Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-5029-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5029-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating human impacts on global water resources using VIC-5
Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Wietse H. P. Franssen
Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Michelle T. H. van Vliet
Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
Bart Nijssen
Computational Hydrology Group, Department of Civil and Environmental Engineering, University of Washington, P.O. Box 352700, 98195-2700, Seattle, USA
Fulco Ludwig
Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Related authors
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-349, https://doi.org/10.5194/essd-2023-349, 2023
Preprint under review for ESSD
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological timeseries, including observed streamflow, and basin characteristics for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets, as well as additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Yixin Mao, Wade T. Crow, and Bart Nijssen
Hydrol. Earth Syst. Sci., 24, 615–631, https://doi.org/10.5194/hess-24-615-2020, https://doi.org/10.5194/hess-24-615-2020, 2020
Short summary
Short summary
The new generation of satellite soil moisture observations are used to correct the streamflow in a regional-scale river basin simulated by a mathematical model. The correction is done via both the direct updating of soil moisture and correction of rainfall input. Results show some streamflow improvement, but the magnitude is small. A larger improvement will need future generations of even higher-quality satellite soil moisture data and better process representation in the mathematical model.
John R. Yearsley, Ning Sun, Marisa Baptiste, and Bart Nijssen
Hydrol. Earth Syst. Sci., 23, 4491–4508, https://doi.org/10.5194/hess-23-4491-2019, https://doi.org/10.5194/hess-23-4491-2019, 2019
Short summary
Short summary
This study investigates the impact of dam-induced hydrologic alterations and modification of riparian buffers on stream temperatures and thermal habitat for aquatic species. We enhanced and applied a model system (DHSVM-RBM) that couples a distributed hydrologic model, DHSVM, with the distributed stream temperature model, RBM, in the Farmington River basin in the Connecticut River system, which includes varying types of watershed development (e.g., deforestation and reservoirs).
Andrew R. Bennett, Joseph J. Hamman, and Bart Nijssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-179, https://doi.org/10.5194/gmd-2019-179, 2019
Preprint withdrawn
Short summary
Short summary
MetSim is a software package for simulating meteorologic processes, and aims to be applied in the environmental and Earth sciences. It can simulate processes such as solar and thermal radiation, specific humidity, and vapor pressure across large spatial areas in an efficient manner. This paper describes the software and analyzes it's ability to be used in large simulations. We describe how MetSim can be used and provide details on the various options that are available.
Wouter Greuell, Wietse H. P. Franssen, and Ronald W. A. Hutjes
Hydrol. Earth Syst. Sci., 23, 371–391, https://doi.org/10.5194/hess-23-371-2019, https://doi.org/10.5194/hess-23-371-2019, 2019
Short summary
Short summary
This paper explains why forecasts of river flow in Europe for a time between 1 and 7 months have skill. The forecasts were produced with a water model. The model reacts to forecasts of weather variables like precipitation, which tend to have little skill and hence hardly contribute to the skill in the forecasts of river flow. The paper shows when and where these forecasts have skill; this is mostly due to knowledge of the amount of water in the soil at the time the forecasts are made.
Michael A. Brunke, John J. Cassano, Nicholas Dawson, Alice K. DuVivier, William J. Gutowski Jr., Joseph Hamman, Wieslaw Maslowski, Bart Nijssen, J. E. Jack Reeves Eyre, José C. Renteria, Andrew Roberts, and Xubin Zeng
Geosci. Model Dev., 11, 4817–4841, https://doi.org/10.5194/gmd-11-4817-2018, https://doi.org/10.5194/gmd-11-4817-2018, 2018
Short summary
Short summary
The Regional Arctic System Model version 1 (RASM1) was recently developed for high-resolution simulation of the coupled atmosphere–ocean–sea ice–land system in the Arctic. Its simulation of the atmosphere–land–ocean–sea ice interface is evaluated by using the spread in recent reanalyses and a global Earth system model as baselines. Such comparisons reveal that RASM1 simulates precipitation well and improves the simulation of surface fluxes over sea ice.
Joseph J. Hamman, Bart Nijssen, Theodore J. Bohn, Diana R. Gergel, and Yixin Mao
Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, https://doi.org/10.5194/gmd-11-3481-2018, 2018
Short summary
Short summary
Variable Infiltration Capacity (VIC) is a widely used hydrologic model. This paper documents the development of VIC version 5, which includes a reconfiguration of the model source code to support a wider range of modeling applications. It also represents a significant step forward for the VIC user community in terms of support for a range of modeling applications, reproducibility, and scientific robustness.
Wouter Greuell, Wietse H. P. Franssen, Hester Biemans, and Ronald W. A. Hutjes
Hydrol. Earth Syst. Sci., 22, 3453–3472, https://doi.org/10.5194/hess-22-3453-2018, https://doi.org/10.5194/hess-22-3453-2018, 2018
Short summary
Short summary
This paper presents the development and skill analysis of WUSHP, a system that makes hydrological forecasts for time horizons up to 7 months. Hot spots of significant skill in river discharge were identified in Fennoscandia (from January to October), the southern part of the Mediterranean (from June to August), Poland, north Germany, Romania and Bulgaria (mainly from November to January), and west France (from December to May). Some skill is left at the end of the forecasts.
Dung Duc Tran, Gerardo van Halsema, Petra J. G. J. Hellegers, Long Phi Hoang, Tho Quang Tran, Matti Kummu, and Fulco Ludwig
Hydrol. Earth Syst. Sci., 22, 1875–1896, https://doi.org/10.5194/hess-22-1875-2018, https://doi.org/10.5194/hess-22-1875-2018, 2018
Short summary
Short summary
We modeled hydrological changes under impacts of large-scale dike constructions for intensive rice production in the floodplain of the Vietnamese Mekong Delta. Four scenarios show a significant increase in peak water levels in the upstream rivers, but very few water level changes are found downstream. Water balance calculations show where the floodwater goes under four dike construction scenarios. Its impacts on the tidal areas need to be clarified in the future with a 3-D hydraulic model.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Abraham Endalamaw, W. Robert Bolton, Jessica M. Young-Robertson, Don Morton, Larry Hinzman, and Bart Nijssen
Hydrol. Earth Syst. Sci., 21, 4663–4680, https://doi.org/10.5194/hess-21-4663-2017, https://doi.org/10.5194/hess-21-4663-2017, 2017
Short summary
Short summary
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to improve the skill of distributed hydrological models to simulate the spatially and basin-integrated hydrological processes of complex ecosystems in the sub-arctic boreal forest. We developed a sub-grid parameterization method to parameterize the surface heterogeneity of interior Alaskan discontinuous permafrost watersheds.
Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold
Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, https://doi.org/10.5194/hess-21-3915-2017, 2017
Short summary
Short summary
Water supply forecasts are critical to support water resources operations and planning. The skill of such forecasts depends on our knowledge of (i) future meteorological conditions and (ii) the amount of water stored in a basin. We address this problem by testing several approaches that make use of these sources of predictability, either separately or in a combined fashion. The main goal is to understand the marginal benefits of both information and methodological complexity in forecast skill.
Long Phi Hoang, Hannu Lauri, Matti Kummu, Jorma Koponen, Michelle T. H. van Vliet, Iwan Supit, Rik Leemans, Pavel Kabat, and Fulco Ludwig
Hydrol. Earth Syst. Sci., 20, 3027–3041, https://doi.org/10.5194/hess-20-3027-2016, https://doi.org/10.5194/hess-20-3027-2016, 2016
Short summary
Short summary
We modelled hydrological changes under climate change in the Mekong River, focusing on extreme events. The scenario ensemble shows an intensification of the hydrological cycle under climate change. Annual river flow increases between 5 and 16 % depending on locations. Extreme high flows increase substantially in both magnitude and frequency, posing threats to flood safety in the basin. Extreme low-flow events are projected to reduce as a result of increased river flow during the dry season.
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016, https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Short summary
mizuRoute version 1 is a stand-alone runoff routing tool that post-processes runoff outputs from any distributed hydrologic models to produce streamflow estimates in large-scale river network. mizuRoute is flexible to river network representation and includes two different river routing schemes. This paper demonstrates mizuRoute's capability of multi-decadal streamflow estimations in the river networks over the entire contiguous Unites States, which contains over 54 000 river segments.
W. Greuell, J. C. M. Andersson, C. Donnelly, L. Feyen, D. Gerten, F. Ludwig, G. Pisacane, P. Roudier, and S. Schaphoff
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-10289-2015, https://doi.org/10.5194/hessd-12-10289-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
The main aims of this paper are the evaluation of five large-scale hydrological models across Europe and the assessment of the suitability of the models for making projections under climate change. While we found large inter-model differences in biases, the skill to simulate interannual variability in discharge did not differ much between the models. Assuming that the skill of a model to simulate interannual variability provides a measure for the model’s ability to make projections under climate
A. V. Pastor, F. Ludwig, H. Biemans, H. Hoff, and P. Kabat
Hydrol. Earth Syst. Sci., 18, 5041–5059, https://doi.org/10.5194/hess-18-5041-2014, https://doi.org/10.5194/hess-18-5041-2014, 2014
Short summary
Short summary
Freshwater ecosystems encompass the most threatened species on earth. Environmental flow requirements need to be addressed globally to provide sufficient water for humans and nature. We present a comparison of five environmental flow methods validated with locally calculated EFRs. We showed that methods based on monthly average flow such as the variable monthly flow method are more reliable than methods based on annual thresholds. A range of EFRs was calculated for large river basins.
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
S. Hagemann, C. Chen, D. B. Clark, S. Folwell, S. N. Gosling, I. Haddeland, N. Hanasaki, J. Heinke, F. Ludwig, F. Voss, and A. J. Wiltshire
Earth Syst. Dynam., 4, 129–144, https://doi.org/10.5194/esd-4-129-2013, https://doi.org/10.5194/esd-4-129-2013, 2013
Related subject area
Hydrology
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Enhancing the representation of water management in global hydrological models
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
rSHUD v2.0: Advancing Unstructured Hydrological Modeling in the R Environment
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
pyESDv1.0.1: An open-source Python framework for empirical-statistical downscaling of climate information
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
mesas.py v1.0: A flexible Python package for modeling solute transport and transit times using StorAge Selection functions
Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva
SIMO v1.0: simplified model of the vertical temperature profile in a small, warm, monomictic lake
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling
Developing a parsimonious canopy model (PCM v1.0) to predict forest gross primary productivity and leaf area index of deciduous broad-leaved forest
Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation
A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations
Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability
CREST-VEC: a framework towards more accurate and realistic flood simulation across scales
Rad-cGAN v1.0: Radar-based precipitation nowcasting model with conditional generative adversarial networks for multiple dam domains
The eWaterCycle platform for open and FAIR hydrological collaboration
Evaluating the Atibaia River hydrology using JULES6.1
A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector
CLIMFILL v0.9: a framework for intelligently gap filling Earth observations
Modeling subgrid lake energy balance in ORCHIDEE terrestrial scheme using the FLake lake model
Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling
Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5
GSTools v1.3: a toolbox for geostatistical modelling in Python
AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods
Modeling of streamflow in a 30 km long reach spanning 5 years using OpenFOAM 5.x
Tree hydrodynamic modelling of the soil–plant–atmosphere continuum using FETCH3
Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023, https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations; this may provide a better understanding of hydrodynamics and related transport processes in Rhizophora mangrove forests.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023, https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here propose an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrate the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Lele Shu, Paul Ullrich, Xianghong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-128, https://doi.org/10.5194/gmd-2023-128, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-67, https://doi.org/10.5194/gmd-2023-67, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present an open-source python framework for performing empirical statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating high-resolution accurate climate data.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023, https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
Ciaran Harman and Esther Xu Fei
EGUsphere, https://doi.org/10.5194/egusphere-2022-1262, https://doi.org/10.5194/egusphere-2022-1262, 2022
Short summary
Short summary
Over the last 10 years scientists have developed a new way of modeling how material is transported through complex systems, called StorAge Selection. Here we present some new code implementing this method that is easy to use, but also flexible and very accurate. We show that for cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other people's code to the right answer in an important way: it conserves mass.
