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Abstract. Crop growth in land surface models normally re-
quires high-temporal-resolution climate data (3-hourly or 6-
hourly), but such high-temporal-resolution climate data are
not provided by many climate model simulations due to
expensive storage, which limits modeling choices if there
is an interest in a particular climate simulation that only
saved monthly outputs. The Community Land Surface Model
(CLM) has proposed an alternative approach for utilizing
monthly climate outputs as forcing data since version 4.5,
and it is called the anomaly forcing CLM. However, such
an approach has never been validated for crop yield projec-
tions. In our work, we created anomaly forcing datasets for
three climate scenarios (1.5 ◦C warming, 2.0 ◦C warming,
and RCP4.5) and validated crop yields against the standard
CLM forcing with the same climate scenarios using 3-hourly
data. We found that the anomaly forcing CLM could not pro-
duce crop yields identical to the standard CLM due to the
different submonthly variations, crop yields were underesti-
mated by 5 %–8 % across the three scenarios (1.5, 2.0 ◦C, and
RCP4.5) for the global average, and 28 %–41 % of cropland
showed significantly different yields. However, the anomaly
forcing CLM effectively captured the relative changes be-
tween scenarios and over time, as well as regional crop yield
variations. We recommend that such an approach be used for
qualitative analysis of crop yields when only monthly outputs
are available. Our approach can be adopted by other land sur-
face models to expand their capabilities for utilizing monthly
climate data.

1 Introduction

Increasing numbers of future climate scenarios exhibit large
uncertainties for crop yield projections. Crop yields may in-
crease or decrease depending on which climate projection
is used (Lobell et al., 2008; Rosenzweig et al., 2014; Ur-
ban et al., 2012). Ensemble future climate projections, such
as CMIP5, showed a large range of future climate projec-
tions, even for one emission scenario (Knutti and Sedlacek,
2013). Using all future climate projections is not realistic not
only because of the computational expense but also because
many of these future climate projections only save monthly
climate outputs that are not suitable for crop models that
require high-temporal-resolution forcing data. Some stan-
dalone process-based crop models run in daily time steps,
and some crop models embedded in land surface models
need at least 6 h of climate data as the forcing data to repre-
sent diurnal cycles. Only a small portion of the CMIP5 (Cou-
pled Model Intercomparison Project 5) simulations (< 25 %)
can be used as the forcing data for crop models, leaving little
room for crop modelers to choose a particular climate model
projection that is of interest.

The Community Land Model (CLM) (Oleson et al., 2013)
is a state-of-the-art land surface model that simulates biogeo-
physical (radiation transfer, vegetation-soil-hydrology, sur-
face energy fluxes, etc.) and biogeochemical (soil carbon and
nitrogen cycle, vegetation photosynthesis, dynamic vegeta-
tion growth, etc.) processes. CLM is the default land model
in the Community Earth System Model (CESM) (Hurrell et
al., 2013), and it can be run either online coupled with the
rest of CESM (atmosphere and ocean) or offline (the land
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model only, forced with climate datasets) for multiple spa-
tial extents (site, regional, and global) and at different reso-
lutions. The crop model derived from AgroIBIS (Kucharik,
2003) was introduced to CLM4.0 by Levis et al. (2012),
and it is responsible for crop growth phenology (temper-
ature determined), carbon allocation algorithms, and crop
management (e.g., irrigation). The crop model in CLM runs
when the soil biogeochemical component is active, and it
was tested with the CLM-CN in version 4.0 and tested with
CLM-BGC in version 4.5, where CLM-CN and CLM-BGC
are officially supported soil biogeochemical components in
CLM4.0 and CLM4.5 respectively. Since their introduction,
crop models in the CLM have been developed to represent
more crop types and processes, such as soybean nitrogen fix-
ation (Drewniak et al., 2013), ozone impacts on yields (Lom-
bardozzi et al., 2015), winter wheat growth responses to cold
hazards (Lu et al., 2017), and maize growth responses to heat
stress (Peng et al., 2018). CLM simulates nine crop types, ac-
counting for 54 % of global total crop production (other pro-
duction is represented by the most similar crop type): maize,
soybean, spring wheat, winter wheat, cotton, rice, sugarcane,
tropical maize, and tropical soybean. In this study, we used
CLM version 4.5 (Oleson et al., 2013).

