Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4595-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-13-4595-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)
Center for Ocean–Atmospheric Prediction Studies, Florida State
University, Tallahassee, FL, USA
Stephen G. Yeager
National Center for Atmospheric Research, Boulder, CO, USA
Baylor Fox-Kemper
Brown University, Providence, RI, USA
Alexandra Bozec
Center for Ocean–Atmospheric Prediction Studies, Florida State
University, Tallahassee, FL, USA
Frederic Castruccio
National Center for Atmospheric Research, Boulder, CO, USA
Gokhan Danabasoglu
National Center for Atmospheric Research, Boulder, CO, USA
Christopher Horvat
Brown University, Providence, RI, USA
Who M. Kim
National Center for Atmospheric Research, Boulder, CO, USA
Nikolay Koldunov
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung (AWI), Bremerhaven, Germany
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing, China
Pengfei Lin
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing, China
Hailong Liu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing, China
Dmitry V. Sein
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung (AWI), Bremerhaven, Germany
Shirshov Institute of Oceanology, Russian Academy of Science, Moscow, Russia
Dmitry Sidorenko
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung (AWI), Bremerhaven, Germany
Qiang Wang
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung (AWI), Bremerhaven, Germany
Xiaobiao Xu
Center for Ocean–Atmospheric Prediction Studies, Florida State
University, Tallahassee, FL, USA
Related authors
Ibrahim Hoteit, Eric Chassignet, and Mike Bell
State Planet, 5-opsr, 21, https://doi.org/10.5194/sp-5-opsr-21-2025, https://doi.org/10.5194/sp-5-opsr-21-2025, 2025
Short summary
Short summary
This paper explores how using multiple predictions instead of just one can improve ocean forecasts and help prepare for changes in ocean conditions. By combining different forecasts, scientists can better understand the uncertainty in predictions, leading to more reliable forecasts and better decision-making. This method is useful for responding to hazards like oil spills, improving climate forecasts, and supporting decision-making in fields like marine safety and resource management.
Marina Tonani, Eric Chassignet, Mauro Cirano, Yasumasa Miyazawa, and Begoña Pérez Gómez
State Planet, 5-opsr, 3, https://doi.org/10.5194/sp-5-opsr-3-2025, https://doi.org/10.5194/sp-5-opsr-3-2025, 2025
Short summary
Short summary
This article provides an overview of the main characteristics of ocean forecast systems covering a limited region of the ocean. Their main components are described, as well as the spatial and temporal scales they resolve. The oceanic variables that these systems are able to predict are also explained. An overview of the main forecasting systems currently in operation is also provided.
Yann Drillet, Matthew Martin, Yosuke Fujii, Eric Chassignet, and Stefania Ciliberti
State Planet, 5-opsr, 2, https://doi.org/10.5194/sp-5-opsr-2-2025, https://doi.org/10.5194/sp-5-opsr-2-2025, 2025
Short summary
Short summary
This article describes the various stages of research and development that have been carried out over the last few decades to produce an operational reference service for global ocean monitoring and forecasting.