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022, https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022, https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Short summary
We develop a simple 1-D model for the prediction of the vertical temperature profiles in small, warm lakes. The model uses routinely measured meteorological variables as well as UVB radiation and yearly mean temperature data. It can be used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022, https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Danielle S. Grogan, Shan Zuidema, Alex Prusevich, Wilfred M. Wollheim, Stanley Glidden, and Richard B. Lammers
Geosci. Model Dev., 15, 7287–7323, https://doi.org/10.5194/gmd-15-7287-2022, https://doi.org/10.5194/gmd-15-7287-2022, 2022
Short summary
Short summary
This paper describes the University of New Hampshire's water balance model (WBM). This model simulates the land surface components of the global water cycle and includes water extractions for use by humans for agricultural, domestic, and industrial purposes. A new feature is described that permits water source tracking through the water cycle, which has implications for water resource management. This paper was written to describe a long-used model and presents its first open-source version.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030, https://doi.org/10.5194/gmd-15-7017-2022, https://doi.org/10.5194/gmd-15-7017-2022, 2022
Short summary
Short summary
We introduce the open-source RavenR package, which has been built to support the use of the hydrologic modelling framework Raven. The R package contains many functions that may be useful in each step of the model-building process, including preparing model input files, running the model, and analyzing the outputs. We present six reproducible use cases of the RavenR package for the Liard River basin in Canada to demonstrate how it may be deployed.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma
Geosci. Model Dev., 15, 6581–6600, https://doi.org/10.5194/gmd-15-6581-2022, https://doi.org/10.5194/gmd-15-6581-2022, 2022
Short summary
Short summary
A new karst hydrological model (the QMG model) is developed to simulate and predict the floods in karst trough valley basins. Unlike the complex structure and parameters of current karst groundwater models, this model has a simple double-layered structure with few parameters and decreases the demand for modeling data in karst areas. The flood simulation results based on the QMG model of the Qingmuguan karst trough valley basin are satisfactory, indicating the suitability of the model simulation.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Zhi Li, Shang Gao, Mengye Chen, Jonathan Gourley, Naoki Mizukami, and Yang Hong
Geosci. Model Dev., 15, 6181–6196, https://doi.org/10.5194/gmd-15-6181-2022, https://doi.org/10.5194/gmd-15-6181-2022, 2022
Short summary
Short summary
Operational streamflow prediction at a continental scale is critical for national water resources management. However, limited computational resources often impede such processes, with streamflow routing being one of the most time-consuming parts. This study presents a recent development of a hydrologic system that incorporates a vector-based routing scheme with a lake module that markedly speeds up streamflow prediction. Moreover, accuracy is improved and flood false alarms are mitigated.
Suyeon Choi and Yeonjoo Kim
Geosci. Model Dev., 15, 5967–5985, https://doi.org/10.5194/gmd-15-5967-2022, https://doi.org/10.5194/gmd-15-5967-2022, 2022
Short summary
Short summary
Here we present the cGAN-based precipitation nowcasting model, named Rad-cGAN, trained to predict a radar reflectivity map with a lead time of 10 min. Rad-cGAN showed superior performance at a lead time of up to 90 min compared with the reference models. Furthermore, we demonstrate the successful implementation of the transfer learning strategies using pre-trained Rad-cGAN to develop the models for different dam domains.
Rolf Hut, Niels Drost, Nick van de Giesen, Ben van Werkhoven, Banafsheh Abdollahi, Jerom Aerts, Thomas Albers, Fakhereh Alidoost, Bouwe Andela, Jaro Camphuijsen, Yifat Dzigan, Ronald van Haren, Eric Hutton, Peter Kalverla, Maarten van Meersbergen, Gijs van den Oord, Inti Pelupessy, Stef Smeets, Stefan Verhoeven, Martine de Vos, and Berend Weel
Geosci. Model Dev., 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022, https://doi.org/10.5194/gmd-15-5371-2022, 2022
Short summary
Short summary
With the eWaterCycle platform, we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both open science and FAIR science. The eWatercyle platform gives easy access to well-known hydrological models, big datasets and example experiments. Using eWaterCycle hydrologists can easily compare the results from different models, couple models and do more complex hydrological computational research.
Hsi-Kai Chou, Ana Maria Heuminski de Avila, and Michaela Bray
Geosci. Model Dev., 15, 5233–5240, https://doi.org/10.5194/gmd-15-5233-2022, https://doi.org/10.5194/gmd-15-5233-2022, 2022
Short summary
Short summary
Land surface models allow us to understand and investigate the cause and effect of environmental process changes. Therefore, this type of model is increasingly used for hydrological assessments. Here we explore the possibility of this approach using a case study in the Atibaia River basin, which serves as a major water supply for the metropolitan regions of Campinas and São Paulo, Brazil. We evaluated the model performance and use the model to simulate the basin hydrology.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Anthony Bernus and Catherine Ottlé
Geosci. Model Dev., 15, 4275–4295, https://doi.org/10.5194/gmd-15-4275-2022, https://doi.org/10.5194/gmd-15-4275-2022, 2022
Short summary
Short summary
The lake model FLake was coupled to the ORCHIDEE land surface model to simulate lake energy balance at global scale with a multi-tile approach. Several simulations were performed with various atmospheric reanalyses and different lake depth parameterizations. The simulated lake surface temperature showed good agreement with observations (RMSEs of the order of 3 °C). We showed the large impact of the atmospheric forcing on lake temperature. We highlighted systematic errors on ice cover phenology.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Jiming Jin, Lei Wang, Jie Yang, Bingcheng Si, and Guo-Yue Niu
Geosci. Model Dev., 15, 3405–3416, https://doi.org/10.5194/gmd-15-3405-2022, https://doi.org/10.5194/gmd-15-3405-2022, 2022
Short summary
Short summary
This study aimed to improve runoff simulations and explore deep soil hydrological processes for a highly varying soil depth and complex terrain watershed in the Loess Plateau, China. The actual soil depths and river channels were incorporated into the model to better simulate the runoff in this watershed. The soil evaporation scheme was modified to better describe the evaporation processes. Our results showed that the model significantly improved the runoff simulations.
Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße
Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, https://doi.org/10.5194/gmd-15-3161-2022, 2022
Short summary
Short summary
The GSTools package provides a Python-based platform for geoostatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho
Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, https://doi.org/10.5194/gmd-15-3021-2022, 2022
Short summary
Short summary
The field of artificial intelligence has shown promising results in a wide variety of fields including hydrological modeling. However, developing and testing hydrological models with artificial intelligence techniques require expertise from diverse fields. In this study, we developed an open-source framework based upon the python programming language to simplify the process of the development of hydrological models of time series data using machine learning.