Since version 4.5, CLM offers a built-in function that in-
directly uses monthly climate outputs as the forcing data and
is called the anomaly forcing CLM (Lawrence et al., 2015).
Anomaly forcing CLM reconstructs new subdaily forcing
data by applying the precalculated future monthly anomaly
signals to user-defined historical subdaily forcing data, re-
ferred to as the reference data. The future monthly anomaly
signals are calculated by the future monthly climate outputs
and by use of historical monthly outputs. The choice of ref-
erence data is arbitrary. Any existing subdaily forcing data
(e.g., CRUNCEP, Viovy, 2018, QIAN, Qian et al., 2006)
for CLM can be used as the reference data. The historical
monthly outputs are recommended to be averaged over mul-
tiple years to represent the historical means and avoid affect-
ing the monthly anomaly signal by rare, extreme events in a
particular year. Such an arbitrary choice is because the goal
of the original anomaly forcing CLM is not to reconstruct
future forcing that is identical to the actual future forcing
when the high-temporal-resolution data were saved. Rather,
the original goal of the anomaly forcing CLM is to under-
stand the influences due to the anomaly signal by comparing
the simulation with the anomaly forcing CLM to the simula-
tion run with the reference data. The differences between the
two simulations are due to the anomaly signals.

In our study, we modified the anomaly forcing CLM to
fit our goals to understand whether we could simply use the
anomaly forcing CLM for crop yield projections when only
monthly climate data were available. We carefully chose the
historical monthly data and the reference data so that the
reconstructed future anomaly forcing had nearly identical
monthly means to the desired subdaily future forcing, but we
used different submonthly variations. We created anomaly

forcing datasets for three future scenarios (1.5 ◦C warming,
2.0 ◦C warming, and RCP4.5) for 2006–2075 for which both
the subdaily and monthly climate outputs were available
from three CESM simulations. With the three paired CLM
simulations, we validated the anomaly forcing CLM by com-
paring it to the standard CLM.

2 Methods

The original anomaly forcing CLM has been available since
CLM4.5. This approach reconstructs the subdaily (3-hourly
or 6-hourly) forcing data by applying the monthly anomaly
signal to user-selected subdaily reference data; therefore, it
indirectly uses the monthly atmospheric outputs as the forc-
ing data for CLM. This approach does not change any of
the scientific code in CLM; it only adds code that reads the
monthly anomaly signals and automatically applies these to
the reference data while the CLM is running. There were
two monthly anomaly signals for RCP4.5 and RCP8.5 that
were generated using the CESM future projections and were
ready for use. It is the user’s choice to select which subdaily
reference (e.g., CRUNCEP or CLMQIAN) and which years
to use. By simply modifying the user_nl_cpl name list and
adding data streams of the anomaly forcing variables (see the
appendix for the detailed usage), the anomaly forcing CLM
will automatically read the monthly anomaly signal and ap-
ply the signal to each time step of the reference data within
a month. When the reference data period is shorter than the
anomaly signal period, the anomaly forcing CLM will cy-
cle the same reference data until the simulation is complete.
Because the different selections of reference data can gener-
ate different forcings, even with the same monthly anomaly
signals, one should not use the simulation from the anomaly
forcing CLM to represent the actual simulation. Rather, the
original goal of the anomaly forcing CLM is to compare
the simulation with the anomaly forcing and simulation with
the reference forcing data to understand the effects of the
monthly anomaly signals on land surface variables.

The goal of this work is to test how well crop yield pro-
jections from the anomaly forcing CLM compare to the pro-
jections from the standard forcing CLM, given that anomaly
forcing has the same monthly average as standard forcing.
We selected three future scenarios for CESM simulations that
saved both monthly outputs and 3-hourly outputs, where the
3-hourly outputs were directly used in the standard forcing
CLM, and the monthly outputs were indirectly used in the
anomaly forcing CLM. We calculated the anomaly forcing
signals using the monthly CESM outputs and the monthly
average of reference data, so that when applying the anomaly
signals to the reference data, it is expected to generate identi-
cal monthly means as does regular forcing. However, due to
a limit in calculations of precipitation anomalies (precipita-
tion anomaly ratio less than 5) and how the CLM treats snow
and rainfall, the anomaly forcing CLM did not show identi-
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cal snow and rainfall monthly averages and introduced bias
in the crop yield simulations (see the results section).