Olmo Zavala-Romero, Alexandra Bozec, Eric P. Chassignet, and Jose R. Miranda
Ocean Sci., 21, 113–132, https://doi.org/10.5194/os-21-113-2025, https://doi.org/10.5194/os-21-113-2025, 2025
Short summary
Short summary
This study shows AI can speed up data assimilation in ocean models. Researchers used convolutional neural networks (CNNs) to assimilate sea surface temperature and height observations in the Gulf of Mexico, learning to replicate corrections made by traditional, computationally expensive methods. CNN design and training window size significantly impacted accuracy, but the percentage of ocean pixels did not. These findings suggest CNNs may accelerate data assimilation in realistic settings.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Kai Xu, Maoxue Yu, Jiangfeng Yu, Jingwei Xie, Xiang Han, Jiaying Song, Mingyao Geng, Jinrong Jiang, Hailong Liu, Pengfei Wang, and Pengfei Lin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2231, https://doi.org/10.5194/egusphere-2025-2231, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
swLICOM represents a significant advancement in kilometer-scale resolution ocean general circulation models on heterogeneous computing architectures. Our optimization efforts addressed a series of challenges that are particularly crucial for high-resolution modeling. We use swLICOM with a horizontal resolution of 2 km to conduct a short-term simulation test. The 2-km resolution global simulation shows the high capacity of swLICOM to capture the oceanic meso- to submesoscale processes.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Aikaterini Tavri, Chris Horvat, Brodie Pearson, Guillaume Boutin, Anne Hansen, and Ara Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-3438, https://doi.org/10.5194/egusphere-2025-3438, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In the Arctic, thin sea ice lets ocean waves travel into ice-covered areas. When waves, wind, and currents interact, they create Langmuir turbulence—strong mixing near the surface that helps move heat, gases, and nutrients between the ocean and air. Scientists understand this process in open water, but not well in polar regions. This study uses a new wave–ice model to find out where and how Langmuir turbulence affects ocean mixing in the Arctic.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Baylor Fox-Kemper, Patricia DeRepentigny, Anne Marie Treguier, Christian Stepanek, Eleanor O’Rourke, Chloe Mackallah, Alberto Meucci, Yevgeny Aksenov, Paul J. Durack, Nicole Feldl, Vanessa Hernaman, Céline Heuzé, Doroteaciro Iovino, Gaurav Madan, André L. Marquez, François Massonnet, Jenny Mecking, Dhrubajyoti Samanta, Patrick C. Taylor, Wan-Ling Tseng, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-3083, https://doi.org/10.5194/egusphere-2025-3083, 2025
Short summary
Short summary
The earth system model variables needed for studies of the ocean and sea ice are prioritized and requested.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Ibrahim Hoteit, Eric Chassignet, and Mike Bell
State Planet, 5-opsr, 21, https://doi.org/10.5194/sp-5-opsr-21-2025, https://doi.org/10.5194/sp-5-opsr-21-2025, 2025
Short summary
Short summary
This paper explores how using multiple predictions instead of just one can improve ocean forecasts and help prepare for changes in ocean conditions. By combining different forecasts, scientists can better understand the uncertainty in predictions, leading to more reliable forecasts and better decision-making. This method is useful for responding to hazards like oil spills, improving climate forecasts, and supporting decision-making in fields like marine safety and resource management.
Marina Tonani, Eric Chassignet, Mauro Cirano, Yasumasa Miyazawa, and Begoña Pérez Gómez
State Planet, 5-opsr, 3, https://doi.org/10.5194/sp-5-opsr-3-2025, https://doi.org/10.5194/sp-5-opsr-3-2025, 2025
Short summary
Short summary
This article provides an overview of the main characteristics of ocean forecast systems covering a limited region of the ocean. Their main components are described, as well as the spatial and temporal scales they resolve. The oceanic variables that these systems are able to predict are also explained. An overview of the main forecasting systems currently in operation is also provided.
Yann Drillet, Matthew Martin, Yosuke Fujii, Eric Chassignet, and Stefania Ciliberti
State Planet, 5-opsr, 2, https://doi.org/10.5194/sp-5-opsr-2-2025, https://doi.org/10.5194/sp-5-opsr-2-2025, 2025
Short summary
Short summary
This article describes the various stages of research and development that have been carried out over the last few decades to produce an operational reference service for global ocean monitoring and forecasting.