Yunxiang Chen, Jie Bao, Yilin Fang, William A. Perkins, Huiying Ren, Xuehang Song, Zhuoran Duan, Zhangshuan Hou, Xiaoliang He, and Timothy D. Scheibe
Geosci. Model Dev., 15, 2917–2947, https://doi.org/10.5194/gmd-15-2917-2022, https://doi.org/10.5194/gmd-15-2917-2022, 2022
Short summary
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
Marcela Silva, Ashley M. Matheny, Valentijn R. N. Pauwels, Dimetre Triadis, Justine E. Missik, Gil Bohrer, and Edoardo Daly
Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022, https://doi.org/10.5194/gmd-15-2619-2022, 2022
Short summary
Short summary
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes across the soil, roots, and stem. To test the model capabilities, we tested it against exact solutions and a case study. The model presented considerably small errors when compared to the exact solutions and was able to correctly represent transpiration patterns when compared to experimental data. The results show that FETCH3 can correctly simulate above- and below-ground water transport.
Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke
Geosci. Model Dev., 15, 2197–2220, https://doi.org/10.5194/gmd-15-2197-2022, https://doi.org/10.5194/gmd-15-2197-2022, 2022
Short summary
Short summary
Reservoir hydrodynamics is often described in numerical models differing in dimensionality. 1D and 2D models assume homogeneity along the unresolved dimension. We compare the performance of models with 1 to 3 dimensions. All models presented reasonable results for seasonal temperature dynamics. Neglecting longitudinal transport resulted in the largest deviations in temperature. Flow velocity could only be reproduced by the 3D model. Results support the selection of models and their assessment.
Cited articles
Abdulla, F. A., Lettenmaier, D. P., Wood, E. F., and Smith, J. A.:
Application of a macroscale hydrologic model to estimate the water balance of the Arkansas Red River basin,
J. Geophys. Res.-Atmos.,
101, 7449–7459, https://doi.org/10.1029/95jd02416, 1996.
Alcamo, J., Döll, P., Kaspar, F., and Siebert, S.:
Global change and global scenarios of water use and availability: an application of WaterGAP1.0, Center for environmental systems research,
University of Kassel, Kassel, Germany, 96, 1997.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rosch, T., and Siebert, S.:
Development and testing of the WaterGAP 2 global model of water use and availability,
Hydrolog. Sci. J.,
48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.:
Crop Evapotranspiration – Guidelines for computing crop water requirements,
Food and Agricultural Organisation, Rome, Italy, 326, 1998.
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.:
Modeling snow accumulation and ablation processes in forested environments,
Water Resour. Res.,
45, W05429, https://doi.org/10.1029/2008wr007042, 2009.
Arthington, A. H., Bhaduri, A., Bunn, S. E., Jackson, S. E., Tharme, R. E., Tickner, D., Young, B., Acreman, M., Baker, N., Capon, S., Horne, A. C., Kendy, E., McClain, M. E., Poff, N. L., Richter, B. D., and Ward, S.: The Brisbane Declaration and Global Action Agenda on Environmental Flows, Front. Environ. Sci., 6, 45, https://doi.org/10.3389/fenvs.2018.00045, 2018.
Babel, M. S., Das Gupta, A., and Pradhan, P.:
A multivariate econometric approach for domestic water demand modeling: An application to Kathmandu, Nepal,
Water Resour. Manag.,
21, 573–589, https://doi.org/10.1007/s11269-006-9030-6, 2007.
Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., Steduto, P., Mueller, A., Komor, P., Tol, R. S. J., and Yumkella, K. K.:
Considering the energy, water and food nexus: Towards an integrated modelling approach,
Energ. Policy,
39, 7896–7906, https://doi.org/10.1016/j.enpol.2011.09.039, 2011.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke, J., von Bloh, W., and Gerten, D.:
Impact of reservoirs on river discharge and irrigation water supply during the 20th century,
Water Resour. Res.,
47, W03509, https://doi.org/10.1029/2009wr008929, 2011.
Bijl, D. L., Bogaart, P. W., Dekker, S. C., and van Vuuren, D. P.:
Unpacking the nexus: Different spatial scales for water, food and energy,
Global Environ. Chang.,
48, 22–31, https://doi.org/10.1016/j.gloenvcha.2017.11.005, 2018.
Bolt, J., Inklaar, R., de Jong, H., and van Zanden, J. L.:
Rebasing “Maddison”: New income comparisons and the shape of long-run economic developments,
University of Groningen, Groningen, the Netherlands, 1–67, 2018.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Muller, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial carbon balance,
Glob. Change Biol.,
13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Bowling, L. C., Pomeroy, J. W., and Lettenmaier, D. P.:
Parameterization of blowing-snow sublimation in a macroscale hydrology model,
J. Hydrometeorol.,
5, 745–762, https://doi.org/10.1175/1525-7541(2004)005<0745:Pobsia>2.0.Co;2, 2004.
Brooks, R. H. and Corey, A. T.:
Hydraulic properties of porous media,
Colorado State University, Fort Collins, Colorado, 27 pp., 1964.
Brouwer, C., Prins, K., and Heibloem, M.:
Irrigation water management: Irrigation scheduling,
Food and Agricultural Organisation, Rome, Italy, 1989.
Calder, I. R.:
Hydrologic effects of land use change,
in: Handbook of hydrology,
edited by: Maidment, D. R.,
McGraw-Hill, New York, 471–515, 1993.
Carpenter, S. R., Stanley, E. H., and Vander Zanden, M. J.:
State of the World's Freshwater Ecosystems: Physical, Chemical, and Biological Changes,
Annu. Rev. Env. Resour.,
36, 75–99, https://doi.org/10.1146/annurev-environ-021810-094524, 2011.
Carter, A. J. and Scholes, R. J.:
Generating a global database of soil properties,
IGBP Data and Information Services, Potsdam, Germany, 10 pp., 1999.
Chateau, J., Dellink, R., and Lanzi, E.:
An overview of the OECD ENV-linkages model,
Organisation for Economic Co-operation and Development, 1–29, 2014.
Chegwidden, O. S., Nijssen, B., Rupp, D. E., Arnold, J. R., Clark, M. P., Hamman, J. J., Kao, S.-C., Mao, Y., Mizukami, N., Mote, P. W., Pan, M., Pytlak, E., and Xiao, M.:
How Do Modeling Decisions Affect the Spread Among Hydrologic Climate Change Projections? Exploring a Large Ensemble of Simulations Across a Diversity of Hydroclimates,
Earths Future,
7, 623–637, https://doi.org/10.1029/2018ef001047, 2019.
Cherkauer, K. A. and Lettenmaier, D. P.:
Hydrologic effects of frozen soils in the upper Mississippi River basin,
J. Geophys. Res.-Atmos.,
104, 19599–19610, https://doi.org/10.1029/1999jd900337, 1999.
