Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6049-2021
https://doi.org/10.5194/gmd-14-6049-2021
Model experiment description paper
 | 
11 Oct 2021
Model experiment description paper |  | 11 Oct 2021

The Lagrangian-based Floating Macroalgal Growth and Drift Model (FMGDM v1.0): application to the Yellow Sea green tide

Fucang Zhou, Jianzhong Ge, Dongyan Liu, Pingxing Ding, Changsheng Chen, and Xiaodao Wei

Related authors

Source-to-Sink Pathways of Dissolved Organic Carbon in the River-Estuary-Ocean Continuum: A Modeling Investigation
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2024-2,https://doi.org/10.5194/bg-2024-2, 2024
Preprint under review for BG
Short summary
Improving Arctic sea ice thickness retrieved from CryoSat-2: A comprehensive optimization of a retracking algorithm, radar penetration rate, and snow depth
Yi Zhou, Yu Zhang, Changsheng Chen, Lele Li, Danya Xu, Robert C. Beardsley, and Weizeng Shao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-40,https://doi.org/10.5194/tc-2023-40, 2023
Revised manuscript under review for TC
Short summary
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022,https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Retrieving monthly and interannual total-scale pH (pHT) on the East China Sea shelf using an artificial neural network: ANN-pHT-v1
Xiaoshuang Li, Richard Garth James Bellerby, Jianzhong Ge, Philip Wallhead, Jing Liu, and Anqiang Yang
Geosci. Model Dev., 13, 5103–5117, https://doi.org/10.5194/gmd-13-5103-2020,https://doi.org/10.5194/gmd-13-5103-2020, 2020
Short summary
Long-term variation of sea ice and its response to thermodynamic factors in the Northwest Passage of the Canadian Arctic Archipelago
Xinyi Shen, Yu Zhang, Changsheng Chen, and Song Hu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-215,https://doi.org/10.5194/tc-2020-215, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Oceanography
CAR36, a regional high-resolution ocean forecasting system for improving drift and beaching of Sargassum in the Caribbean archipelago
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024,https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Implementation of additional spectral wave field exchanges in a three-dimensional wave–current coupled WAVEWATCH-III (version 6.07) and CROCO (version 1.2) configuration: assessment of their implications for macro-tidal coastal hydrodynamics
Gaetano Porcile, Anne-Claire Bennis, Martial Boutet, Sophie Le Bot, Franck Dumas, and Swen Jullien
Geosci. Model Dev., 17, 2829–2853, https://doi.org/10.5194/gmd-17-2829-2024,https://doi.org/10.5194/gmd-17-2829-2024, 2024
Short summary
Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024,https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024,https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024,https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary

Cited articles

Abascal, A. J., Castanedo, S., Mendez, F. J., Medina, R., and Losada, I. J.: Calibration of a Lagrangian Transport Model Using Drifting Buoys Deployed during the Prestige Oil Spill, J. Coastal Res., 25, 80–90, https://doi.org/10.2112/07-0849.1, 2009. 
Bao, M., Guan, W., Yang, Y., Cao, Z., and Chen, Q.: Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012, Estuarine, Coastal and Shelf Science, 163, 9–16, https://doi.org/10.1016/j.ecss.2015.02.009, 2015. 
Bian, C., Jiang, W., Quan, Q., Wang, T., Greatbatch, R. J., and Li, W.: Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011, J. Marine Syst., 121–122, 24–35, https://doi.org/10.1016/j.jmarsys.2013.03.013, 2013. 
Brooks, M., Coles, V., Hood, R., and Gower, J.: Factors controlling the seasonal distribution of pelagic Sargassum, Mar. Ecol. Prog. Ser., 599, 1–18, https://doi.org/10.3354/meps12646, 2018. 
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. 
Download
Short summary
In this study, a physical–ecological model, the Floating Macroalgal Growth and Drift Model (FMGDM), was developed to determine the dynamic growth and drifting pattern of floating macroalgae. Based on Lagrangian tracking, the macroalgae bloom is jointly controlled by ocean flows, sea surface wind, temperature, irradiation, and nutrients. The FMGDM was robust in successfully reproducing the spatial and temporal dynamics of the massive green tide around the Yellow Sea.