Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2545-2021
https://doi.org/10.5194/gmd-14-2545-2021
Development and technical paper
 | 
07 May 2021
Development and technical paper |  | 07 May 2021

Assessment of numerical schemes for transient, finite-element ice flow models using ISSM v4.18

Thiago Dias dos Santos, Mathieu Morlighem, and Hélène Seroussi

Related authors

A new vertically integrated MOno-Layer Higher-Order (MOLHO) ice flow model
Thiago Dias dos Santos, Mathieu Morlighem, and Douglas Brinkerhoff
The Cryosphere, 16, 179–195, https://doi.org/10.5194/tc-16-179-2022,https://doi.org/10.5194/tc-16-179-2022, 2022
Short summary
The transferability of adjoint inversion products between different ice flow models
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021,https://doi.org/10.5194/tc-15-1975-2021, 2021
Short summary
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020,https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)
Thiago Dias dos Santos, Mathieu Morlighem, Hélène Seroussi, Philippe Remy Bernard Devloo, and Jefferson Cardia Simões
Geosci. Model Dev., 12, 215–232, https://doi.org/10.5194/gmd-12-215-2019,https://doi.org/10.5194/gmd-12-215-2019, 2019
Short summary

Related subject area

Cryosphere
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary
SnowQM 1.0: a fast R package for bias-correcting spatial fields of snow water equivalent using quantile mapping
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024,https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Simulation of snow albedo and solar irradiance profile with the Two-streAm Radiative TransfEr in Snow (TARTES) v2.0 model
Ghislain Picard and Quentin Libois
Geosci. Model Dev., 17, 8927–8953, https://doi.org/10.5194/gmd-17-8927-2024,https://doi.org/10.5194/gmd-17-8927-2024, 2024
Short summary
Evaluation of MITgcm-based ocean reanalyses for the Southern Ocean
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024,https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024,https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary

Cited articles

Akin, J. and Tezduyar, T. E.: Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements, Comput. Method. Appl. M., 193, 1909–1922, https://doi.org/10.1016/j.cma.2003.12.050, 2004. a
Almeida, R. C. and Silva, R. S.: A stable Petrov–Galerkin method for convection-dominated problems, Comput. Method. Appl. M., 140, 291–304, https://doi.org/10.1016/S0045-7825(96)01108-5, 1997. a
Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D.: Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM J. Numer. Anal., 39, 1749–1779, https://doi.org/10.1137/S0036142901384162, 2002. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Science Advances, 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a
Babuška, I., Baumann, C., and Oden, J.: A discontinuous hp finite element method for diffusion problems: 1-D analysis, Comput. Math. Appl., 37, 103–122, https://doi.org/10.1016/S0898-1221(99)00117-0, 1999. a
Download
Short summary
Numerical models are routinely used to understand the past and future behavior of ice sheets in response to climate evolution. As is always the case with numerical modeling, one needs to minimize biases and numerical artifacts due to the choice of numerical scheme employed in such models. Here, we assess different numerical schemes in time-dependent simulations of ice sheets. We also introduce a new parameterization for the driving stress, the force that drives the ice sheet flow.