Cherkauer, K. A. and Lettenmaier, D. P.:
Simulation of spatial variability in snow and frozen soil,
J. Geophys. Res.-Atmos.,
108, 8858, https://doi.org/10.1029/2003jd003575, 2003.
Connor, R.:
Water for a sustainable world, United Nations Educational,
Scientific and Cultural Organisation, Paris, France, 122 pp., 2015.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A
Statistical Exploration of the Relationships of Soil-Moisture Characteristics to the Physical-Properties of Soils,
Water Resour. Res.,
20, 682–690, https://doi.org/10.1029/WR020i006p00682, 1984.
Deardorff, J. W.:
Efficient Prediction of Ground Surface-Temperature and Moisture, with Inclusion of a Layer of Vegetation,
J. Geophys. Res.-Oceans,
83, 1889–1903, https://doi.org/10.1029/JC083iC04p01889, 1978.
de Graaf, I. E. M., van Beek, R. L. P. H., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., and Bierkens, M. F. P.:
A global-scale two-layer transient groundwater model: Development and application to groundwater depletion,
Adv. Water Resour.,
102, 53–67, https://doi.org/10.1016/j.advwatres.2017.01.011, 2017.
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A., Rodell, M., Strassberg, G., and Scanlon, B. R.:
Impact of water withdrawals from groundwater and surface water on continental water storage variations,
J. Geodyn.,
59–60, 143–156, https://doi.org/10.1016/j.jog.2011.05.001, 2012.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and Eicker, A.:
Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites,
Water Resour. Res.,
50, 5698–5720, https://doi.org/10.1002/2014wr015595, 2014.
Döll, P., Douville, H., Guntner, A., Muller Schmied, H., and Wada, Y.:
Modelling Freshwater Resources at the Global Scale: Challenges and Prospects,
Surv. Geophys.,
37, 195–221, https://doi.org/10.1007/s10712-015-9343-1, 2016.
Droppers, B.: BramDr/VIC_support: Support for VIC-WUR version 2.1.0 (Version VIC-WUR.2.1.0), Zenodo, https://doi.org/10.5281/zenodo.3934363, 2020.
Droppers, B., Franssen, W. H. P., van Vliet, M. H. T., Nijssen, B., and Ludwig, F.: BramDr/VIC: VIC-WUR version 2.1.0 (Version VIC-WUR.2.1.0), Zenodo, https://doi.org/10.5281/zenodo.3934325, 2020.
Ducoudre, N. I., Laval, K., and Perrier, A.:
Sechiba, a New Set of Parameterizations of the Hydrologic Exchanges at the Land Atmosphere Interface within the Lmd Atmospheric General-Circulation Model,
J. Climate,
6, 248–273, https://doi.org/10.1175/1520-0442(1993)006<0248:Sansop>2.0.Co;2, 1993.
EC: EUROSTAT, European Commission, available at: https://ec.europa.eu/eurostat, last access: June 2019.
EIA: EIA,
U.S. Energy Information Administration, available at: https://www.eia.gov (last access: June 2019), 2013.
Famiglietti, J. S.:
The global groundwater crisis,
Nat. Clim. Change,
4, 945–948, https://doi.org/10.1038/nclimate2425, 2014.
FAO:
AQUASTAT,
Food and Agricultural Organisation, available at: http://www.fao.org/aquastat (last access: June 2019), 2016.
Feenstra, R. C., Inklaar, R., and Timmer, M. P.:
The Next Generation of the Penn World Table,
Am. Econ. Rev.,
105, 3150–3182, https://doi.org/10.1257/aer.20130954, 2015.
Flörke, M. and Alcamo, J.:
European outlook on water use,
Centre for Environmental Systems Research, Kassel, 86 pp., 2004.
Flörke, M., Kynast, E., Barlund, I., Eisner, S., Wimmer, F., and Alcamo, J.:
Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study,
Global Environ. Chang.,
23, 144–156, https://doi.org/10.1016/j.gloenvcha.2012.10.018, 2013.
Franchini, M. and Pacciani, M.:
Comparative-Analysis of Several Conceptual Rainfall Runoff Models,
J. Hydrol.,
122, 161–219, https://doi.org/10.1016/0022-1694(91)90178-K, 1991.
Frenken, K. and Gillet, V.:
Irrigation water requirement and water withdrawal by country,
Food and Agricultural Organisation, Rome, Italy, 264 pp., 2012.
Gerten, D., Hoff, H., Rockstrom, J., Jagermeyr, J., Kummu, M., and Pastor, A. V.:
Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements,
Curr. Opin. Env. Sust.,
5, 551–558, https://doi.org/10.1016/j.cosust.2013.11.001, 2013.
Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., and Robinson, T. P.:
Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010,
Sci. Data,
5, 180227, https://doi.org/10.1038/sdata.2018.227, 2018.
Gleeson, T. and Richter, B.:
How much groundwater can we pump and protect environmental flows through time? Presumptive standards for conjunctive management of aquifers and rivers,
River Res. Appl.,
34, 83–92, https://doi.org/10.1002/rra.3185, 2018.
Gleick, P. H., Cooley, H., Katz, D., Lee, E., Morrison, J., Meena, P., Samulon, A., and Wolff, G. H.:
The world's water 2006–2007: The biennial report on freshwater resources,
Island Press, Washington, 392 pp., 2013.
Goldstein, R. and Smith, W.:
U.S. water consumption for power production – the next half century,
Electric Power Research Institute, California, USA, 57, 2002.
GRDC:
GRDC,
The Global Runoff Data Centre, available at: https://www.bafg.de/GRDC (last access: March 2019), 2003.
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Macedo, H. E., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J., Petry, P., Liermann, C. R., Saenz, L., Salinas-Rodriguez, S., Schelle, P., Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen, A., and Zarfl, C.:
Mapping the world's free-flowing rivers,
Nature,
569, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019.
Grobicki, A., Huidobro, P., Galloni, S., Asano, T., and Delgau, K. F.:
Water, a shared responsibility (chapter 8),
United Nations Educational, Scientific and Cultural Organisation, Paris, France, 276–303, 2005.
Haddeland, I., Lettenmaier, D. P., and Skaugen, T.:
Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins,
J. Hydrol.,
324, 210–223, https://doi.org/10.1016/j.jhydrol.2005.09.028, 2006a.
Haddeland, I., Skaugen, T., and Lettenmaier, D. P.:
Anthropogenic impacts on continental surface water fluxes,
Geophys. Res. Lett.,
33, L08406, https://doi.org/10.1029/2006gl026047, 2006b.
