Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-5029-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5029-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating human impacts on global water resources using VIC-5
Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Wietse H. P. Franssen
Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Michelle T. H. van Vliet
Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
Bart Nijssen
Computational Hydrology Group, Department of Civil and Environmental Engineering, University of Washington, P.O. Box 352700, 98195-2700, Seattle, USA
Fulco Ludwig
Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Related authors
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Earth Syst. Dynam., 16, 29–54, https://doi.org/10.5194/esd-16-29-2025, https://doi.org/10.5194/esd-16-29-2025, 2025
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, it would be better if these models provided information at higher resolution. We present a first-of-its-kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge, and this is especially true for smaller catchments. Our results also suggest that future hyper-resolution models need to include more detailed land cover information.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Sneha Chevuru, Rens L. P. H. van Beek, Michelle T. H. van Vliet, Jerom P. M. Aerts, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 4219–4239, https://doi.org/10.5194/hess-29-4219-2025, https://doi.org/10.5194/hess-29-4219-2025, 2025
Short summary
Short summary
This study combines the global hydrological model
PCRaster Global Water Balancewith the
World Food Studiescrop model to analyze feedbacks between hydrology and crop growth. It quantifies one-way and two-way interactions, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
Laura M. van der Poel, Laurent V. Bataille, Bart Kruijt, Wietse Franssen, Wilma Jans, Jan Biermann, Anne Rietman, Alex J. V. Buzacott, Ype van der Velde, Ruben Boelens, and Ronald W. A. Hutjes
Biogeosciences, 22, 3867–3898, https://doi.org/10.5194/bg-22-3867-2025, https://doi.org/10.5194/bg-22-3867-2025, 2025
Short summary
Short summary
We combine two types of carbon dioxide (CO2) data from Dutch peatlands in a machine learning model: from fixed measurement towers and from a light research aircraft. We find that emissions increase with deeper water table depths (WTDs) by 4.6 tons of CO2 per hectare per year for each 10 cm deeper WTD on average. The effect is stronger in winter than in summer and varies between locations. This variability should be taken into account when developing mitigation measures.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 2153–2165, https://doi.org/10.5194/hess-29-2153-2025, https://doi.org/10.5194/hess-29-2153-2025, 2025
Short summary
Short summary
The contribution of groundwater to groundwater-dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDE extent and health.
Hordur Bragi Helgason, Andri Gunnarsson, Óli Grétar Blöndal Sveinsson, and Bart Nijssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4186, https://doi.org/10.5194/egusphere-2024-4186, 2025
Short summary
Short summary
This study analyses streamflow variability and trends in Iceland. The results show a large inter-annual variability in streamflow. Positive trends are found for precipitation, which has led to increased streamflow in most gauges for both the last 30 and 50 years of annual and seasonal flows. This marks the first study to report such consistent results for streamflow trends in Iceland. Glaciated rivers show positive melt season trends over the last 50 years, but negative over the last 30 years.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Earth Syst. Dynam., 16, 29–54, https://doi.org/10.5194/esd-16-29-2025, https://doi.org/10.5194/esd-16-29-2025, 2025
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, it would be better if these models provided information at higher resolution. We present a first-of-its-kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge, and this is especially true for smaller catchments. Our results also suggest that future hyper-resolution models need to include more detailed land cover information.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Cited articles
Abdulla, F. A., Lettenmaier, D. P., Wood, E. F., and Smith, J. A.:
Application of a macroscale hydrologic model to estimate the water balance of the Arkansas Red River basin,
J. Geophys. Res.-Atmos.,
101, 7449–7459, https://doi.org/10.1029/95jd02416, 1996.
Alcamo, J., Döll, P., Kaspar, F., and Siebert, S.:
Global change and global scenarios of water use and availability: an application of WaterGAP1.0, Center for environmental systems research,
University of Kassel, Kassel, Germany, 96, 1997.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rosch, T., and Siebert, S.:
Development and testing of the WaterGAP 2 global model of water use and availability,
Hydrolog. Sci. J.,
48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.:
Crop Evapotranspiration – Guidelines for computing crop water requirements,
Food and Agricultural Organisation, Rome, Italy, 326, 1998.
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.:
Modeling snow accumulation and ablation processes in forested environments,
Water Resour. Res.,
45, W05429, https://doi.org/10.1029/2008wr007042, 2009.