Fernanda DI Alzira Oliveira Matos, Dmitry Sidorenko, Xiaoxu Shi, Lars Ackermann, Janini Pereira, Gerrit Lohmann, and Christian Stepanek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2326, https://doi.org/10.5194/egusphere-2025-2326, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is responsible for about 25 % of the poleward ocean heat transport. Currently, the AMOC strength is mostly calculated in depth space (z-AMOC). However, we argue that, in warmer climates, the AMOC should be calculated in density space (ρ-AMOC). We performed simulations with CO2 forcing of 280 ppmv (PI) and 1120 ppmv of (4xCO2) and find that ρ-AMOC provides more physical and meaningful information about the AMOC in warmer climates.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Carmine Donatelli, Christopher M. Little, Rui M. Ponte, and Stephen G. Yeager
EGUsphere, https://doi.org/10.5194/egusphere-2025-1571, https://doi.org/10.5194/egusphere-2025-1571, 2025
Short summary
Short summary
Assessing the spatiotemporal properties of intrinsic sea level variability is vital to improving predictions of coastal sea level changes. Here, we examined intrinsic sea level variability along the Southeast United States coast, an area of high and increasing societal vulnerability to sea level change, using numerical modeling. Our findings reveal that intrinsic coastal sea level variability is not negligible as previously thought and may exhibit predictability despite its chaotic nature.
Peter Van Katwyk, Baylor Fox-Kemper, Sophie Nowicki, Hélène Seroussi, and Karianne J. Bergen
EGUsphere, https://doi.org/10.5194/egusphere-2025-870, https://doi.org/10.5194/egusphere-2025-870, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present ISEFlow, a machine learning emulator that predicts how the melting of the Antarctic and Greenland ice sheets will contribute to sea level. ISEFlow is fast and accurate, allowing scientists to explore different climate scenarios with greater confidence. ISEFlow distinguishes between high and low emissions scenarios, helping us understand how today’s choices impact future sea levels. ISEFlow supports more reliable climate predictions and helps scientists study the future of ice sheets.
Fan Yang, Jiahui Bai, Hailong Liu, Weihang Zhang, Yi Wu, Shuhao Liu, Chunxiang Shi, Tao Zhang, Min Zhong, Zitong Zhu, Changqing Wang, Ehsan Forootan, Jiangfeng Yu, Zipeng Yu, and Yun Xiao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-81, https://doi.org/10.5194/essd-2025-81, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We introduce China’s first de-aliasing computation platform, incorporating China’s Atmospheric Reanalysis and an in-house ocean circulation model. This platform produces CRA-LICOM, a high-frequency atmospheric and oceanic gravity de-aliasing product with a 6-hourly, 50 km resolution covering 2002–2024 globally. This product is reliable for de-aliasing, signal separation in satellite gravity missions, and climate change studies.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025, https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
Short summary
Vertical mixing is an important process, for example, for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes with different parameter settings in two different ocean models and show that most effects from mixing scheme parameter changes are model-dependent.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Olmo Zavala-Romero, Alexandra Bozec, Eric P. Chassignet, and Jose R. Miranda
Ocean Sci., 21, 113–132, https://doi.org/10.5194/os-21-113-2025, https://doi.org/10.5194/os-21-113-2025, 2025
Short summary
Short summary
This study shows AI can speed up data assimilation in ocean models. Researchers used convolutional neural networks (CNNs) to assimilate sea surface temperature and height observations in the Gulf of Mexico, learning to replicate corrections made by traditional, computationally expensive methods. CNN design and training window size significantly impacted accuracy, but the percentage of ocean pixels did not. These findings suggest CNNs may accelerate data assimilation in realistic settings.
Hendrik Großelindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
Ocean Sci., 21, 93–112, https://doi.org/10.5194/os-21-93-2025, https://doi.org/10.5194/os-21-93-2025, 2025
Short summary
Short summary
This study investigates the Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution Earth system model and a preindustrial climate to look at the response of the Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) and its evolution under climate change. The Agulhas Leakage could influence the stability of the AMOC, whose possible collapse would impact the climate in the Northern Hemisphere.