We randomly chose the 6-hourly reference data (1996–
2005) from one of the 11 historical low-warming ensemble
CESM simulations. Additionally, we selected three CESM
future simulations for the 1.5 ◦C warming, 2.0 ◦C warming,
and RCP4.5 scenarios, where all the three simulations saved
both the monthly outputs and the 3-hourly outputs. We then
calculated the monthly anomaly signal at each grid cell for
each scenario (1.5, 2.0, and RCP45) from 2006–2075. The
monthly anomaly signals are differences for temperature,
specific humidity, wind, and air pressure and are ratios for so-
lar radiation and precipitation between the monthly outputs
of each scenario and the 1996–2005 averaged monthly values
of the reference data. The anomaly forcing signal has both
spatial and monthly variations. When running the anomaly
forcing simulation for 2006–2070, CLM repeatedly uses the
10-year reference period and applies the anomaly signal of a
month to all subdaily reference forcing in this month. For ex-
ample, an anomaly forcing simulation for 2006 January uses
the 1996 January reference data plus or multiplied by (if the
anomaly signal is a ratio) the 2006 January anomaly signal.
If the 2006 January temperature anomaly is 1 K for a grid
cell, then all 1996 January reference data will be increased
by 1 K for the grid cell.

The monthly anomaly signal is calculated at each grid
cell (i,j ). For temperature, pressure, wind, and humidity, the
anomaly signal is the difference between the future monthly
data and the historical monthly average (Eq. 1). For solar ra-
diation, longwave radiation, and precipitation, the anomaly
signal is the ratio between the future monthly data and the
historical monthly average (Eq. 2). We set the maximum ratio
for precipitation to 5 to avoid unrealistic extreme precipita-
tion, which also introduced biases in precipitation (discussed
in the discussion section).

afi,j,m = futi,j,m− histi,j,m (1)
afi,j,m = futi,j,m/histi,j,m (2)

Here afi,j,m is anomaly forcing signal at a location i and j in
a month m, futi,j,m is the averaged future value, and histi,j,m
is the averaged historical value at a location i and j in a
month m.

We set up global CLM crop simulations (compset
CLM45BGCCROP) at 1.9◦ by 2.5◦ latitude by longitude, re-
spectively, using the anomaly forcing CLM and the regular
forcing CLM for the 1.5 ◦C warming, 2.0 ◦C warming, and
RCP4.5 scenarios. All simulations used the default nitrogen
fertilization rates and a constant CO2 level of 359.8 ppm. For
each scenario, we validate the crop yield in the anomaly forc-
ing CLM to the regular forcing CLM to determine if we can
use the anomaly forcing CLM for future crop yield projec-
tions. We also studied whether the anomaly forcing CLM has
a similar crop growth response to transient CO2 and nitrogen
fertilization. The transient CO2 and nitrogen fertilization did

not add extra computational cost compared to the constant
CO2 and nitrogen fertilization simulation. However, due to
our limited computational resources we could not afford
more experiments, and we only tested such responses for the
RCP4.5 scenario. The transient CO2 levels in the RCP45 sce-
nario gradually increased from 379 ppm in 2006 to 530 ppm
in 2070. To test the nitrogen fertilization effects, we simply
added a zero nitrogen fertilization simulation here. For the
crop yield analysis, we aggregated the individual crop yield
into an integrated crop yield by area weighted mean based on
the crop area map MAPSMAP (https://www.mapspam.info/,
last access: 1 March 2021) 2005 crop area. The regional crop
yield was simply the regional averaged crop yield at nine re-
gions defined in Ren et al. (2018).

We adopted the two-sample Kolmogorov–Smirnov test
(KS test) to test the statistical significance of differences be-
tween the anomaly forcing CLM and the standard CLM for
atmospheric forcing data and yield. We used the KS test be-
cause some variables at some grid cells did not necessar-
ily follow normal distributions. The KS test is a nonpara-
metric test that detects differences in the empirical proba-
bility distributions between two samples, and the two sam-
ples do not need to have normal distributions (Justel et
al., 1997; Marozzi, 2013). When repeated using the 10-
year reference data, we expected that the 10-year-averaged
monthly anomaly forcing would show no significant differ-
ences from the regular forcing. Thus, for the atmospheric
forcing data, we tested probability distribution differences
between anomaly forcing and regular forcing for every 10-
year averaged monthly dataset (sample size was 7×12= 84).
For crop yields, we used the every 10-year averaged annual
yields (sample size was 7). We used a linear regression coef-
ficient (R2), bias (Eq. 3), and percentage differences (Eq. 4)
in our evaluations.

bias= CLManomaly forcing−CLMstandard (3)

%differences= 100 ·
(

CLManomaly forcing

CLMstandard
− 1

)
(4)