Arthington, A. H., Bhaduri, A., Bunn, S. E., Jackson, S. E., Tharme, R. E., Tickner, D., Young, B., Acreman, M., Baker, N., Capon, S., Horne, A. C., Kendy, E., McClain, M. E., Poff, N. L., Richter, B. D., and Ward, S.: The Brisbane Declaration and Global Action Agenda on Environmental Flows, Front. Environ. Sci., 6, 45, https://doi.org/10.3389/fenvs.2018.00045, 2018.
Babel, M. S., Das Gupta, A., and Pradhan, P.:
A multivariate econometric approach for domestic water demand modeling: An application to Kathmandu, Nepal,
Water Resour. Manag.,
21, 573–589, https://doi.org/10.1007/s11269-006-9030-6, 2007.
Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., Steduto, P., Mueller, A., Komor, P., Tol, R. S. J., and Yumkella, K. K.:
Considering the energy, water and food nexus: Towards an integrated modelling approach,
Energ. Policy,
39, 7896–7906, https://doi.org/10.1016/j.enpol.2011.09.039, 2011.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke, J., von Bloh, W., and Gerten, D.:
Impact of reservoirs on river discharge and irrigation water supply during the 20th century,
Water Resour. Res.,
47, W03509, https://doi.org/10.1029/2009wr008929, 2011.
Bijl, D. L., Bogaart, P. W., Dekker, S. C., and van Vuuren, D. P.:
Unpacking the nexus: Different spatial scales for water, food and energy,
Global Environ. Chang.,
48, 22–31, https://doi.org/10.1016/j.gloenvcha.2017.11.005, 2018.
Bolt, J., Inklaar, R., de Jong, H., and van Zanden, J. L.:
Rebasing “Maddison”: New income comparisons and the shape of long-run economic developments,
University of Groningen, Groningen, the Netherlands, 1–67, 2018.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Muller, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial carbon balance,
Glob. Change Biol.,
13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Bowling, L. C., Pomeroy, J. W., and Lettenmaier, D. P.:
Parameterization of blowing-snow sublimation in a macroscale hydrology model,
J. Hydrometeorol.,
5, 745–762, https://doi.org/10.1175/1525-7541(2004)005<0745:Pobsia>2.0.Co;2, 2004.
Brooks, R. H. and Corey, A. T.:
Hydraulic properties of porous media,
Colorado State University, Fort Collins, Colorado, 27 pp., 1964.
Brouwer, C., Prins, K., and Heibloem, M.:
Irrigation water management: Irrigation scheduling,
Food and Agricultural Organisation, Rome, Italy, 1989.
Calder, I. R.:
Hydrologic effects of land use change,
in: Handbook of hydrology,
edited by: Maidment, D. R.,
McGraw-Hill, New York, 471–515, 1993.
Carpenter, S. R., Stanley, E. H., and Vander Zanden, M. J.:
State of the World's Freshwater Ecosystems: Physical, Chemical, and Biological Changes,
Annu. Rev. Env. Resour.,
36, 75–99, https://doi.org/10.1146/annurev-environ-021810-094524, 2011.
Carter, A. J. and Scholes, R. J.:
Generating a global database of soil properties,
IGBP Data and Information Services, Potsdam, Germany, 10 pp., 1999.
Chateau, J., Dellink, R., and Lanzi, E.:
An overview of the OECD ENV-linkages model,
Organisation for Economic Co-operation and Development, 1–29, 2014.
Chegwidden, O. S., Nijssen, B., Rupp, D. E., Arnold, J. R., Clark, M. P., Hamman, J. J., Kao, S.-C., Mao, Y., Mizukami, N., Mote, P. W., Pan, M., Pytlak, E., and Xiao, M.:
How Do Modeling Decisions Affect the Spread Among Hydrologic Climate Change Projections? Exploring a Large Ensemble of Simulations Across a Diversity of Hydroclimates,
Earths Future,
7, 623–637, https://doi.org/10.1029/2018ef001047, 2019.
Cherkauer, K. A. and Lettenmaier, D. P.:
Hydrologic effects of frozen soils in the upper Mississippi River basin,
J. Geophys. Res.-Atmos.,
104, 19599–19610, https://doi.org/10.1029/1999jd900337, 1999.
Cherkauer, K. A. and Lettenmaier, D. P.:
Simulation of spatial variability in snow and frozen soil,
J. Geophys. Res.-Atmos.,
108, 8858, https://doi.org/10.1029/2003jd003575, 2003.