Hagemann, S. and Gates, L. D.:
Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model,
J. Geophys. Res.-Atmos.,
106, 1503–1510, https://doi.org/10.1029/2000jd900568, 2001.
Hamlet, A. F. and Lettenmaier, D. P.:
Effects of climate change on hydrology and water resources in the Columbia River basin,
J. Am. Water Resour. As.,
35, 1597–1623, https://doi.org/10.1111/j.1752-1688.1999.tb04240.x, 1999.
Hamman, J., Nijssen, B., Brunke, M., Cassano, J., Craig, A., DuVivier, A., Hughes, M., Lettenmaier, D. P., Maslowski, W., Osinski, R., Roberts, A., and Zeng, X. B.:
Land Surface Climate in the Regional Arctic System Model,
J. Climate,
29, 6543–6562, https://doi.org/10.1175/Jcli-D-15-0415.1, 2016.
Hamman, J., Nijssen, B., Roberts, A., Craig, A., Maslowski, W., and Osinski, R.:
The coastal streamflow flux in the Regional Arctic System Model,
J. Geophys. Res.-Oceans,
122, 1683–1701, https://doi.org/10.1002/2016jc012323, 2017a.
Hamman, J., Nijssen, B., Bohn, T., Franssen, W., Yixinmao, and Gergel, D.: UW-Hydro/VIC: VIC 5.0.1 (Version VIC.5.0.1), Zenodo, https://doi.org/10.5281/zenodo.267178, 2017b.
Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility, Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, 2018.
Hanasaki, N., Kanae, S., and Oki, T.:
A reservoir operation scheme for global river routing models,
J. Hydrol.,
327, 22–41, https://doi.org/10.1016/j.jhydrol.2005.11.011, 2006.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027–1037, https://doi.org/10.5194/hess-12-1027-2008, 2008a.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2008b.
Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., and Kanae, S.: A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use, Hydrol. Earth Syst. Sci., 17, 2375–2391, https://doi.org/10.5194/hess-17-2375-2013, 2013.
Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi.org/10.5194/hess-22-789-2018, 2018.
Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R.:
Global land cover classification at 1km spatial resolution using a classification tree approach,
Int. J. Remote Sens.,
21, 1331–1364, https://doi.org/10.1080/014311600210209, 2000.
Harding, R., Best, M., Blyth, E., Hagemann, S., Kabat, P., Tallaksen, L. M., Warnaars, T., Wiberg, D., Weedon, G. P., van Lanen, H., Ludwig, F., and Haddeland, I.:
WATCH: Current Knowledge of the Terrestrial Global Water Cycle,
J. Hydrometeorol.,
12, 1149–1156, https://doi.org/10.1175/jhm-d-11-024.1, 2011.
Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., Calvin, K., Moss, R., and Kim, S.:
Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework,
Technol. Forecast. Soc.,
81, 205–226, https://doi.org/10.1016/j.techfore.2013.05.006, 2014.
Huang, Z., Hejazi, M., Li, X., Tang, Q., Vernon, C., Leng, G., Liu, Y., Döll, P., Eisner, S., Gerten, D., Hanasaki, N., and Wada, Y.: Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns, Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, 2018.
Jägermeyr, J., Pastor, A., Biemans, H., and Gerten, D.:
Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation,
Nat. Commun.,
8, 15900, https://doi.org/10.1038/ncomms15900, 2017.
Kim, S. H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Patel, P., Wise, M., and Davies, E.:
Balancing global water availability and use at basin scale in an integrated assessment model,
Climatic Change,
136, 217–231, https://doi.org/10.1007/s10584-016-1604-6, 2016.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Konikow, L. F.:
Contribution of global groundwater depletion since 1900 to sea-level rise,
Geophys. Res. Lett.,
38, L17401, https://doi.org/10.1029/2011gl048604, 2011.
Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.:
A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system,
Global Biogeochem. Cy.,
19, GB1015, https://doi.org/10.1029/2003gb002199, 2005.
Lehner, B., Liermann, C. R., Revenga, C., Vorosmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rodel, R., Sindorf, N., and Wisser, D.:
High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management,
Front. Ecol. Environ.,
9, 494–502, https://doi.org/10.1890/100125, 2011.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.:
A Simple Hydrologically Based Model of Land-Surface Water and Energy Fluxes for General-Circulation Models,
J. Geophys. Res.-Atmos.,
99, 14415–14428, https://doi.org/10.1029/94jd00483, 1994.
Lohmann, D., NolteHolube, R., and Raschke, E.:
A large-scale horizontal routing model to be coupled to land surface parametrization schemes,
Tellus A,
48, 708–721, https://doi.org/10.1034/j.1600-0870.1996.t01-3-00009.x, 1996.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.:
Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany,
Hydrolog. Sci. J.,
43, 143–158, https://doi.org/10.1080/02626669809492108, 1998a.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.:
Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model,
Hydrolog. Sci. J.,
43, 131–141, https://doi.org/10.1080/02626669809492107, 1998b.
Long, D., Yang, Y., Wada, Y., Hong, Y., Liang, W., Chen, Y., Yong, B., Hou, A., Wei, J., and Chen, L.:
Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin,
Remote Sens. Environ.,
168, 177–193, https://doi.org/10.1016/j.rse.2015.07.003, 2015.
Masaki, Y., Hanasaki, N., Takahashi, K., and Hijioka, Y.:
Consequences of implementing a reservoir operation algorithm in a global hydrological model under multiple meteorological forcing,
Hydrolog. Sci. J.,
63, 1047–1061, https://doi.org/10.1080/02626667.2018.1473872, 2018.
Mekonnen, M. M. and Hoekstra, A. Y.:
Four billion people facing severe water scarcity,
Sci. Adv.,
2, e1500323, https://doi.org/10.1126/sciadv.1500323, 2016.
Mo, K. C.:
Model-Based Drought Indices over the United States,
J. Hydrometeorol.,
9, 1212–1230, https://doi.org/10.1175/2008jhm1002.1, 2008.
Myneni, R. B., Nemani, R. R., and Running, S. W.:
Estimation of global leaf area index and absorbed par using radiative transfer models,
IEEE T. Geosci. Remote,
35, 1380–1393, https://doi.org/10.1109/36.649788, 1997.
NASA: GRACE, National Aeronautics and Space Administration, available at: https://grace.jpl.nasa.gov (last access: September 2019), 2002.
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling, Hydrol. Earth Syst. Sci., 19, 63–90, https://doi.org/10.5194/hess-19-63-2015, 2015a.