3 Results

We aimed to generate an anomaly forcing that produced iden-
tical monthly averages as its counterpart regular forcing (the
desirable 3-hourly forcing data for CLM) but with differ-
ent submonthly variations. All atmospheric forcing variables
achieved this goal except for precipitation and its liquid and
ice components, rain and snow. The linear regression coef-
ficients (R2) between anomaly forcing and standard forcing
for the monthly means of incoming solar radiation, bottom
layer atmosphere temperatures (sigma vertical coordinate,
σ = 0.9925), pressures, humidities, and winds all showed R2

values above 0.99, and there were also no significant dif-
ferences for these variables for all grid cells. However, for
rain and snow, the R2 values were 0.63–0.87 and 0.88–0.96
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Table 1. A summary of the original anomaly forcing CLM and the modifications in this work.

Original anomaly forcing CLM Modifications in this work

3 h/6 h reference data User choice 6 h Community Atmosphere Model outputs from one historical
low-warming ensemble simulation 1996–2005

Monthly anomaly signals Existing for RCP4.5 and RCP8.5 Anomalies between future scenarios and monthly means of ref-
erence data
Three future scenarios: 1.5, 2.0 ◦C, and RCP4.5
Each scenario had monthly outputs and 3 h outputs

Goals Climate impact due to anomaly signals
when comparing the anomaly run with
the reference run

Given that anomaly forcing has the same monthly mean as the
standard CLM forcing, can we use it for crop yield projections?

Figure 1. Linear regression coefficients (R2) between (a) decade-
averaged monthly mean (sample size = 12 months× 7 decades =
84) between anomaly forcing and regular forcing and (b) every 10-
year-averaged monthly variance between anomaly forcing and reg-
ular forcing.

across the three scenarios, respectively (Fig. 1a). Statistically
significant differences were also found for rain and snow in
many regions in the Northern Hemisphere (Fig. 2). We used
monthly variances as a measure of the submonthly variations.
We calculated the variation for 12 months in each decade, so
we have 7 decades and 12 months of variance, and the sam-
ple size is 84 when setting up the regression.R2 for variances
of forcing were low for most variables except for incoming
solar radiation (Fig. 1b). Such lower R2 values indicated that
anomaly forcing could not represent the submonthly varia-
tions as well as the regular forcing.

There were two error sources for precipitation. First, there
was overall average lower precipitation in the anomaly forc-
ing by 0.02, 0.03, and 0.2 mm/d in the 1.5, 2.0 ◦C, and RCP45
scenarios, respectively. Such a slightly lower precipitation
was because we set the maximum precipitation anomaly ratio
to 5 to avoid unrealistically extreme precipitation levels. A
ratio of 5 was suggested by NCAR scientists David Lawrence
and Sean Swenson, who are core developers of CLM and
wrote the initial anomaly forcing code in CLM. Most of the
unrealistic extreme precipitation ratios are actually due to
the nearly zero historical precipitation (the denominator of
Eq. 2). The cap for the precipitation anomaly ratio is used
to avoid such situation. Second, the CLM used the temper-

ature in each time step to determine if the given precipita-
tion was rain or snow. Precipitation was rain when tempera-
ture was above 273.15 K, otherwise it was snow. Therefore,
the different submonthly variations in temperature resulted
in different submonthly variations for snow and rain. Due
to this problem, the lower precipitation did not evenly dis-
tribute to the rain and snow bias, for which rain was underes-
timated by 0.08–0.3 mm/d, and snow was overestimated by
0.06–0.11 mm/d across the three scenarios. The significantly
different regions were mainly in the Northern Hemisphere
and the Antarctic, and most regions in the Southern Hemi-
sphere did not show significant differences in rain or snow.
How the rain and snow biases affected yield projections will
be discussed.

When compared to crop yield simulations in the standard
CLM, the anomaly forcing CLM underestimated crop yields
by 5 %–8 % across the three scenarios for the global aver-
age, and 28 %–41 % of cropland showed statistically signifi-
cant differences in yields. The rainfed crop yield differences
across the three scenarios showed largely similar spatial dis-
tributions: overestimation in the northern US and Europe and
underestimation in the Southern Hemisphere and in East Asia
(Fig. 3d–f). The overestimated rainfed crop yield (mainly for
maize and wheat) in the anomaly forcing CLM is due to
higher water availability in these regions, which is a result
of higher snow in the anomaly forcing CLM. For irrigated
crops, such overestimations in the northern US and Europe
disappear (Fig. 3g–i) because sufficient irrigation was added
to the irrigated soil column in the standard CLM, which re-
moved the plant water stress that was seen for rainfed crops.
However, the underestimations in the Southern Hemisphere
and East Asia were persistent, because water availability
does not cause yield differences for irrigated crops; we sus-
pect such underestimations were caused by the other error in
forcing data: the different submonthly variations in the forc-
ing data.