Connor, R.:
Water for a sustainable world, United Nations Educational,
Scientific and Cultural Organisation, Paris, France, 122 pp., 2015.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A
Statistical Exploration of the Relationships of Soil-Moisture Characteristics to the Physical-Properties of Soils,
Water Resour. Res.,
20, 682–690, https://doi.org/10.1029/WR020i006p00682, 1984.
Deardorff, J. W.:
Efficient Prediction of Ground Surface-Temperature and Moisture, with Inclusion of a Layer of Vegetation,
J. Geophys. Res.-Oceans,
83, 1889–1903, https://doi.org/10.1029/JC083iC04p01889, 1978.
de Graaf, I. E. M., van Beek, R. L. P. H., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., and Bierkens, M. F. P.:
A global-scale two-layer transient groundwater model: Development and application to groundwater depletion,
Adv. Water Resour.,
102, 53–67, https://doi.org/10.1016/j.advwatres.2017.01.011, 2017.
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A., Rodell, M., Strassberg, G., and Scanlon, B. R.:
Impact of water withdrawals from groundwater and surface water on continental water storage variations,
J. Geodyn.,
59–60, 143–156, https://doi.org/10.1016/j.jog.2011.05.001, 2012.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and Eicker, A.:
Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites,
Water Resour. Res.,
50, 5698–5720, https://doi.org/10.1002/2014wr015595, 2014.
Döll, P., Douville, H., Guntner, A., Muller Schmied, H., and Wada, Y.:
Modelling Freshwater Resources at the Global Scale: Challenges and Prospects,
Surv. Geophys.,
37, 195–221, https://doi.org/10.1007/s10712-015-9343-1, 2016.
Droppers, B.: BramDr/VIC_support: Support for VIC-WUR version 2.1.0 (Version VIC-WUR.2.1.0), Zenodo, https://doi.org/10.5281/zenodo.3934363, 2020.
Droppers, B., Franssen, W. H. P., van Vliet, M. H. T., Nijssen, B., and Ludwig, F.: BramDr/VIC: VIC-WUR version 2.1.0 (Version VIC-WUR.2.1.0), Zenodo, https://doi.org/10.5281/zenodo.3934325, 2020.
Ducoudre, N. I., Laval, K., and Perrier, A.:
Sechiba, a New Set of Parameterizations of the Hydrologic Exchanges at the Land Atmosphere Interface within the Lmd Atmospheric General-Circulation Model,
J. Climate,
6, 248–273, https://doi.org/10.1175/1520-0442(1993)006<0248:Sansop>2.0.Co;2, 1993.
EC: EUROSTAT, European Commission, available at: https://ec.europa.eu/eurostat, last access: June 2019.
EIA: EIA,
U.S. Energy Information Administration, available at: https://www.eia.gov (last access: June 2019), 2013.
Famiglietti, J. S.:
The global groundwater crisis,
Nat. Clim. Change,
4, 945–948, https://doi.org/10.1038/nclimate2425, 2014.
FAO:
AQUASTAT,
Food and Agricultural Organisation, available at: http://www.fao.org/aquastat (last access: June 2019), 2016.
Feenstra, R. C., Inklaar, R., and Timmer, M. P.:
The Next Generation of the Penn World Table,
Am. Econ. Rev.,
105, 3150–3182, https://doi.org/10.1257/aer.20130954, 2015.
Flörke, M. and Alcamo, J.:
European outlook on water use,
Centre for Environmental Systems Research, Kassel, 86 pp., 2004.
Flörke, M., Kynast, E., Barlund, I., Eisner, S., Wimmer, F., and Alcamo, J.:
Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study,
Global Environ. Chang.,
23, 144–156, https://doi.org/10.1016/j.gloenvcha.2012.10.018, 2013.
Franchini, M. and Pacciani, M.:
Comparative-Analysis of Several Conceptual Rainfall Runoff Models,
J. Hydrol.,
122, 161–219, https://doi.org/10.1016/0022-1694(91)90178-K, 1991.
Frenken, K. and Gillet, V.:
Irrigation water requirement and water withdrawal by country,
Food and Agricultural Organisation, Rome, Italy, 264 pp., 2012.
