildfire activity (Sanderson and Fisher, 2020). However,
the recent Fire Model Intercomparison Project (FireMIP)
shows that most state-of-the-art fire models show clear skill
in capturing trends of fire under global environmental change
(Hantson et al., 2020).

In contrast to the modelling of wildfires within climate
models, globally consistent economic loss modelling of
wildfire damages is in its infancy, especially compared to
other natural catastrophes such as earthquakes, tropical cy-
clones or flooding (Ward et al., 2020). In previous global
studies, risk is often related to area burned by using satellite
data (Cao et al., 2015; Meng et al., 2015) and not as the direct
impact on people’s livelihoods or infrastructure. On more lo-
cal scales, several modelling groups developed highly skilled
models for the analysis of fire spread (e.g. Tymstra et al.,
2010; Finney, 1998, 2006) and risk (e.g. Miller and Ager,
2013; Thompson and Calkin, 2011; Thompson et al., 2015)
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with the aim of investigating highly complex research ques-
tions around fuel treatment, forestry planning, carbon bud-
gets and wildland–urban interface (WUI) risk (Parisien et al.,
2019). These models have further been used to assess the ef-
fects of climate change on regional wildfire risk (e.g. Lozano
et al., 2017; Riley and Loehman, 2016). However, as these
models typically depend on numerous different and highly
resolved input variables and are computationally expensive
to run, their transferability to data-scarce regions of the world
is limited. The few existing wildfire loss models are typi-
cally proprietary, developed to estimate risks in regions of the
Western world (where losses in USD terms are biggest) and
not readily applicable on a global scale (e.g. Papakosta et al.,
2017; Munich Re, 2021; Risk Frontier, 2021). Increasingly,
the demand for globally consistent physical risk assessment
comes also from the financial industry, in order to properly
disclose financial risk (e.g. within the Task Force on Climate-
related Financial Disclosures, TCFD, Westcott et al., 2020).
To our understanding, no model has been developed to assess
economic damages from wildfires on a continental to global
scale. Accordingly, the review article on natural hazard risk
assessment by Ward et al. (2020) identifies global wildfire
risk as a “particularly understudied area of disaster risk as-
sessment”.

The open-source software CLIMADA (CLImate ADApta-
tion) (Aznar-Siguan and Bresch, 2019) is a well-established
platform to assess the impacts of natural hazards and for the
appraisal of adaptation options (Bresch and Aznar-Siguan,
2020). The framework allows for a fully probabilistic, event-
based risk assessment based on the risk definition of the
IPCC (IPCC, 2014) that depends on three components: haz-
ard, exposure and vulnerability. The event-based modelling
approach of CLIMADA has been used to conduct studies on,
among others areas, the impacts of tropical cyclones on in-
frastructure (Gettelman et al., 2018; Eberenz et al., 2020a),
the impacts of floods on displaced people (Kam et al., 2021),
and the damage caused by European winter storms (Welker
et al., 2021) and river floods (Sauer et al., 2021). In this study,
we present and describe the newly developed module to as-
sess the risk of wildfires to economic impacts.

We combine historical fire hazards from satellite data
(Giglio et al., 2016) with CLIMADA’s exposure model Lit-
Pop (Eberenz et al., 2020b). We then assess economic im-
pacts with a vulnerability component calibrated using impact
data of past events from the disaster risk database EM-DAT
(Guha-Sapir, 2021) (Sect. 2). We present the result of our cal-
ibration in Sect. 3.1 and apply the model in two case studies
for the recent megafires in Australia in 2019/20 and Chile in
2017 (Sect. 3.2). Finally, we discuss our results with a focus
on the inherent uncertainties (Sect. 4) and conclude our study
in Sect. 5.