The global 70-year averaged yields± standard devia-
tion in the standard CLM (Ren et al., 2018) and in the
anomaly forcing CLM are 4.38± 0.09 and 4.03± 0.16 t/ha,
respectively, in the 1.5 ◦C scenario; 4.36± 0.11 and
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Figure 2. 70-year averaged differences between anomaly forcing and regular forcing for rain (a–c) and snow (d–f) for the 1.5, 2.0 ◦C,
and RCP4.5 scenarios. All differences shown here are statistically significant differences tested using the Kolmogorov–Smirnov test with a
sample size of 84. The gray areas are regions that did not show significant differences.

Figure 3. The percentage differences of 70-year integrated yields between the anomaly forcing CLM and the standard CLM for all crops (a–
c), rainfed crops (d–f), and irrigated crops (g–i) for the 1.5, 2.0 ◦C, and RCP45 scenarios. The white regions are where no crops grow based
on the historical crop map in 2005 (MAPSPAM 2005; https://www.mapspam.info/, last access: 1 March 2021). For plots (a)–(c), we showed
only the significant differences as determined using the Kolmogorov–Smirnov test with a sample size of 7. The regions with insignificant
differences are masked as gray in (a)–(c). For plots (d)–(i), we did not mask the insignificant differences to show an overall bias.

4.01± 0.14 t/ha, respectively, in the 2.0 ◦C scenario; and
3.95± 0.13 and 3.72± 0.14, respectively, in the RCP45 sce-
nario (Fig. 4). The anomaly forcing CLM captured the re-
gional yield variations. Latin America (LAC) showed the
highest yield while India (IND) showed the lowest yields for
both the anomaly forcing CLM and the standard CLM across
the three scenarios.

Although the crop yields were underestimated, the
anomaly forcing CLM could qualitatively represent the spa-
tial yield differences between two climate scenarios. Com-

paring 2.0 to 1.5 ◦C, there was a 4 %–8 % yield increase in
the northern US and a 0 %–4 % yield decrease (Fig. 5a) in the
southeastern US. When comparing the RCP45 to the 1.5 ◦C
scenario, crop yields in the US were largely reduced (up
to 50 %). The anomaly forcing CLM clearly captured these
yield differences (Fig. 5b and d).

The anomaly forcing CLM also captured yield changes
over time for each climate scenario. The three scenarios
showed some similarities in yield changes from 2006–2015
to 2066–2075. For example, crop yields increased in south-
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Figure 4. Regional comparisons of the 70-year integrated mean yields and yield standard deviations between the anomaly forcing CLM and
the standard CLM. The error bars indicate 70-year yield standard deviations. CHN: China; EU: European Union; IND: India; LAC: Latin
America; ODC: other developing countries; OIC: other industrialized countries; SSA: sub-Saharan Africa; TC: transition countries; USA:
United States.

Figure 5. The percentage of 70-year integrated yield differences between 2.0 and 1.5 ◦C (a, b) and between RCP45 and 1.5 (c, d) in the
standard CLM and the anomaly forcing CLM.

eastern China and decreased in sub-Saharan Africa. There
were also yield changes that were unique to each scenario
that were also found in the anomaly forcing CLM. For exam-
ple, crop yields increased in Europe for the 1.5 ◦C scenario
(Fig. 6a–b) while they decreased in Europe for the 2.0 ◦C and
RCP45 scenarios (Fig. 6c–f), and crop yields declined in the
US for the RCP45 scenario (Fig. 6e–f) while they increased
for the 1.5 and 2.0 ◦C scenarios (Fig. 6a–d).