Gerten, D., Hoff, H., Rockstrom, J., Jagermeyr, J., Kummu, M., and Pastor, A. V.:
Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements,
Curr. Opin. Env. Sust.,
5, 551–558, https://doi.org/10.1016/j.cosust.2013.11.001, 2013.
Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., and Robinson, T. P.:
Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010,
Sci. Data,
5, 180227, https://doi.org/10.1038/sdata.2018.227, 2018.
Gleeson, T. and Richter, B.:
How much groundwater can we pump and protect environmental flows through time? Presumptive standards for conjunctive management of aquifers and rivers,
River Res. Appl.,
34, 83–92, https://doi.org/10.1002/rra.3185, 2018.
Gleick, P. H., Cooley, H., Katz, D., Lee, E., Morrison, J., Meena, P., Samulon, A., and Wolff, G. H.:
The world's water 2006–2007: The biennial report on freshwater resources,
Island Press, Washington, 392 pp., 2013.
Goldstein, R. and Smith, W.:
U.S. water consumption for power production – the next half century,
Electric Power Research Institute, California, USA, 57, 2002.
GRDC:
GRDC,
The Global Runoff Data Centre, available at: https://www.bafg.de/GRDC (last access: March 2019), 2003.
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Macedo, H. E., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J., Petry, P., Liermann, C. R., Saenz, L., Salinas-Rodriguez, S., Schelle, P., Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen, A., and Zarfl, C.:
Mapping the world's free-flowing rivers,
Nature,
569, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019.
Grobicki, A., Huidobro, P., Galloni, S., Asano, T., and Delgau, K. F.:
Water, a shared responsibility (chapter 8),
United Nations Educational, Scientific and Cultural Organisation, Paris, France, 276–303, 2005.
Haddeland, I., Lettenmaier, D. P., and Skaugen, T.:
Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins,
J. Hydrol.,
324, 210–223, https://doi.org/10.1016/j.jhydrol.2005.09.028, 2006a.
Haddeland, I., Skaugen, T., and Lettenmaier, D. P.:
Anthropogenic impacts on continental surface water fluxes,
Geophys. Res. Lett.,
33, L08406, https://doi.org/10.1029/2006gl026047, 2006b.
Hagemann, S. and Gates, L. D.:
Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model,
J. Geophys. Res.-Atmos.,
106, 1503–1510, https://doi.org/10.1029/2000jd900568, 2001.
Hamlet, A. F. and Lettenmaier, D. P.:
Effects of climate change on hydrology and water resources in the Columbia River basin,
J. Am. Water Resour. As.,
35, 1597–1623, https://doi.org/10.1111/j.1752-1688.1999.tb04240.x, 1999.
Hamman, J., Nijssen, B., Brunke, M., Cassano, J., Craig, A., DuVivier, A., Hughes, M., Lettenmaier, D. P., Maslowski, W., Osinski, R., Roberts, A., and Zeng, X. B.:
Land Surface Climate in the Regional Arctic System Model,
J. Climate,
29, 6543–6562, https://doi.org/10.1175/Jcli-D-15-0415.1, 2016.
Hamman, J., Nijssen, B., Roberts, A., Craig, A., Maslowski, W., and Osinski, R.:
The coastal streamflow flux in the Regional Arctic System Model,
J. Geophys. Res.-Oceans,
122, 1683–1701, https://doi.org/10.1002/2016jc012323, 2017a.
Hamman, J., Nijssen, B., Bohn, T., Franssen, W., Yixinmao, and Gergel, D.: UW-Hydro/VIC: VIC 5.0.1 (Version VIC.5.0.1), Zenodo, https://doi.org/10.5281/zenodo.267178, 2017b.
Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility, Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, 2018.
Hanasaki, N., Kanae, S., and Oki, T.:
A reservoir operation scheme for global river routing models,
J. Hydrol.,
327, 22–41, https://doi.org/10.1016/j.jhydrol.2005.11.011, 2006.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027–1037, https://doi.org/10.5194/hess-12-1027-2008, 2008a.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2008b.
Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., and Kanae, S.: A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use, Hydrol. Earth Syst. Sci., 17, 2375–2391, https://doi.org/10.5194/hess-17-2375-2013, 2013.
Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi.org/10.5194/hess-22-789-2018, 2018.
Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R.:
Global land cover classification at 1km spatial resolution using a classification tree approach,
Int. J. Remote Sens.,
21, 1331–1364, https://doi.org/10.1080/014311600210209, 2000.
