Articles | Volume 14, issue 3
Geosci. Model Dev., 14, 1639–1656, 2021
https://doi.org/10.5194/gmd-14-1639-2021
Geosci. Model Dev., 14, 1639–1656, 2021
https://doi.org/10.5194/gmd-14-1639-2021

Methods for assessment of models 23 Mar 2021

Methods for assessment of models | 23 Mar 2021

Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences

Bruno Ringeval et al.

Related authors

Global patterns and drivers of soil total phosphorus concentration
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Yingping Wang, Julian Helfenstein, Yuanyuan Huang, Kailiang Yu, Zhiqiang Wang, Yongchuan Yang, and Enqing Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-166,https://doi.org/10.5194/essd-2021-166, 2021
Preprint under review for ESSD
Short summary
Insights on nitrogen and phosphorus co-limitation in global croplands from theoretical and modelling fertilization experiments
Bruno Ringeval, Marko Kvakić, Laurent Augusto, Philippe Ciais, Daniel Goll, Nathaniel D. Mueller, Christoph Müller, Thomas Nesme, Nicolas Vuichard, Xuhui Wang, and Sylvain Pellerin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-298,https://doi.org/10.5194/bg-2019-298, 2019
Preprint withdrawn
Short summary
Methane emissions from floodplains in the Amazon Basin: challenges in developing a process-based model for global applications
B. Ringeval, S. Houweling, P. M. van Bodegom, R. Spahni, R. van Beek, F. Joos, and T. Röckmann
Biogeosciences, 11, 1519–1558, https://doi.org/10.5194/bg-11-1519-2014,https://doi.org/10.5194/bg-11-1519-2014, 2014

Related subject area

Biogeosciences
A model-independent data assimilation (MIDA) module and its applications in ecology
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021,https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)
Thomas Neumann, Sampsa Koponen, Jenni Attila, Carsten Brockmann, Kari Kallio, Mikko Kervinen, Constant Mazeran, Dagmar Müller, Petra Philipson, Susanne Thulin, Sakari Väkevä, and Pasi Ylöstalo
Geosci. Model Dev., 14, 5049–5062, https://doi.org/10.5194/gmd-14-5049-2021,https://doi.org/10.5194/gmd-14-5049-2021, 2021
Short summary
WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021,https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021,https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO2, HCO3 or CO32− input data
Guy Munhoven
Geosci. Model Dev., 14, 4225–4240, https://doi.org/10.5194/gmd-14-4225-2021,https://doi.org/10.5194/gmd-14-4225-2021, 2021
Short summary

Cited articles

Birch, C. J., Vos, J., Kiniry, J., Bos, H. J., and Elings, A.: Phyllochron responds to acclimation to temperature and irradiance in maize, Field Crops Res., 59, 187–200, https://doi.org/10.1016/S0378-4290(98)00120-8, 1998. 
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., MüLler, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007. 
Boogaard, H. L., Wit, A. J. W. D., Roller, J. A. T., and Diepen, C. A. V.: WOFOST Control Centre 2.1 and WOFOST 7.1.7. User's guide for the WOFOST Control Centre 2.1 and WOFOST 7.1.7 crop growth simulation model, Alterra, Wageningen University and Research Centre, Wageningen, the Netherlands, 2014. 
Boote, K. J., Jones, J. W., White, J. W., Asseng, S., and Lizaso, J. I.: Putting mechanisms into crop production models: Putting mechanisms into crop production models, Plant Cell Environ., 36, 1658–1672, https://doi.org/10.1111/pce.12119, 2013. 
Download
Short summary
We assess how and why global gridded crop models (GGCMs) differ in their simulation of potential yield. We build a GCCM emulator based on generic formalism and fit its parameters against aboveground biomass and yield at harvest simulated by eight GGCMs. Despite huge differences between GGCMs, we show that the calibration of a few key parameters allows the emulator to reproduce the GGCM simulations. Our simple but mechanistic model could help to improve the global simulation of potential yield.