Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6049-2021
https://doi.org/10.5194/gmd-14-6049-2021
Model experiment description paper
 | 
11 Oct 2021
Model experiment description paper |  | 11 Oct 2021

The Lagrangian-based Floating Macroalgal Growth and Drift Model (FMGDM v1.0): application to the Yellow Sea green tide

Fucang Zhou, Jianzhong Ge, Dongyan Liu, Pingxing Ding, Changsheng Chen, and Xiaodao Wei

Related authors

Multi-year observations of near-bed hydrodynamics and suspended sediment at the core of the estuarine turbidity maximum of the Changjiang Estuary
Zaiyang Zhou, Jianzhong Ge, Dirk Sebastiaan van Maren, Hualong Luan, Wenyun Guo, Jianfei Ma, Yingjia Tao, Peng Xu, Fuhai Dao, Wanlun Yang, Keteng Ke, Shenyang Shi, Jingting Zhang, Yu Kuai, Cheng Li, Jinghua Gu, and Pingxing Ding
Earth Syst. Sci. Data, 17, 917–935, https://doi.org/10.5194/essd-17-917-2025,https://doi.org/10.5194/essd-17-917-2025, 2025
Short summary
Source-to-sink pathways of dissolved organic carbon in the river–estuary–ocean continuum: a modeling investigation
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences, 21, 5435–5455, https://doi.org/10.5194/bg-21-5435-2024,https://doi.org/10.5194/bg-21-5435-2024, 2024
Short summary
Improving Arctic sea ice thickness retrieved from CryoSat-2: A comprehensive optimization of a retracking algorithm, radar penetration rate, and snow depth
Yi Zhou, Yu Zhang, Changsheng Chen, Lele Li, Danya Xu, Robert C. Beardsley, and Weizeng Shao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-40,https://doi.org/10.5194/tc-2023-40, 2023
Revised manuscript not accepted
Short summary
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022,https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Retrieving monthly and interannual total-scale pH (pHT) on the East China Sea shelf using an artificial neural network: ANN-pHT-v1
Xiaoshuang Li, Richard Garth James Bellerby, Jianzhong Ge, Philip Wallhead, Jing Liu, and Anqiang Yang
Geosci. Model Dev., 13, 5103–5117, https://doi.org/10.5194/gmd-13-5103-2020,https://doi.org/10.5194/gmd-13-5103-2020, 2020
Short summary

Related subject area

Oceanography
sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev., 18, 1561–1573, https://doi.org/10.5194/gmd-18-1561-2025,https://doi.org/10.5194/gmd-18-1561-2025, 2025
Short summary
The Ross Sea and Amundsen Sea Ice–Sea Model (RAISE v1.0): a high-resolution ocean–sea ice–ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev., 18, 1375–1393, https://doi.org/10.5194/gmd-18-1375-2025,https://doi.org/10.5194/gmd-18-1375-2025, 2025
Short summary
Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5)
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025,https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025,https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary

Cited articles

Abascal, A. J., Castanedo, S., Mendez, F. J., Medina, R., and Losada, I. J.: Calibration of a Lagrangian Transport Model Using Drifting Buoys Deployed during the Prestige Oil Spill, J. Coastal Res., 25, 80–90, https://doi.org/10.2112/07-0849.1, 2009. 
Bao, M., Guan, W., Yang, Y., Cao, Z., and Chen, Q.: Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012, Estuarine, Coastal and Shelf Science, 163, 9–16, https://doi.org/10.1016/j.ecss.2015.02.009, 2015. 
Bian, C., Jiang, W., Quan, Q., Wang, T., Greatbatch, R. J., and Li, W.: Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011, J. Marine Syst., 121–122, 24–35, https://doi.org/10.1016/j.jmarsys.2013.03.013, 2013. 
Brooks, M., Coles, V., Hood, R., and Gower, J.: Factors controlling the seasonal distribution of pelagic Sargassum, Mar. Ecol. Prog. Ser., 599, 1–18, https://doi.org/10.3354/meps12646, 2018. 
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. 
Download
Short summary
In this study, a physical–ecological model, the Floating Macroalgal Growth and Drift Model (FMGDM), was developed to determine the dynamic growth and drifting pattern of floating macroalgae. Based on Lagrangian tracking, the macroalgae bloom is jointly controlled by ocean flows, sea surface wind, temperature, irradiation, and nutrients. The FMGDM was robust in successfully reproducing the spatial and temporal dynamics of the massive green tide around the Yellow Sea.
Share