Harding, R., Best, M., Blyth, E., Hagemann, S., Kabat, P., Tallaksen, L. M., Warnaars, T., Wiberg, D., Weedon, G. P., van Lanen, H., Ludwig, F., and Haddeland, I.:
WATCH: Current Knowledge of the Terrestrial Global Water Cycle,
J. Hydrometeorol.,
12, 1149–1156, https://doi.org/10.1175/jhm-d-11-024.1, 2011.
Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., Calvin, K., Moss, R., and Kim, S.:
Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework,
Technol. Forecast. Soc.,
81, 205–226, https://doi.org/10.1016/j.techfore.2013.05.006, 2014.
Huang, Z., Hejazi, M., Li, X., Tang, Q., Vernon, C., Leng, G., Liu, Y., Döll, P., Eisner, S., Gerten, D., Hanasaki, N., and Wada, Y.: Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns, Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, 2018.
Jägermeyr, J., Pastor, A., Biemans, H., and Gerten, D.:
Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation,
Nat. Commun.,
8, 15900, https://doi.org/10.1038/ncomms15900, 2017.
Kim, S. H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Patel, P., Wise, M., and Davies, E.:
Balancing global water availability and use at basin scale in an integrated assessment model,
Climatic Change,
136, 217–231, https://doi.org/10.1007/s10584-016-1604-6, 2016.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Konikow, L. F.:
Contribution of global groundwater depletion since 1900 to sea-level rise,
Geophys. Res. Lett.,
38, L17401, https://doi.org/10.1029/2011gl048604, 2011.
Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.:
A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system,
Global Biogeochem. Cy.,
19, GB1015, https://doi.org/10.1029/2003gb002199, 2005.
Lehner, B., Liermann, C. R., Revenga, C., Vorosmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rodel, R., Sindorf, N., and Wisser, D.:
High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management,
Front. Ecol. Environ.,
9, 494–502, https://doi.org/10.1890/100125, 2011.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.:
A Simple Hydrologically Based Model of Land-Surface Water and Energy Fluxes for General-Circulation Models,
J. Geophys. Res.-Atmos.,
99, 14415–14428, https://doi.org/10.1029/94jd00483, 1994.
Lohmann, D., NolteHolube, R., and Raschke, E.:
A large-scale horizontal routing model to be coupled to land surface parametrization schemes,
Tellus A,
48, 708–721, https://doi.org/10.1034/j.1600-0870.1996.t01-3-00009.x, 1996.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.:
Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany,
Hydrolog. Sci. J.,
43, 143–158, https://doi.org/10.1080/02626669809492108, 1998a.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.:
Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model,
Hydrolog. Sci. J.,
43, 131–141, https://doi.org/10.1080/02626669809492107, 1998b.
Long, D., Yang, Y., Wada, Y., Hong, Y., Liang, W., Chen, Y., Yong, B., Hou, A., Wei, J., and Chen, L.:
Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin,
Remote Sens. Environ.,
168, 177–193, https://doi.org/10.1016/j.rse.2015.07.003, 2015.
Masaki, Y., Hanasaki, N., Takahashi, K., and Hijioka, Y.:
Consequences of implementing a reservoir operation algorithm in a global hydrological model under multiple meteorological forcing,
Hydrolog. Sci. J.,
63, 1047–1061, https://doi.org/10.1080/02626667.2018.1473872, 2018.
Mekonnen, M. M. and Hoekstra, A. Y.:
Four billion people facing severe water scarcity,
Sci. Adv.,
2, e1500323, https://doi.org/10.1126/sciadv.1500323, 2016.
Mo, K. C.:
Model-Based Drought Indices over the United States,
J. Hydrometeorol.,
9, 1212–1230, https://doi.org/10.1175/2008jhm1002.1, 2008.
Myneni, R. B., Nemani, R. R., and Running, S. W.:
Estimation of global leaf area index and absorbed par using radiative transfer models,
IEEE T. Geosci. Remote,
35, 1380–1393, https://doi.org/10.1109/36.649788, 1997.
NASA: GRACE, National Aeronautics and Space Administration, available at: https://grace.jpl.nasa.gov (last access: September 2019), 2002.
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling, Hydrol. Earth Syst. Sci., 19, 63–90, https://doi.org/10.5194/hess-19-63-2015, 2015a.