Christopher Horvat, Ellen M. Buckley, and Madelyn Stewart
EGUsphere, https://doi.org/10.5194/egusphere-2024-3864, https://doi.org/10.5194/egusphere-2024-3864, 2025
Short summary
Short summary
Since the late 1970s, standard methods for observing sea ice area from satellite contrast its passive microwave emissions to that of the ocean. Since 2018, a new satellite, ICESat-2, may offer a unique and independent way to sample sea ice area at high skill and resolution, using laser altimetry. We develop a new product of sea ice area for the Arctic using ICESat-2 and constrain the biases associated with the use of altimetry instead of passive microwave emissions.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Ellen M. Buckley, Christopher Horvat, and Pittayuth Yoosiri
EGUsphere, https://doi.org/10.5194/egusphere-2024-3861, https://doi.org/10.5194/egusphere-2024-3861, 2024
Short summary
Short summary
Sea ice coverage is a key indicator of changes in polar and global climate. There is a long (40+ year) record of sea ice concentration and area from passive microwave measurements. In this work we show the biases in these data based on high resolution imagery. We also suggest the use of ICESat-2, a high resolution satellite laser, that can supplement the passive microwave estimates.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Shunya Koseki, Rubén Vázquez, William Cabos, Claudia Gutiérrez, Dmitry V. Sein, and Marie-Lou Bachèlery
Earth Syst. Dynam., 15, 1401–1416, https://doi.org/10.5194/esd-15-1401-2024, https://doi.org/10.5194/esd-15-1401-2024, 2024
Short summary
Short summary
Using a high-resolution regionally coupled model, we suggest that Dakar Niño variability will be reinforced under the Representative Concentration Pathway (RCP) 8.5 scenario. This may be induced by intensified surface heat flux anomalies and, secondarily, by anomalies in horizontal and vertical advection. Increased sea surface temperature (SST) variability can be associated with stronger wind variability, attributed to amplified surface temperature anomalies between ocean and land.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Xiaoyu Fan, Baylor Fox-Kemper, Nobuhiro Suzuki, Qing Li, Patrick Marchesiello, Peter P. Sullivan, and Paul S. Hall
Geosci. Model Dev., 17, 4095–4113, https://doi.org/10.5194/gmd-17-4095-2024, https://doi.org/10.5194/gmd-17-4095-2024, 2024
Short summary
Short summary
Simulations of the oceanic turbulent boundary layer using the nonhydrostatic CROCO ROMS and NCAR-LES models are compared. CROCO and the NCAR-LES are accurate in a similar manner, but CROCO’s additional features (e.g., nesting and realism) and its compressible turbulence formulation carry additional costs.
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
Sergey Danilov, Carolin Mehlmann, Dmitry Sidorenko, and Qiang Wang
Geosci. Model Dev., 17, 2287–2297, https://doi.org/10.5194/gmd-17-2287-2024, https://doi.org/10.5194/gmd-17-2287-2024, 2024
Short summary
Short summary
Sea ice models are a necessary component of climate models. At very high resolution they are capable of simulating linear kinematic features, such as leads, which are important for better prediction of heat exchanges between the ocean and atmosphere. Two new discretizations are described which improve the sea ice component of the Finite volumE Sea ice–Ocean Model (FESOM version 2) by allowing simulations of finer scales.
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024, https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary
Short summary
Sea ice is heavily impacted by waves on its margins, and we currently do not have routine observations of waves in sea ice. Here we propose two methods to separate the surface waves from the sea-ice height observations along each ICESat-2 track using machine learning. Both methods together allow us to follow changes in the wave height through the sea ice.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere, 17, 3575–3591, https://doi.org/10.5194/tc-17-3575-2023, https://doi.org/10.5194/tc-17-3575-2023, 2023
Short summary
Short summary
Sea ice is composed of small, discrete pieces of ice called floes, whose size distribution plays a critical role in the interactions between the sea ice, ocean and atmosphere. This study provides an assessment of sea ice models using new high-resolution floe size distribution observations, revealing considerable differences between them. These findings point not only to the limitations in models but also to the need for more high-resolution observations to validate and calibrate models.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Iván M. Parras-Berrocal, Rubén Vázquez, William Cabos, Dimitry V. Sein, Oscar Álvarez, Miguel Bruno, and Alfredo Izquierdo
Ocean Sci., 19, 941–952, https://doi.org/10.5194/os-19-941-2023, https://doi.org/10.5194/os-19-941-2023, 2023
Short summary
Short summary