All simulations in the above evaluations adopted a
constant CO2 level (359.8 ppm) and crop-type-dependent
fixed nitrogen fertilization (25–500 kgN/ha), so whether the

anomaly forcing CLM simulated a similar or different crop
growth response to CO2 or nitrogen fertilization is unknown.
Due to limited computational resources, we tested crop re-
sponses to transient CO2 and nitrogen fertilization only for
the RCP45 scenario and assumed that the other scenarios
would show the same differences as the RCP45 scenario.
The transient CO2 in the RCP45 scenario gradually increased
from 379 ppm in 2006 to 530 ppm in 2075. To test the effects
of nitrogen fertilization, we simply added a zero nitrogen fer-
tilization simulation. Although all grid cells had the same
amounts of CO2 increase in a given year (no spatial varia-
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Figure 6. The percentage yield difference from 2006–2015 to 2066–2075 in the standard CLM and anomaly forcing CLM across the three
scenarios.

tion), crop yields had spatial variations in response to tran-
sient CO2. Most regions showed a 5 %–10 % yield increase,
but some regions showed much higher yield increases, such
as northern India, the southern edge of the Sahara, and Aus-
tralia (Fig. 7a). Such crop yield responses to transient CO2
spatial patterns were also captured by the anomaly forc-
ing CLM (Fig. 7b). Similar for the crop yield responses to
nitrogen fertilization, the anomaly forcing CLM simulated
crop yield increase spatial patterns (Fig. 7c–d), in which the
Southern Hemisphere and Asia had greater yield increases in
response to nitrogen fertilization.

4 Discussion

In this work, we created anomaly forcing datasets for three
future climate scenarios, and we validated the crop yields
in the anomaly forcing CLM by comparison with the crop
yields in the standard CLM. The differences between the
anomaly forcing CLM and standard CLM were due only
to differences in forcing data, for which the standard CLM
used regular forcing (3-hourly forcing) and the anomaly forc-
ing CLM used anomaly forcing. We found that the anomaly

forcing CLM underestimated crop yields but identified the
regional yield variations, as well as yield differences be-
tween two climate scenarios and yield changes over time.
The anomaly forcing CLM could not generate the exact same
crop yields as the standard CLM due to errors in precipitation
and in the submonthly variations. However, it could be used
for qualitative analysis of relative crop yield changes among
different scenarios and over time.

The overall underestimation of crop yields may be due
to differences in phenology that resulted from different sub-
monthly variations. Some of the low yields in the anomaly
forcing CLM may be explained by shorter grain fill peri-
ods. For example, the lower rice yields in southeastern China
are due to a 5–10 d shorter grain fill period in the anomaly
forcing CLM (Fig. S1a–c in the Supplement); maize and
soybean in the Southern Hemisphere also showed a 1–5 d
shorter grain fill period that may account for the lower yields
(Fig. S1d–i). In addition to the low yields, the anomaly forc-
ing CLM also simulated lower GPP and LAI compared to
the standard CLM (Fig. S2a1–b3), and the spatial distribu-
tions of GPP and LAI differences were very similar to the
yield differences.
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Figure 7. 70-year averaged integrated crop yield response to transient CO2 and to no nitrogen fertilization in the anomaly forcing CLM (a,
b) and in the standard CLM (c, d) for the RCP45 scenario.

Some regions in the Northern Hemisphere showed higher
rainfed crop yields in the anomaly forcing CLM, which is
due to higher soil moisture at planting that resulted from
higher snow levels in the Northern Hemisphere. Crop growth
in CLM is very sensitive to the soil moisture at planting, and
higher soil moisture (Fig. S2c1–c3) results in unstressed crop
growth and hence produces higher yields. When adequate ir-
rigation is applied, both the anomaly forcing and the standard
CLM models have sufficient water for crop growth, and the
overestimations disappeared. Therefore, the anomaly forcing
may not be appropriate for estimating the actual future irriga-
tion demands but is able to distinguish the relative differences
in irrigation demand across different climate scenarios.

The energy fluxes in the anomaly forcing CLM and in the
standard CLM were different due to different crop growth
rates and differences in forcing data. The higher snow cover
in the Northern Hemisphere creates higher albedo and lower
absorbed solar radiation and hence lower surface energy
fluxes. The higher LAI increased the summer latent heat
flux up to 5 W/m2 (Fig. S3), while the annual latent heat
flux showed values 5–10 W/m2 (Fig. S2d1–d3) lower in the
anomaly forcing CLM due to the lower net radiation. In the
Southern Hemisphere, lower LAI (Fig. S2a1–a3) resulted in
lower latent heat fluxes (Fig. S2d1–d3) and higher sensible
heat fluxes (Fig. S2e1–e3).