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand, Hydrol. Earth Syst. Sci., 19, 33–61, https://doi.org/10.5194/hess-19-33-2015, 2015b.
Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E. F.:
Streamflow simulation for continental-scale river basins,
Water Resour. Res.,
33, 711–724, https://doi.org/10.1029/96wr03517, 1997.
Nijssen, B., O'Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.:
Hydrologic sensitivity of global rivers to climate change,
Climatic Change,
50, 143–175, https://doi.org/10.1023/A:1010616428763, 2001a.
Nijssen, B., O'Donnell, G. M., Lettenmaier, D. P., Lohmann, D., and Wood, E. F.:
Predicting the discharge of global rivers,
J. Climate,
14, 3307–3323, https://doi.org/10.1175/1520-0442(2001)014<3307:Ptdogr>2.0.Co;2, 2001b.
Nijssen, B., Schnur, R., and Lettenmaier, D. P.:
Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93,
J. Climate,
14, 1790–1808, https://doi.org/10.1175/1520-0442(2001)014<1790:Greosm>2.0.Co;2, 2001c.
Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C.:
Fragmentation and flow regulation of the world's large river systems,
Science,
308, 405–408, https://doi.org/10.1126/science.1107887, 2005.
Oki, T. and Kanae, S.:
Global hydrological cycles and world water resources,
Science,
313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Oki, T., Musiake, K., Matsuyama, H., and Masuda, K.:
Global Atmospheric Water-Balance and Runoff from Large River Basins,
Hydrol. Process.,
9, 655–678, https://doi.org/10.1002/hyp.3360090513, 1995.
Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H., and Kabat, P.: Accounting for environmental flow requirements in global water assessments, Hydrol. Earth Syst. Sci., 18, 5041–5059, https://doi.org/10.5194/hess-18-5041-2014, 2014.
Pastor, A. V., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., Kabat, P., and Ludwig, F.:
The global nexus of food–trade–water sustaining environmental flows by 2050,
Nature Sustainability,
2, 499–507, https://doi.org/10.1038/s41893-019-0287-1, 2019.
Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J., Kendy, E., Acreman, M., Apse, C., Bledsoe, B. P., Freeman, M. C., Henriksen, J., Jacobson, R. B., Kennen, J. G., Merritt, D. M., O'Keeffe, J. H., Olden, J. D., Rogers, K., Tharme, R. E., and Warner, A.:
The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards,
Freshwater Biol.,
55, 147–170, https://doi.org/10.1111/j.1365-2427.2009.02204.x, 2010.
Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J.-F., Kim, H., Kanae, S., and Oki, T.:
Incorporating Anthropogenic Water Regulation Modules into a Land Surface Model,
J. Hydrometeorol.,
13, 255–269, https://doi.org/10.1175/jhm-d-11-013.1, 2012.
Pokhrel, Y. N., Koirala, S., Yeh, P. J.-F., Hanasaki, N., Longuevergne, L., Kanae, S., and Oki, T.:
Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts,
Water Resour. Res.,
51, 78–96, https://doi.org/10.1002/2014wr015602, 2015.
Pokhrel, Y. N., Hanasaki, N., Wada, Y., and Kim, H.:
Recent progresses in incorporating human land-water management into global land surface models toward their integration into Earth system models,
WIREs Water,
3, 548–574, https://doi.org/10.1002/wat2.1150, 2016.
Portmann, F. T., Siebert, S., and Döll, P.:
MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling,
Global Biogeochem. Cy.,
24, GB1011, https://doi.org/10.1029/2008gb003435, 2010.
Postel, S. L., Daily, G. C., and Ehrlich, P. R.:
Human appropriation of renewable fresh water,
Science,
271, 785–788, https://doi.org/10.1126/science.271.5250.785, 1996.
Reed, B. and Reed, B.:
How much water is needed in emergencies,
Water, Engineering and Development Centre, Leicestershire, 2013.
Richter, B. D., Davis, M. M., Apse, C., and Konrad, C.:
A Presumptive Standard for Environmental Flow Protection,
River Res. Appl.,
28, 1312–1321, https://doi.org/10.1002/rra.1511, 2012.
Rodell, M., Velicogna, I., and Famiglietti, J. S.:
Satellite-based estimates of groundwater depletion in India,
Nature,
460, 999-U980, https://doi.org/10.1038/nature08238, 2009.
Roman, M. O., Wang, Z. S., Sun, Q. S., Kalb, V., Miller, S. D., Molthan, A., Schultz, L., Bell, J., Stokes, E. C., Pandey, B., Seto, K. C., Hall, D., Oda, T., Wolfe, R. E., Lin, G., Golpayegani, N., Devadiga, S., Davidson, C., Sarkar, S., Praderas, C., Schmaltz, J., Boller, R., Stevens, J., Gonzalez, O. M. R., Padilla, E., Alonso, J., Detres, Y., Armstrong, R., Miranda, I., Conte, Y., Marrero, N., MacManus, K., Esch, T., and Masuoka, E. J.:
NASA's Black Marble nighttime lights product suite,
Remote Sens. Environ.,
210, 113–143, https://doi.org/10.1016/j.rse.2018.03.017, 2018.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.:
Agricultural green and blue water consumption and its influence on the global water system,
Water Resour. Res.,
44, W09405, https://doi.org/10.1029/2007wr006331, 2008.
Rougé, C., Reed, P. M., Grogan, D. S., Zuidema, S., Prusevich, A., Glidden, S., Lamontagne, J. R., and Lammers, R. B.: Coordination and Control: Limits in Standard Representations of Multi-Reservoir Operations in Hydrological Modeling, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-589, in review, 2019.
Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A., and Randall, D. A.:
A Global 1∘ by 1∘ NDVI Data Set for Climate Studies. Part 2. The Generation of Global Fields of Terrestrial Biophysical Parameters from the NDVI,
Int. J. Remote Sens.,
15, 3519–3545, https://doi.org/10.1080/01431169408954343, 1994.
Shen, Y., Oki, T., Utsumi, N., Kanae, S., and Hanasaki, N.:
Projection of future world water resources under SRES scenarios: water withdrawal/Projection des ressources en eau mondiales futures selon les scénarios du RSSE: prélèvement d'eau,
Hydrolog. Sci. J.,
53, 11–33, https://doi.org/10.1080/02626667.2013.862338, 2008.
Shiklomanov, I. A.:
Appraisal and assessment of world water resources,
Water Int.,
25, 11–32, https://doi.org/10.1080/02508060008686794, 2000.