2 Data and methods

In this study, we developed a new wildfire module with
the CLIMADA impact modelling framework. It is fully
open-source, written in Python and available on GitHub
(https://github.com/CLIMADA-project/climada_python, last
access: 22 November 2021). The CLIMADA framework
matches geographic exposure (e.g. assets, people, infrastruc-
ture) to geographic hazard for every event and uses im-
pact functions (also called vulnerability curves) to relate the
two to calculate damages. The impact per exposure cell is
the multiplication of the exposure’s value by the generated
mean damage degree, which is given by the impact func-
tion evaluated at the event’s intensity at that location. See
Aznar-Siguan and Bresch (2019) for more information on the
CLIMADA methodology. With this framework, the wildfire
model is built around the three components of hazard, expo-
sure and vulnerability.

2.1 Data

2.1.1 Hazard

The data for historic events come from the Fire Informa-
tion for Resource Management System (FIRMS) provided
by NASA Earthdata (NASA, 2021). The measurements were
acquired by the MODIS and VIIRS instruments on board dif-
ferent satellites to provide near-real-time active fire locations.
By measuring the mid-infrared radiation, these instruments
are able to detect thermal anomalies. With the help of a hy-
brid thresholding and contextual algorithm, each swat pixel
is classified as a fire pixel or not (see Giglio et al., 2016,
for MODIS instrument and Schroeder et al., 2014, for VI-
IRS instrument). The MODIS data are available starting from
November 2000 at a resolution of 1 km, while the VIIRS data
are available starting from January 2012 at a resolution of
375 m. Both data sets provide global coverage; are available
for free online; and hold information on latitude, longitude,
acquisition date, and the brightness in Kelvin [K] for each
pixel identified as fire pixel. In this study we only worked
with MODIS (Collection 6) data and even partly decreased
the resolution, as this proved to yield sufficient results. How-
ever, the model is also fully operational with VIIRS data.

2.1.2 Asset exposure

Exposure data for the impact assessment of wildfires was
taken from LitPop (Eberenz et al., 2020b). This data set com-
bines night light intensity and population density to spatially
distribute macroeconomic indicators (such as GDP, produced
capital or total asset value) onto grid cells at resolutions as
fine as 1 km globally. The approach allows consistent impact
assessment on different resolutions across the whole globe.
The data are publicly available online and available in CLI-
MADA via an API. In this study, we used data on 2019 total
asset value (TAV) for calibration purposes.
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2.1.3 Impact

We used impact data of past wildfires from the interna-
tional disaster database EM-DAT from the Center for Re-
search on the Epidemiology of Disasters (CRED) (Guha-
Sapir, 2021) to calibrate our model. EM-DAT is a global
database of natural and technological disasters, containing
information on the impacts of more than 21 000 disasters in
the world since 1900, of which 86 refer to wildfires that oc-
curred since November 2000 (the start of the MODIS mis-
sion), and includes information on total economic damage.
Information is provided at country level and is based on re-
ports from UN agencies, non-governmental organizations,
insurance companies, research institutes and press agencies.
Given the broad range of sources and the lack of an interna-
tional standard for the reporting of damage information, the
data of EM-DAT contains inherent uncertainties (Bakkensen
et al., 2018). In this study, reported damages were inflated
to 2019 using EM-DAT’s information of inflation to estab-
lish comparability in between the different events and to the
exposure data.

2.2 Methods

2.2.1 Historical events

The new wildfire model in CLIMADA is made available
within the python class “WildFire”. It computes the haz-
ard properties from the FIRMS input. In this study, we map
FIRMS data on a regular raster by using the “BallTree”
nearest-neighbour algorithm (Pedregosa et al., 2011). If two
FIRMS data points fall onto the same raster point, the max-
imum intensity is taken. As definition and information of
wildfire events is highly inconsistent, we took all fires active
within an administration level 1 area (admin 1, i.e. state level
in the US) for the event duration as indicated by EM-DAT.

2.2.2 Impact functions

Impact functions are commonly used to relate mean damage
ratios of exposure to a given hazard intensity (Aznar-Siguan
and Bresch, 2019). We assume that the fire brightness tem-
perature serves as a proxy for hazard intensity in all ways
that fires cause damage to infrastructure. These are predomi-
nantly ember attack and radiant heat and only to a very small
extent direct flame contact (Blanchi et al., 2006). As sub-peril
impact data are extremely rare, such assumptions are com-
monly used in the modelling of natural hazard impacts, e.g.
for the assessment of tropical cyclone damages where wind
speed serves as proxy for torrential rain, surge induced flood-
ing and landslides (Gettelman et al., 2018; Eberenz et al.,
2020a).