The regional yield comparisons indicate that the anomaly
forcing CLM effectively captured regional yield variations
but with slightly lower yield biases. We want to point out
that the very high crop yields in Latin America and sub-
Saharan Africa and the very low crop yields in India in both
the anomaly forcing CLM and the standard CLM approaches

are not realistic when compared to the UNFAO yields (http://
www.fao.org/statistics/en/, last access: 1 March 2021). Such
biases in the CLM have been discussed by Levis et al. (2018),
and the low yields in India are due to incorrect crop phenol-
ogy when crops entered the grain fill during the dry season.
The high yields in Latin American and in sub-Saharan Africa
were due to the nitrogen fertilization amounts based on US
levels, which are too high for these regions.

The crop model in the most recent version of CLM5.0 in-
cludes new features as reported in Lombardozzi et al. (2020).
For example CLM5.0 uses time-varying spatial distributions
of major crop types and has updated fertilization and irriga-
tion schemes. These updates of crop model in CLM5.0 may
improve the crop yield simulations for both standard CLM
and anomaly forcing CLM compared to crop yield in reality.
The anomaly forcing method in CLM5.0 remains unchanged
so we speculate that the bias due to anomaly forcing may
still exist in CLM5.0. For example, CLM5.0 uses the same
threshold to differentiate rain and snow, so the bias due to
higher snow cover in the Northern Hemisphere may still ex-
ist in CLM5.0. However, how the magnitude of the bias will
change is unclear. We suggest that the anomaly forcing of
CLM5.0 be tested if the research interest is in absolute yield
or in qualitative difference.

Our approach can be adopted by other land sur-
face models to expand their capabilities for utilizing
monthly climate data. The source code of the anomaly
forcing CLM is available at the repository web-
site Zenodo https://doi.org/10.5281/zenodo.3900671
(Lu, 2020). The path is
post4.5crop_slevis/models/lnd/clm/src/cpl/lnd_import_ ex-
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port.F90 when unzip post4.5crop_slevis_codeforGMD.tar.gz.
The Fortran code could be transplanted to other land surface
models which use NetCDF format atmospheric forcing.

5 Conclusions

The Community Land Surface model offers an alternative
way to utilize the monthly climate as the forcing data. Such
an approach could expand user choice of forcing data when
high-temporal-resolution climate data are not available. In
this work, we created anomaly forcing data for three climate
scenarios (1.5 ◦C warming, 2.0 ◦C warming, and RCP4.5)
and validated crop yield projections in the anomaly forcing
CLM against the standard CLM. The anomaly forcing CLM
underestimated crop yields by 5 %–8 %, which was largely
due to the differences in phenology and photosynthesis that
resulted from the different submonthly variations. How CLM
treated precipitation as rain or snow also introduced biases in
crop yields and in the energy flux simulations. Although the
anomaly forcing CLM could not generate crop yields iden-
tical to the standard CLM, it could be used for qualitative
analysis of crop yield changes across various scenarios over
time.
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Appendix A: A user guide for using anomaly forcing
CLM

Running the anomaly forcing CLM is similar to the standard
CLM but with several additional steps. First, the monthly
anomaly data are prepared as described in the method
section. Then, the user needs to modify user_nl_cpl and
user_nl_datm to specify which forcing variables to add to the
anomaly signals. There are seven anomaly forcing variables
(Table A2), and the user can specify one, or two, or all vari-
ables in the two name lists (user_nl_cpl and user_nl_datm).
The final step is to add the corresponding anomaly forcing
data streams depending on which anomaly forcing variables
were specified in user_nl_cpl and user_nl_datm.

A1 Modify user_nl_cpl and user_nl_datm

The user may add part or all of the following text to user_nl_
cpl.

cplflds_custom = ’Sa_prec_af->a2x’,
’Sa_prec_af->x2l’,’Sa_tbot_af->a2x’,
’Sa_tbot_af->x2l’,’Sa_pbot_af->a2x’,
’Sa_pbot_af->x2l’,’Sa_shum_af->a2x’,
’Sa_shum_af->x2l’,’Sa_u_af->a2x’,
’Sa_u_af->x2l’,’Sa_v_af->a2x’,
’Sa_v_af-> x2l’,’Sa_swdn_af->a2x’,
’Sa_swdn_af->x2l’,’Sa_lwdn_af-> a2x’,
’Sa_lwdn_af->x2l’

Add part or all of the following text into user_nl_datm.