Shuttleworth, W. J.:
Evaporation, in: Handbook of Hydrology,
edited by: Maidment, D. R., McGraw-Hill, New York, 98–144, 1993.
Smakhtin, V., Revenga, C., and Döll, P.:
A pilot global assessment of environmental water requirements and scarcity,
Water Int.,
29, 307–317, https://doi.org/10.1080/02508060408691785, 2004.
Smith, M.:
CROPWAT: A computer program for irrigation planning and management, FAO irrigation and drainage paper,
Food and Agricultural Organisation, Rome, Italy, 127 pp., 1996.
Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., Rosales, M., and De Haan, C.:
Livestock's long shadow: environmental issues and options,
Food and Agricultural Organisation, Rome, Italy, 416 pp., 2006.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Takata, K., Emori, S., and Watanabe, T.:
Development of the minimal advanced treatments of surface interaction and runoff,
Global Planet. Change,
38, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003.
Tessler, Z. D., Vorosmarty, C. J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski, J. P. M., and Foufoula-Georgiou, E.:
Profiling risk and sustainability in coastal deltas of the world,
Science,
349, 638–643, https://doi.org/10.1126/science.aab3574, 2015.
Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H., and Kyle, P.:
Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals Over the Twenty-First Century,
Earths Future,
7, 123–135, https://doi.org/10.1029/2018ef001105, 2019.
van Beek, L. P. H., and Bierkens, M. F. P.: The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification, Departement of physical geography, Utrecht university, Utrecht, The Netherlands, 54 pp., 2009.
van Vliet, M. T. H., Wiberg, D., Leduc, S., and Riahi, K.: Power-generation system vulnerability and adaptation to changes in climate and water resources,
Nat. Clim. Change,
6, 375–380, https://doi.org/10.1038/Nclimate2903, 2016.
Vassolo, S. and Döll, P.:
Global-scale gridded estimates of thermoelectric power and manufacturing water use,
Water Resour. Res.,
41, W04010, https://doi.org/10.1029/2004wr003360, 2005.
Voisin, N., Li, H., Ward, D., Huang, M., Wigmosta, M., and Leung, L. R.: On an improved sub-regional water resources management representation for integration into earth system models, Hydrol. Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-3605-2013, 2013.
Voisin, N., Hejazi, M. I., Leung, L. R., Liu, L., Huang, M. Y., Li, H. Y., and Tesfa, T.: Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model,
Water Resour. Res.,
53, 4253–4270, https://doi.org/10.1002/2016wr019767, 2017.
Voisin, N., Kintner-Meyer, M., Wu, D., Skaggs, R., Fu, T., Zhou, T., Nguyen, T., and Kraucunas, I.:
Opportunities for Joint Water–Energy Management Sensitivity of the 2010 Western US Electricity Grid Operations to Climate Oscillations,
B. Am. Meteorol. Soc.,
99, 299–312, https://doi.org/10.1175/Bams-D-16-0253.1, 2018.
Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.:
Global threats to human water security and river biodiversity,
Nature,
467, 555–561, https://doi.org/10.1038/nature09440, 2010.
Voß, F. and Flörke, M.:
Spatially explicit estimates of past and present manufacturing and energy water use,
Center for Environmental Systems Research, Kassel, 16 pp., 2010.
Wada, Y. and Bierkens, M. F. P.:
Sustainability of global water use: past reconstruction and future projections,
Environ. Res. Lett.,
9, 104003, https://doi.org/10.1088/1748-9326/9/10/104003, 2014.
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability, Hydrol. Earth Syst. Sci., 15, 3785–3808, https://doi.org/10.5194/hess-15-3785-2011, 2011a.
Wada, Y., van Beek, L. P. H., Viviroli, D., Durr, H. H., Weingartner, R., and Bierkens, M. F. P.:
Global monthly water stress: 2. Water demand and severity of water stress,
Water Resour. Res.,
47, W07518, https://doi.org/10.1029/2010wr009792, 2011b.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.:
The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data,
Water Resour. Res.,
50, 7505–7514, https://doi.org/10.1002/2014wr015638, 2014.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010.
Wood, A. W. and Lettenmaier, D. P.:
A test bed for new seasonal hydrologic forecasting approaches in the western United States,
B. Am. Meteorol. Soc.,
87, 1699–1712, https://doi.org/10.1175/Bams-87-12-1699, 2006.
World Bank:
World bank development indicators, available at: https://databank.worldbank.org/source/world-development-indicators (last access: April 2019),
World Bank, 2010.
Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G., and Wheater, H.: Representation and improved parameterization of reservoir operation in hydrological and land-surface models, Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, 2019.
Zhao, G., Gao, H. L., Naz, B. S., Kao, S. C., and Voisin, N.:
Integrating a reservoir regulation scheme into a spatially distributed hydrological model,
Adv. Water Resour.,
98, 16–31, https://doi.org/10.1016/j.advwatres.2016.10.014, 2016.
Zhou, T., Haddeland, I., Nijssen, B., and Lettenmaier, D. P.:
Human induced changes in the global water cycle,
AGU Geophysical Monograph Series,
https://doi.org/10.1002/9781118971772.ch4, 2015.
Zhou, T., Nijssen, B., Gao, H. L., and Lettenmaier, D. P.:
The Contribution of Reservoirs to Global Land Surface Water Storage Variations,
J. Hydrometeorol.,
17, 309–325, https://doi.org/10.1175/Jhm-D-15-0002.1, 2016.
Zhou, T., Voisin, N., Leng, G. Y., Huang, M. Y., and Kraucunas, I.:
Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States,
J. Hydrometeorol.,
19, 499–515, https://doi.org/10.1175/Jhm-D-17-0095.1, 2018.
Zhu, C. M., Leung, L. R., Gochis, D., Qian, Y., and Lettenmaier, D. P.:
Evaluating the Influence of Antecedent Soil Moisture on Variability of the North American Monsoon Precipitation in the Coupled MM5/VIC Modeling System,
J. Adv. Model. Earth. Sy.,
1, 13, https://doi.org/10.3894/James.2009.1.13, 2009.
Short summary
Our study aims to include both both societal and natural water requirements and uses into a hydrological model in order to enable worldwide assessments of sustainable water use. The model was extended to include irrigation, domestic, industrial, energy, and livestock water uses as well as minimum flow requirements for natural systems. Initial results showed competition for water resources between society and nature, especially with respect to groundwater withdrawals.
Our study aims to include both both societal and natural water requirements and uses into a...