As impact functions of several natural hazards resemble a
sigmoid type (e.g. Welker et al., 2021; Sauer et al., 2021),
we used the widely used idealized function proposed by

Emanuel (2011):

f (i)=
i3

1+ i3 , (1)

where i at a given location is defined as

ilat,lon =
MAX[(Ilat,lon− Ithresh),0]

Ihalf− Ithresh
, (2)

where Ilat,lon denotes the intensity of a fire at a specific grid
point. Ithresh, the minimum intensity where damages occur
(here chosen as a constant 295 K – the minimum value of
a FIRMS data point to be displayed as a fire). Hence, Ihalf,
which can be seen as the steepness of the sigmoid function,
is the only parameter that undergoes calibration. We also ex-
amined sigmoid functions with two degrees of freedom by al-
lowing Ithresh and Ihalf to move simultaneously. However, the
additional complexity did not yield a noteworthy improve-
ment in results, and the resulting impact functions look very
similar in shape as Ithresh always gets set to a value close to
295 K.

2.2.3 Calibration

In order to assess economic damages, impact functions have
to be calibrated. This is done iteratively, by comparing mod-
elled damages against the reported damage from EM-DAT
and thereby minimizing an error term (a cost function). In
this study, the root-mean-square fraction (RMSF) serves as
the cost function:

RMSF= exp

√√√√ 1
N

N∑
i=1

(log
ŷi

yi

)2, (3)

where the input variable N denotes the number of events,
ŷi the estimated damage of event i and yi its reported dam-
age. RMSF reflects the relative deviation between modelled
and reported damages. We prefer this cost function over the
widely used root-mean-square error (RMSE) as it weights
all events equally, irrespective of their overall damage. Us-
ing RMSE would bias the result of our calibration towards
the costliest events and thus towards rich countries.

To minimize RMSF with respect to Ihalf we used a
Bayesian optimization method (Head et al., 2020), which it-
eratively computes impacts with CLIMADA. The Bayesian
optimization method converged quickly, requiring less than
500 model runs to find an optimum value for Ihalf. We fur-
ther performed a 10-fold cross-validation to gain a sense of
accuracy of Ihalf. For this we randomly split our event impact
data into training data (90 % of events) and test data (10 % of
events) 10 times to estimate the uncertainty of Ihalf. For the
final impact function we calibrated Ihalf on all data.

To gain further confidence in our results, we performed
calibrations at 1, 4, and 10 km resolution (30, 120, and
300 arcsec). The assessment of the resulting RMSF for all
resolutions and the respective cross-validations is displayed
in the Appendix (Fig. A3).
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Figure 1. (a–c) Reported damages against estimated damages for hazard and exposure resolutions of (a) 1 km, (b) 4 km, and (c) 10 km.
The dotted lines indicate a deviation of an order of magnitude from a perfect estimate and colours group events by continent. (d–f) The
corresponding calibrated impact functions for the different resolutions (d) 1 km, (e), 4 km and (f) 10 km, relating satellite-detected fire
temperature to percentage damage. The shading indicates uncertainties as assessed using a 10-fold cross-validation of model parameter Ihalf.