anomaly_forcing= ’Anomaly.Forcing.Precip’,
’Anomaly.Forcing.Temperature’,
’Anomaly.Forcing.Pressure’, ’Anomaly.Forcing.Humidity’,
’Anomaly.Forcing.Uwind’, ’Anomaly.Forcing.Vwind’,
’Anomaly.Forcing.Shortwave’,
’Anomaly.Forcing.Longwave’

Also attach the anomaly forcing data streams in
user_nl_datm.
streams = “datm.streams.txt.CLMCRUNCEP.Solar 1996 1996
2005”, “datm.streams.txt.CLMCRUNCEP.Precip 1996 1996
2005”,

“datm.streams.txt.CLMCRUNCEP.TPQW 1996 1996 2005”,
“datm.streams.txt.presaero.clim_2000 1 1 1”,

“datm.streams.txt.Anomaly.Forcing.Precip 2006 2006 2075”,
“datm.streams.txt.Anomaly.Forcing.Temperature 2006 2006 2075”,

“datm.streams.txt.Anomaly.Forcing.Pressure 2006 2006 2075”,
“datm.streams.txt.Anomaly.Forcing.Humidity 2006 2006 2075”,

“datm.streams.txt.Anomaly.Forcing.Uwind 2006 2006 2075”,
“datm.streams.txt.Anomaly.Forcing.Vwind 2006 2006 2075”,

“datm.streams.txt.Anomaly.Forcing.Shortwave 2006 2006 2075”,
“datm.streams.txt.Anomaly.Forcing.Longwave 2006 2006 2075”,

“/glade/p/work/yaqiong/inputdata/atm/datm7/co2.1pt5degC.
streams.txt 1901 1901 2075”
mapalgo= ’bilinear’, ’bilinear’, ’bilinear’, ’bilinear’, ’bilinear’, ’bi-
linear’, ’bilinear’, ’bilinear’, ’bilinear’,

’bilinear’, ’bilinear’, ’bilinear’,’nn’
tintalgo = ’coszen’, ’nearest’, ’linear’, ’linear’, ’nearest’, ’nearest’,
’nearest’, ’nearest’, ’nearest’, ’nearest’,

’nearest’, ’nearest’,’linear’

Any combination or subset of anomaly forcing variables can be
used. For example,
cplflds_custom = ’Sa_prec_af->a2x’, ’Sa_ prec_af->x2l’ (in
user_nl_cpl)
anomaly_forcing=’Anomaly.Forcing.Precip’ (in user_nl_datm)

will only adjust precipitation. The reference data and period are
defined in env_run.xml.
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A2 Add the anomaly forcing data stream

The anomaly forcing data stream is where the data path
of the monthly anomaly forcing signal can be specified
and the code can be told which variable to retrieve. A
list of all anomaly forcing data stream file names and
the variables in the anomaly forcing data and the code
are given in Table A1. An example of the content in
user_datm.streams.txt.Anomaly.Forcing.Humidity is also at-
tached. The user only needs to add the corresponding vari-
able data streams that are defined in user_nl_cpl.

Table A1. A list of the anomaly forcing data streams and the corresponding variables in the anomaly forcing data and the code.

Data stream file names Variables in data Variables in code

user_datm.streams.txt.Anomaly.Forcing.Humidity∗ huss shum_af
user_datm.streams.txt.Anomaly.Forcing.Precip pr prec_af
user_datm.streams.txt.Anomaly.Forcing.Pressure ps pbot_af
user_datm.streams.txt.Anomaly.Forcing.Shortwave rsds swdn_af
user_datm.streams.txt.Anomaly.Forcing.Temperature tas tbot_af
user_datm.streams.txt.Anomaly.Forcing.Uwind uas u_af
user_datm.streams.txt.Anomaly.Forcing.Vwind vas v_af
user_datm.streams.txt.Anomaly.Forcing.Longwave rlds lwdn_af

∗ An example of the content in the data stream is given below.
< dataSource>

GENERIC
< /dataSource>
< domainInfo>
< variableNames>

time
xc lon
yc lat
area
mask

< /variableNames>
<filePath>

/glade/p/cesmdata/cseg/inputdata/share/domains
< /filePath>
<fileNames>

domain.lnd.fv0.9x1.25_gx1v6.090309.nc
< /fileNames>

< /domainInfo>
<fieldInfo>
< variableNames>

huss shum_af
< /variableNames>
<filePath>

THE ANOMALY FORCING SIGNAL DATA PATH
< /filePath>
<fileNames>

THE ANOMALY FORCING SIGNAL DATA NAME
< /fileNames>
< offset>

0
< /offset>

< /fieldInfo>
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