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand, Hydrol. Earth Syst. Sci., 19, 33–61, https://doi.org/10.5194/hess-19-33-2015, 2015b.
Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E. F.:
Streamflow simulation for continental-scale river basins,
Water Resour. Res.,
33, 711–724, https://doi.org/10.1029/96wr03517, 1997.
Nijssen, B., O'Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.:
Hydrologic sensitivity of global rivers to climate change,
Climatic Change,
50, 143–175, https://doi.org/10.1023/A:1010616428763, 2001a.
Nijssen, B., O'Donnell, G. M., Lettenmaier, D. P., Lohmann, D., and Wood, E. F.:
Predicting the discharge of global rivers,
J. Climate,
14, 3307–3323, https://doi.org/10.1175/1520-0442(2001)014<3307:Ptdogr>2.0.Co;2, 2001b.
Nijssen, B., Schnur, R., and Lettenmaier, D. P.:
Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93,
J. Climate,
14, 1790–1808, https://doi.org/10.1175/1520-0442(2001)014<1790:Greosm>2.0.Co;2, 2001c.
Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C.:
Fragmentation and flow regulation of the world's large river systems,
Science,
308, 405–408, https://doi.org/10.1126/science.1107887, 2005.
Oki, T. and Kanae, S.:
Global hydrological cycles and world water resources,
Science,
313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Oki, T., Musiake, K., Matsuyama, H., and Masuda, K.:
Global Atmospheric Water-Balance and Runoff from Large River Basins,
Hydrol. Process.,
9, 655–678, https://doi.org/10.1002/hyp.3360090513, 1995.
Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H., and Kabat, P.: Accounting for environmental flow requirements in global water assessments, Hydrol. Earth Syst. Sci., 18, 5041–5059, https://doi.org/10.5194/hess-18-5041-2014, 2014.
Pastor, A. V., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., Kabat, P., and Ludwig, F.:
The global nexus of food–trade–water sustaining environmental flows by 2050,
Nature Sustainability,
2, 499–507, https://doi.org/10.1038/s41893-019-0287-1, 2019.
Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J., Kendy, E., Acreman, M., Apse, C., Bledsoe, B. P., Freeman, M. C., Henriksen, J., Jacobson, R. B., Kennen, J. G., Merritt, D. M., O'Keeffe, J. H., Olden, J. D., Rogers, K., Tharme, R. E., and Warner, A.:
The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards,
Freshwater Biol.,
55, 147–170, https://doi.org/10.1111/j.1365-2427.2009.02204.x, 2010.
Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J.-F., Kim, H., Kanae, S., and Oki, T.:
Incorporating Anthropogenic Water Regulation Modules into a Land Surface Model,
J. Hydrometeorol.,
13, 255–269, https://doi.org/10.1175/jhm-d-11-013.1, 2012.
Pokhrel, Y. N., Koirala, S., Yeh, P. J.-F., Hanasaki, N., Longuevergne, L., Kanae, S., and Oki, T.:
Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts,
Water Resour. Res.,
51, 78–96, https://doi.org/10.1002/2014wr015602, 2015.
Pokhrel, Y. N., Hanasaki, N., Wada, Y., and Kim, H.:
Recent progresses in incorporating human land-water management into global land surface models toward their integration into Earth system models,
WIREs Water,
3, 548–574, https://doi.org/10.1002/wat2.1150, 2016.
Portmann, F. T., Siebert, S., and Döll, P.:
MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling,
Global Biogeochem. Cy.,
24, GB1011, https://doi.org/10.1029/2008gb003435, 2010.
Postel, S. L., Daily, G. C., and Ehrlich, P. R.:
Human appropriation of renewable fresh water,
Science,
271, 785–788, https://doi.org/10.1126/science.271.5250.785, 1996.
Reed, B. and Reed, B.:
How much water is needed in emergencies,
Water, Engineering and Development Centre, Leicestershire, 2013.
Richter, B. D., Davis, M. M., Apse, C., and Konrad, C.:
A Presumptive Standard for Environmental Flow Protection,
River Res. Appl.,
28, 1312–1321, https://doi.org/10.1002/rra.1511, 2012.
Rodell, M., Velicogna, I., and Famiglietti, J. S.:
Satellite-based estimates of groundwater depletion in India,
Nature,
460, 999-U980, https://doi.org/10.1038/nature08238, 2009.