3 Results

3.1 Impact function calibration

We calibrated impact functions for hazard and exposure res-
olutions of 1, 4 and 10 km as displayed in Fig. 1d–f with
the methodology described above. Damage estimates for
past events are displayed against the reported damage data,
(Fig. 1a–c). Event location, duration and total economic
damage were retrieved from the EM-DAT database. For the
modelling we downloaded FIRMS data for the respective
country and for the event duration as indicated in EM-DAT.
Information on the locations affected by the fires is reported
highly heterogeneously, but it is always available at least on
an admin 1 level (i.e. state level in the US). Hence, to allow
for consistency, damage estimates were accumulated to ad-
min 1 level. After calibrating for the three resolutions, the
RMSF cost function (Eq. 3) was minimized best with 1 km
resolution, equalling 20.8 (for Ihalf = 295.0 K). At this high
resolution, the impact function converges to a step function
(Fig. 1a), which could be interpreted as all assets being de-
stroyed wherever a fire is detected. We were concerned that
the total exposure under higher-resolution footprints was not
enough to recreate EM-DAT losses, resulting in the 100 %
damage step function, but since damage estimates are not
negatively biased we ruled this out. The model performed
nearly equally well on a 4 km resolution, where a minimum
RMSF of 22.6 was found (for Ihalf = 409.4 K), which results

in a smoother shape of the impact function. At 10 km reso-
lution the model performed worse, with a minimum RMSF
of 35.1 (for Ihalf = 484.4 K). The obtained RMSF are well in
line with impact function calibrations for other hazards, e.g.
tropical cyclones where RMSF values in the range of 16.8–
22.2 were found (Eberenz et al., 2020a). Although uncertain-
ties remain substantial (see also Sect. 4.2), our approach per-
forms well on the order of magnitude, as the two dotted lines
in Fig. 1a–c indicate. This is true for 55 out of 86 events
(64 %) at a 1 km resolution and 54 out of 86 events (63 %)
at 4 km resolution (with 47/86 events (55 %) at 10 km). Most
importantly, this ratio is even better for the most expensive
events with reported damages of more than USD 1 billion,
where 18 out of 21 (86 %) are estimated in the correct order
of magnitude for 1 km resolution (76 % for 4 km and 62 %
for 10 km). This is of great importance, as such events are of
special interest to society and stakeholders. Looking at dif-
ferences within 2 orders of magnitude, model estimates are
correct for 90 % of the events on the 1 and 4 km scale (84 %
for 10 km). We also conducted experiments on coarser reso-
lutions (20 km, not shown); however, the results became in-
conclusive. We refrained from calibrating the model for res-
olutions below 1 km, as the LitPop approach is not suited for
such assessments because detailed local features would gain
relevance (Eberenz et al., 2020b).

The model shows no systematic error for individual conti-
nents. However, given that most reported damage data stems
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Figure 2. Maps of south-eastern Australia showing (a) the spatial distribution of asset exposure value generated using LitPop, (b) the wildfires
active between 29 December 2019 and 6 January 2020, and (c) the resulting damage per grid point as estimated by CLIMADA. The largest
impacts stem from the comparably small fires close to Melbourne and Sydney.

from the USA and Australia, the calibration is likely biased
towards these regions. The model did not produce an impact
for one instance in Chile, where EM-DAT reports an event in
the province of Coquimbo during February 2002 with an im-
pact of USD 100 million, but FIRMS data show no relevant
fire activity in that province during that time span.

While not all events were individually investigated, we
found our underestimations of damages are often linked to
damages to rural assets, such as national park infrastructure,
or expensive agricultural assets, such as timber resources or
vineyards. In these cases, the exposure at peril is underrepre-
sented, as the night-time luminosity of such assets is low.
As an example, the greatly underestimated Great Smokey
Mountains wildfire (reported damage of USD 1.2 billion, es-
timated damage of USD 30 000) that occurred in Tennessee
in 2016 caused massive damage to a national park for which
the infrastructure is not well represented in our exposure
layer.

On the one hand, overestimates can sometimes be linked to
damages along the wildland–urban interface (WUI), where
even at 1 km resolution sub-grid information is required to
precisely represent this critical boundary. Generally, increas-
ing the resolution of the exposure layer (while keeping the
hazard resolution constant) yields better results for all haz-
ard resolutions (see Fig. A3 in the Appendix). On the other
hand, increasing the resolution of the hazard yields steeper
impact functions, which are not dependent on the exposure
layer. This finding is important for the model’s capability to
work with different sources of exposure data (see Fig. A1 in
the Appendix).