Global warming may strongly affect dense water formation in the eastern Mediterranean, potentially impacting basin circulation and water properties. We find that at the end of the century dense water formation is reduced by 75 % for the Adriatic, 84 % for the Aegean, and 83 % for the Levantine Sea. This reduction is caused by changes in the temperature and salinity of surface and intermediate waters, which strengthen the vertical stratification, hampering deep convection.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Pengyang Song, Dmitry Sidorenko, Patrick Scholz, Maik Thomas, and Gerrit Lohmann
Geosci. Model Dev., 16, 383–405, https://doi.org/10.5194/gmd-16-383-2023, https://doi.org/10.5194/gmd-16-383-2023, 2023
Short summary
Short summary
Tides have essential effects on the ocean and climate. Most previous research applies parameterised tidal mixing to discuss their effects in models. By comparing the effect of a tidal mixing parameterisation and tidal forcing on the ocean state, we assess the advantages and disadvantages of the two methods. Our results show that tidal mixing in the North Pacific Ocean strongly affects the global thermohaline circulation. We also list some effects that are not considered in the parameterisation.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Gustavo M. Marques, Nora Loose, Elizabeth Yankovsky, Jacob M. Steinberg, Chiung-Yin Chang, Neeraja Bhamidipati, Alistair Adcroft, Baylor Fox-Kemper, Stephen M. Griffies, Robert W. Hallberg, Malte F. Jansen, Hemant Khatri, and Laure Zanna
Geosci. Model Dev., 15, 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022, https://doi.org/10.5194/gmd-15-6567-2022, 2022
Short summary
Short summary
We present an idealized ocean model configuration and a set of simulations performed using varying horizontal grid spacing. While the model domain is idealized, it resembles important geometric features of the Atlantic and Southern oceans. The simulations described here serve as a framework to effectively study mesoscale eddy dynamics, to investigate the effect of mesoscale eddies on the large-scale dynamics, and to test and evaluate eddy parameterizations.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
Alba de la Vara, Iván M. Parras-Berrocal, Alfredo Izquierdo, Dmitry V. Sein, and William Cabos
Earth Syst. Dynam., 13, 303–319, https://doi.org/10.5194/esd-13-303-2022, https://doi.org/10.5194/esd-13-303-2022, 2022
Short summary
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, https://doi.org/10.5194/gmd-15-803-2022, 2022
Short summary
Short summary
Sea ice is a composite of individual pieces, called floes, ranging in horizontal size from meters to kilometers. Variations in sea ice geometry are often forced by ocean waves, a process that is an important target of global climate models as it affects the rate of sea ice melting. Yet directly simulating these interactions is computationally expensive. We present a neural-network-based model of wave–ice fracture that allows models to incorporate their effect without added computational cost.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021, https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Short summary
Using simulations, we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such a lasting impact might become stronger in a warming climate and implies the importance of ocean initialization in sea ice prediction.
Pengfei Wang, Jinrong Jiang, Pengfei Lin, Mengrong Ding, Junlin Wei, Feng Zhang, Lian Zhao, Yiwen Li, Zipeng Yu, Weipeng Zheng, Yongqiang Yu, Xuebin Chi, and Hailong Liu
Geosci. Model Dev., 14, 2781–2799, https://doi.org/10.5194/gmd-14-2781-2021, https://doi.org/10.5194/gmd-14-2781-2021, 2021
Short summary
Short summary
Global ocean general circulation models are a fundamental tool for oceanography research, ocean forecast, and climate change research. The increasing resolution will greatly improve simulations of the models, but it also demands much more computing resources. In this study, we have ported an ocean general circulation model to a heterogeneous computing system and have developed a 3–5 km model version. A 14-year integration has been conducted and the preliminary results have been evaluated.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Tingfeng Dou, Cunde Xiao, Jiping Liu, Qiang Wang, Shifeng Pan, Jie Su, Xiaojun Yuan, Minghu Ding, Feng Zhang, Kai Xue, Peter A. Bieniek, and Hajo Eicken
The Cryosphere, 15, 883–895, https://doi.org/10.5194/tc-15-883-2021, https://doi.org/10.5194/tc-15-883-2021, 2021
Short summary
Short summary
Rain-on-snow (ROS) events can accelerate the surface ablation of sea ice, greatly influencing the ice–albedo feedback. We found that spring ROS events have shifted to earlier dates over the Arctic Ocean in recent decades, which is correlated with sea ice melt onset in the Pacific sector and most Eurasian marginal seas. There has been a clear transition from solid to liquid precipitation, leading to a reduction in spring snow depth on sea ice by more than −0.5 cm per decade since the 1980s.