Roman, M. O., Wang, Z. S., Sun, Q. S., Kalb, V., Miller, S. D., Molthan, A., Schultz, L., Bell, J., Stokes, E. C., Pandey, B., Seto, K. C., Hall, D., Oda, T., Wolfe, R. E., Lin, G., Golpayegani, N., Devadiga, S., Davidson, C., Sarkar, S., Praderas, C., Schmaltz, J., Boller, R., Stevens, J., Gonzalez, O. M. R., Padilla, E., Alonso, J., Detres, Y., Armstrong, R., Miranda, I., Conte, Y., Marrero, N., MacManus, K., Esch, T., and Masuoka, E. J.:
NASA's Black Marble nighttime lights product suite,
Remote Sens. Environ.,
210, 113–143, https://doi.org/10.1016/j.rse.2018.03.017, 2018.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.:
Agricultural green and blue water consumption and its influence on the global water system,
Water Resour. Res.,
44, W09405, https://doi.org/10.1029/2007wr006331, 2008.
Rougé, C., Reed, P. M., Grogan, D. S., Zuidema, S., Prusevich, A., Glidden, S., Lamontagne, J. R., and Lammers, R. B.: Coordination and Control: Limits in Standard Representations of Multi-Reservoir Operations in Hydrological Modeling, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-589, in review, 2019.
Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A., and Randall, D. A.:
A Global 1∘ by 1∘ NDVI Data Set for Climate Studies. Part 2. The Generation of Global Fields of Terrestrial Biophysical Parameters from the NDVI,
Int. J. Remote Sens.,
15, 3519–3545, https://doi.org/10.1080/01431169408954343, 1994.
Shen, Y., Oki, T., Utsumi, N., Kanae, S., and Hanasaki, N.:
Projection of future world water resources under SRES scenarios: water withdrawal/Projection des ressources en eau mondiales futures selon les scénarios du RSSE: prélèvement d'eau,
Hydrolog. Sci. J.,
53, 11–33, https://doi.org/10.1080/02626667.2013.862338, 2008.
Shiklomanov, I. A.:
Appraisal and assessment of world water resources,
Water Int.,
25, 11–32, https://doi.org/10.1080/02508060008686794, 2000.
Shuttleworth, W. J.:
Evaporation, in: Handbook of Hydrology,
edited by: Maidment, D. R., McGraw-Hill, New York, 98–144, 1993.
Smakhtin, V., Revenga, C., and Döll, P.:
A pilot global assessment of environmental water requirements and scarcity,
Water Int.,
29, 307–317, https://doi.org/10.1080/02508060408691785, 2004.
Smith, M.:
CROPWAT: A computer program for irrigation planning and management, FAO irrigation and drainage paper,
Food and Agricultural Organisation, Rome, Italy, 127 pp., 1996.
Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., Rosales, M., and De Haan, C.:
Livestock's long shadow: environmental issues and options,
Food and Agricultural Organisation, Rome, Italy, 416 pp., 2006.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Takata, K., Emori, S., and Watanabe, T.:
Development of the minimal advanced treatments of surface interaction and runoff,
Global Planet. Change,
38, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003.
Tessler, Z. D., Vorosmarty, C. J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski, J. P. M., and Foufoula-Georgiou, E.:
Profiling risk and sustainability in coastal deltas of the world,
Science,
349, 638–643, https://doi.org/10.1126/science.aab3574, 2015.
Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H., and Kyle, P.:
Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals Over the Twenty-First Century,
Earths Future,
7, 123–135, https://doi.org/10.1029/2018ef001105, 2019.
van Beek, L. P. H., and Bierkens, M. F. P.: The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification, Departement of physical geography, Utrecht university, Utrecht, The Netherlands, 54 pp., 2009.
van Vliet, M. T. H., Wiberg, D., Leduc, S., and Riahi, K.: Power-generation system vulnerability and adaptation to changes in climate and water resources,
Nat. Clim. Change,
6, 375–380, https://doi.org/10.1038/Nclimate2903, 2016.
Vassolo, S. and Döll, P.:
Global-scale gridded estimates of thermoelectric power and manufacturing water use,
Water Resour. Res.,
41, W04010, https://doi.org/10.1029/2004wr003360, 2005.
Voisin, N., Li, H., Ward, D., Huang, M., Wigmosta, M., and Leung, L. R.: On an improved sub-regional water resources management representation for integration into earth system models, Hydrol. Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-3605-2013, 2013.