3.2 Model evaluation

In order to more closely assess model output on direct eco-
nomic damages, we performed two case studies – one for
the prominent 2019/2020 wildfire season in Australia and
the other one for the January 2017 Chilean wildfires. While

Chile is a comparably data-scarce country, the CLIMADA
modelling approach requires no country-specific adjustment
and thus facilitates studies in countries of the Global South.
Both studies are conducted at a resolution of 4 km for hazard
and exposure and with the impact function obtained from our
calibration. We chose to use a resolution of 4 km as the cali-
bration revealed that the model performs only slightly better
on a resolution of 1 km. Hence, the higher resolution does not
reliably provide additional value, while the potential errors in
exposure disaggregation increase with higher resolution.

3.2.1 Australia 2020

The 2019/2020 Australian wildfire season, commonly re-
ferred to as the Black Summer Fires, shattered many records.
More houses and land were burned than ever before in the
country, over 1 billion animals were estimated to have been
killed, while some species might even be driven to extinc-
tion by the fires (Filkov et al., 2020). As impacts of climate
change become more and more detectable and earlier projec-
tions of increasing fire risk eventuate (Abram et al., 2021),
government agencies and (re-)insurers are forced to act.
Economic damages from the fires are estimated at roughly
USD 1.5–2 billion (Guha-Sapir, 2021; Bevere, 2021), well in
line with the CLIMADA estimate of USD 1.3 billion. The ge-
ographical distribution of fire damages emphasizes the need
for a spatially explicit modelling framework for infrastruc-
ture damage assessment. While large parts of the fire are ir-
relevant in that perspective, the greatest damages stem from
the densely populated areas, stressing again the importance
of the WUI for economic damages.

3.2.2 Chile 2017

In 2017, Chile suffered the worst wildfires in the country’s
history (De la Barrera et al., 2018). Chile is highly sus-
ceptible to wildfires due to its frequent periods of hot and
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Figure 3. Maps of Chile showing (a) the spatial distribution of asset exposure value generated using LitPop, (b) the wildfires active in
January 2017, and (c) the resulting damage per grid point as estimated by CLIMADA.

dry weather, especially in its so-called Mediterranean region
(32–39◦ S). Furthermore, 25 % of the Chilean urban popula-
tion inhabits WUI areas (Sarricolea et al., 2020). The 2017
fires destroyed more than 3000 houses and burned down an
area of more than 500 000 ha (De la Barrera et al., 2018).
Economic damages are estimated to exceed USD 500 million
(Guha-Sapir, 2021); the CLIMADA estimate of USD 1.8 bil-
lion is substantially higher but still within an order of mag-
nitude. The overestimate is likely due to the WUI around
the area of Concepción, where high damages occurred in our
model that cannot be confirmed from newspaper or field re-
ports. We chose this example to show how WUI interactions
can sometimes lead to overestimations of damage. The fires
also caused other impacts that are not included in the loss fig-
ures and not accounted for at all in our model setup – namely
intense effects on health due to air pollution affecting three-
quarters of the Chilean population but also an increased risk
of flooding and landslides (De la Barrera et al., 2018).

4 Discussion

4.1 Globally consistent wildfire risk assessment

In this study we present and describe a newly developed and
calibrated model to assess economic damages of wildfires
globally but at a high resolution. This has been identified as
a particularly under-researched field (Ward et al., 2020). The
model builds on the CLIMADA modelling platform, which
is a broadly used tool for natural hazard impact assessment.
The model produces sound estimates of wildfire damages on
scales of 1 and 4 km and reasonable estimates on a scale of
10 km. Its capabilities in estimating impacts are well in line
with well-established global impact models for natural haz-
ards such as tropical cyclones (Geiger et al., 2016; Eberenz
et al., 2020a). The improvement in damage estimates going

from 4 to 1 km is relatively minor. We therefore expect that
information on local exposure characteristics and exposure-
specific vulnerability curves is likely to be more important
to model improvements than further increases in exposure or
hazard resolution. However, we refrained from working with
better resolved regional data because this would conflict with
our globally consistent approach. While the model results are
less precise on a 10 km scale, we still regard this as a useful
setup for coupling with regional climate models that are ap-
proaching such resolutions (Jacob et al., 2020). Furthermore,
for many practical applications, such as financial risk disclo-
sure, information on exposure is often available at a relatively
coarse resolution (e.g. ZIP code level).

