Articles | Volume 14, issue 3
Geosci. Model Dev., 14, 1253–1265, 2021
https://doi.org/10.5194/gmd-14-1253-2021
Geosci. Model Dev., 14, 1253–1265, 2021
https://doi.org/10.5194/gmd-14-1253-2021

Model evaluation paper 08 Mar 2021

Model evaluation paper | 08 Mar 2021

Using the anomaly forcing Community Land Model (CLM 4.5) for crop yield projections

Yaqiong Lu and Xianyu Yang

Related authors

Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)
Gordon B. Bonan, Edward G. Patton, Ian N. Harman, Keith W. Oleson, John J. Finnigan, Yaqiong Lu, and Elizabeth A. Burakowski
Geosci. Model Dev., 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018,https://doi.org/10.5194/gmd-11-1467-2018, 2018
Short summary
Representing winter wheat in the Community Land Model (version 4.5)
Yaqiong Lu, Ian N. Williams, Justin E. Bagley, Margaret S. Torn, and Lara M. Kueppers
Geosci. Model Dev., 10, 1873–1888, https://doi.org/10.5194/gmd-10-1873-2017,https://doi.org/10.5194/gmd-10-1873-2017, 2017
Short summary

Related subject area

Climate and Earth system modeling
Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021,https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching
Guy Munhoven
Geosci. Model Dev., 14, 3603–3631, https://doi.org/10.5194/gmd-14-3603-2021,https://doi.org/10.5194/gmd-14-3603-2021, 2021
Short summary
A Markov chain method for weighting climate model ensembles
Max Kulinich, Yanan Fan, Spiridon Penev, Jason P. Evans, and Roman Olson
Geosci. Model Dev., 14, 3539–3551, https://doi.org/10.5194/gmd-14-3539-2021,https://doi.org/10.5194/gmd-14-3539-2021, 2021
Short summary
Building indoor model in PALM-4U: indoor climate, energy demand, and the interaction between buildings and the urban microclimate
Jens Pfafferott, Sascha Rißmann, Matthias Sühring, Farah Kanani-Sühring, and Björn Maronga
Geosci. Model Dev., 14, 3511–3519, https://doi.org/10.5194/gmd-14-3511-2021,https://doi.org/10.5194/gmd-14-3511-2021, 2021
Short summary
Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021,https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary

Cited articles

Drewniak, B., Song, J., Prell, J., Kotamarthi, V. R., and Jacob, R.: Modeling agriculture in the Community Land Model, Geosci. Model Dev., 6, 495–515, https://doi.org/10.5194/gmd-6-495-2013, 2013. 
Justel, A., Pena, D., and Zamar, R.: A multivariate Kolmogorov-Smirnov test of goodness of fit, Stat. Probabil. Lett., 35, 251–259, 1997. 
Knutti, R. and Sedlacek, J.: Robustness and uncertainties in the new CMIP5 climate model projections, Nat. Clim. Change, 3, 369–373, 2013. 
Kucharik, C. J.: Evaluation of a Process-Based Agro-Ecosystem Model (Agro-IBIS) across the US Corn Belt: Simulations of the Interannual Variability in Maize Yield, in: Earth Interact, 7, 14, 2003. 
Download
Short summary
Crop growth in land surface models normally requires high-temporal-resolution climate data, but such high-temporal-resolution climate data are not provided by many climate model simulations due to expensive storage, which limits modeling choices if there is an interest in a particular climate simulation that only saved monthly outputs. Our work provides an alternative way to use the monthly climate for crop yield projections. Such an approach could be easily adopted by other crop models.