Voisin, N., Hejazi, M. I., Leung, L. R., Liu, L., Huang, M. Y., Li, H. Y., and Tesfa, T.: Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model,
Water Resour. Res.,
53, 4253–4270, https://doi.org/10.1002/2016wr019767, 2017.
Voisin, N., Kintner-Meyer, M., Wu, D., Skaggs, R., Fu, T., Zhou, T., Nguyen, T., and Kraucunas, I.:
Opportunities for Joint Water–Energy Management Sensitivity of the 2010 Western US Electricity Grid Operations to Climate Oscillations,
B. Am. Meteorol. Soc.,
99, 299–312, https://doi.org/10.1175/Bams-D-16-0253.1, 2018.
Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.:
Global threats to human water security and river biodiversity,
Nature,
467, 555–561, https://doi.org/10.1038/nature09440, 2010.
Voß, F. and Flörke, M.:
Spatially explicit estimates of past and present manufacturing and energy water use,
Center for Environmental Systems Research, Kassel, 16 pp., 2010.
Wada, Y. and Bierkens, M. F. P.:
Sustainability of global water use: past reconstruction and future projections,
Environ. Res. Lett.,
9, 104003, https://doi.org/10.1088/1748-9326/9/10/104003, 2014.
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability, Hydrol. Earth Syst. Sci., 15, 3785–3808, https://doi.org/10.5194/hess-15-3785-2011, 2011a.
Wada, Y., van Beek, L. P. H., Viviroli, D., Durr, H. H., Weingartner, R., and Bierkens, M. F. P.:
Global monthly water stress: 2. Water demand and severity of water stress,
Water Resour. Res.,
47, W07518, https://doi.org/10.1029/2010wr009792, 2011b.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.:
The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data,
Water Resour. Res.,
50, 7505–7514, https://doi.org/10.1002/2014wr015638, 2014.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010.
Wood, A. W. and Lettenmaier, D. P.:
A test bed for new seasonal hydrologic forecasting approaches in the western United States,
B. Am. Meteorol. Soc.,
87, 1699–1712, https://doi.org/10.1175/Bams-87-12-1699, 2006.
World Bank:
World bank development indicators, available at: https://databank.worldbank.org/source/world-development-indicators (last access: April 2019),
World Bank, 2010.
Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G., and Wheater, H.: Representation and improved parameterization of reservoir operation in hydrological and land-surface models, Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, 2019.
Zhao, G., Gao, H. L., Naz, B. S., Kao, S. C., and Voisin, N.:
Integrating a reservoir regulation scheme into a spatially distributed hydrological model,
Adv. Water Resour.,
98, 16–31, https://doi.org/10.1016/j.advwatres.2016.10.014, 2016.
Zhou, T., Haddeland, I., Nijssen, B., and Lettenmaier, D. P.:
Human induced changes in the global water cycle,
AGU Geophysical Monograph Series,
https://doi.org/10.1002/9781118971772.ch4, 2015.
Zhou, T., Nijssen, B., Gao, H. L., and Lettenmaier, D. P.:
The Contribution of Reservoirs to Global Land Surface Water Storage Variations,
J. Hydrometeorol.,
17, 309–325, https://doi.org/10.1175/Jhm-D-15-0002.1, 2016.
Zhou, T., Voisin, N., Leng, G. Y., Huang, M. Y., and Kraucunas, I.:
Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States,
J. Hydrometeorol.,
19, 499–515, https://doi.org/10.1175/Jhm-D-17-0095.1, 2018.
Zhu, C. M., Leung, L. R., Gochis, D., Qian, Y., and Lettenmaier, D. P.:
Evaluating the Influence of Antecedent Soil Moisture on Variability of the North American Monsoon Precipitation in the Coupled MM5/VIC Modeling System,
J. Adv. Model. Earth. Sy.,
1, 13, https://doi.org/10.3894/James.2009.1.13, 2009.
Short summary
Our study aims to include both both societal and natural water requirements and uses into a hydrological model in order to enable worldwide assessments of sustainable water use. The model was extended to include irrigation, domestic, industrial, energy, and livestock water uses as well as minimum flow requirements for natural systems. Initial results showed competition for water resources between society and nature, especially with respect to groundwater withdrawals.
Our study aims to include both both societal and natural water requirements and uses into a...