We deliberately refrained from producing traditional risk
metrics such as exceedance frequency curves or time series
analyses as we suspect that the analysis of past data would
lead to an underestimation of current wildfire risk due to the
strong inherent climate trend. However, as the FIRMS data
are available in near real time, the model is well suited for
rapid impact estimates, which are crucial for efficient disas-
ter response and recovery (e.g. insurance payments or gov-
ernmental response).

The CLIMADA platform provides interoperability with
custom exposure data sets, given that they contain informa-
tion on latitude, longitude, and exposed value. The calibrated
vulnerability curves of this study might serve as a valid start-
ing point for impact calculations with bespoke exposure data.
However, especially at high resolution (<1 km), exposure-
specific features gain importance, e.g. the distance between
infrastructure and vegetation. Hence, a re-calibration might
be required.

The model is open source and open access and can be ap-
plied to any location in the world, as it is designed to de-
pend solely on freely available and easily accessible global
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data sets. Bespoke regional data might easily be included by
users, given the open architecture of the approach.

4.2 Uncertainties

As with any impact modelling, assessment of economic im-
pacts due to wildfires is subject to major uncertainties. Here,
we discuss uncertainties that are inherent in this model. Iden-
tifying and addressing these uncertainties might also guide
future research questions. Following Refsgaard et al. (2007),
we distinguish between the sources and the nature of the un-
certainties. The nature of uncertainty can be parted into epis-
temic and stochastic (or aleatory) uncertainty. The epistemic
uncertainty can be understood as the uncertainty due to im-
perfect knowledge and the stochastic uncertainty as the un-
certainty due to inherent variability (Refsgaard et al., 2007).
The relevant sources of uncertainties are data and model un-
certainty, and we will discuss their epistemic and stochastic
uncertainty.

Looking at the epistemic data uncertainty, a major por-
tion is due to the general lack of impact data. EM-DAT
draws information from various different sources with no
widely agreed-upon reporting standard (Guha-Sapir and Be-
low, 2002). In addition, the blending of direct and indirect
economic damages further enlarges the uncertainties. Thus,
reported figures should not be considered hard data but rather
rough estimates that come with uncertainties up to nearly
an order of magnitude themselves (Guha-Sapir and Chec-
chi, 2018). Furthermore, due to smaller reporting capabili-
ties, uncertainties are likely bigger in poorer countries and
thus within the most vulnerable communities. Finding reli-
able damage information is even harder when we look for
data on a sub-national scale. The model has therefore been
built to provide consistent impact estimates with similar pre-
cision to the source data and without systematic biases. Large
uncertainties are also present within the exposure data. As
LitPop hinges on night light luminosity and population den-
sity, agricultural assets can be substantially underestimated,
as a vineyard is hardly differentiated from a fallow field. On
the other hand, a motorway that is brightly illuminated dur-
ing the whole night can lead to overestimations of exposure
(Eberenz et al., 2020b). The fire detection error of MODIS
data is 1.2 % (Giglio et al., 2016). Hence, in comparison to
the other data sources, the hazard data come with little un-
certainty: given the shape of the impact functions, small dif-
ferences in fire intensity do not affect damage estimates very
strongly. However, small forest clearings can register as false
fire detections, while thick smoke might obscure large fires;
therefore, fire extent data are also not perfect (Giglio et al.,
2016).

On the side of the epistemic model uncertainty, the un-
certainties stem from the design of CLIMADA, its wildfire
module, and the choice of its parameters. In this study, we
estimate impacts solely based on the heat of a fire – this is
a strong simplification, as it is known that fires attack in-

frastructure through other processes, such as ember attack
(Blanchi et al., 2006). We also do not include major drivers
of economic losses in our model, such as smoke, health
costs, fire suppression costs, business interruption or loss of
tourism (Diaz, 2012). Given the source data uncertainty and
our need for a globally consistent approach, we decided that
a simpler model with fewer tunable parameters is more trans-
parent, and just as able to reproduce the reported data, given
the other epistemic uncertainties.

Finally, fire risk modelling is subject to major stochastic
uncertainty. Although influenced by many factors, the spread
of wildfires is chaotic. Whether or not a building catches fire
or whether a fire is detected sufficiently early remain sub-
ject to (bad) luck. The co-location of fire and exposure in a
model grid cell could lead to 0 % or 100 % damage. Thus, as
is common in natural hazard impact modelling, uncertainties
will always remain a major component of any results. Future
work will be able to quantify this uncertainty and provide
confidence intervals for losses.

5 Conclusion

We show that a reasonably simple, globally consistent wild-
fire impact model at 4 km resolution can reproduce past dam-
ages well. The newly developed model is calibrated at resolu-
tions of 1, 4 and 10 km and returns damage estimates that are
correct within an order of magnitude in 63 % of past events.
For fire events causing more than USD 1 billion damages it
has an even better performance of 76 %. The model is best
suited to studies on regional or country levels or across mul-
tiple countries and continents. It further lends itself to ap-
plications with specialized exposure sets, for example the as-
sessment of supply chain risks or risk disclosures of financial
portfolios (e.g. TCFD), since the impact functions adjust for
the precision of the input data. Even for local assessments,
such as in climate adaptation studies (Souvignet et al., 2016),
the model can serve as a valid starting point, as it lends it-
self to easy integration of bespoke data sets and straightfor-
ward re-calibration. If developed further in such a fashion,
CLIMADA’s framework can be used to comprehensively ap-
praise adaptation options (Bresch and Aznar-Siguan, 2020),
including from multi-hazard and multi-metric perspectives.
The model, data and tutorials are available freely online.

We plan to develop this model further for fully proba-
bilistic wildfire risk assessment, including coupling to re-
gional climate models. Furthermore, since wildfire risk often
emerges in combination with other hazards such as drought
and heatwaves, in future work the model should be included
in multi-hazard risk analysis to allow for a consistent, holistic
view of risk, including compound events (Zscheischler et al.,
2018).
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Appendix A: Assessment of different resolutions

Figure A1. Calibrated impact functions for different resolutions of hazard and exposure. The curves relate satellite-detected fire temperature
to a damage percentage at that location. The shading indicates uncertainties as assessed using a 10-fold cross-validation of model parameter
Ihalf (see Sect. 2.2.2). The shape of the impact functions remain relatively stable across different exposure resolutions and becomes steeper
with increasing hazard resolution.
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Figure A2. Reported damages against estimated damages, coloured per continent for different hazard and exposure resolutions. The dotted
lines indicate deviations of an order of magnitude.
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Figure A3. Boxplots of RMSF of training and testing error as a result of a 10-fold cross-validation (CV) for different hazard and exposure
resolutions. The black dots indicate individual results of each calibration. RMSF become smaller with higher exposure resolution. Testing
errors are well in line with training errors, indicating no heavy data bias.

Code and data availability. CLIMADA is openly available on
GitHub at https://github.com/CLIMADA-project/climada_python
(Aznar-Siguan and Bresch, 2019) under the GNU GPL li-
cense (GNU, 2007). CLIMADA version v2.1 was used
for calculation performed for this publication. The whole
wildfire module is made available within release v2.2
(https://doi.org/10.5281/zenodo.5084352, Aznar et al., 2021).
Documentation and an interactive tutorial are available within the
repository. The new wildfire module and scripts reproducing the
main results and figures of this study are available under https:
//github.com/samluethi/CLIMADA_WildFire_Paper (last access:
22 November 2021) (https://doi.org/10.5281/zenodo.4911382,
Lüthi, 2021). All data used in this study are free and publicly
available as indicated in Sect. 2.1 or available upon request.
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