Claudia Wekerle, Tore Hattermann, Qiang Wang, Laura Crews, Wilken-Jon von Appen, and Sergey Danilov
Ocean Sci., 16, 1225–1246, https://doi.org/10.5194/os-16-1225-2020, https://doi.org/10.5194/os-16-1225-2020, 2020
Short summary
Short summary
The high-resolution ocean models ROMS and FESOM configured for the Fram Strait reveal very energetic ocean conditions there. The two main currents meander strongly and shed circular currents of water, called eddies. Our analysis shows that this region is characterised by small and short-lived eddies (on average around a 5 km radius and 10 d lifetime). Both models agree on eddy properties and show similar patterns of baroclinic and barotropic instability of the West Spitsbergen Current.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Cited articles
Ajayi, A., Le Sommer, J., Chassignet, E., Molines, J.-M., Xu, X., Albert, A.,
and Cosme, E.: Spatial and temporal variability of the North Atlantic eddy
field from two kilometric-resolution ocean models, J. Geophy. Res.-Oceans,
125, e2019JC015827, https://doi.org/10.1029/2019JC015827, 2020.
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M.,
van den Broeke, M. R., and Noel, B.: Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results, J. Geophys. Res.-Oceans, 123, 1827–1837, https://doi.org/10.1002/2017JC013605, 2018.
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.:
Recent large increases in freshwater fluxes from Greenland into the North
Atlantic, Geophys. Res. Lett., 39, L19501, https://doi.org/10.1029/2012GL052552, 2012.
Banzon, V. F., Reynolds, R. W., Stokes, D., and Xue, Y.: A 1/4∘
spatial-resolution daily sea surface temperature climatology
based on a blended satellite and in situ analysis, J. Climate, 27, 8221–8228,
https://doi.org/10.1175/JCLI-D-14-00293.1, 2014.
Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y., Wu, G., He, B., He, J., Li, L.,
Li, J., Li, Y., Liu, H., Qiao, F., Song, Z., Wang, B., Wang, J., Wang, P.,
Wang, X., Wang, Z., Wu, B., Wu, T., Xu, Y., Yu, H., Zhao, W., Zheng, W., and
Zhou, L.: The Flexible Global Ocean-Atmosphere-Land system model, Spectral
Version 2: FGOALS-s2, Adv. Atmos. Sci., 30, 561–576,
https://doi.org/10.1007/s00376-012-2113-9, 2013.
Baringer, M. O. and Garzoli, S. L.: Meridional heat transport determined
with expendable bathythermographs-Part I: Error estimates from model and
hydrographic data, Deep-Sea Res. Pt. I, 54, 1390–1401,
https://doi.org/10.1016/j.dsr.2007.03.011, 2007.
Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K., and Aksenov, Y.: Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice, The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, 2020.
Bleck, R.: An oceanic general circulation model framed in hybrid
isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88,
https://doi.org/10.1016/S1463-5003(01)00012-9, 2002.
Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A., and Funk, A.:
Decadal variability of subpolar gyre transport and its reverberation in the
North Atlantic overturning, Geophys. Res. Lett., 33, L21S01,
https://doi.org/10.1029/2006GL026906, 2006.
Bryan, F. O., Tomas, R., Dennis, J. M., Chelton, D. B., Loeb, N. G., and
McClean, J. L.: Frontal Scale Air–Sea Interaction in High-Resolution
Coupled Climate Models, J. Climate, 23, 6277–6291,
https://doi.org/10.1175/2010JCLI3665.1, 2010.
Callies, J., Flierl, G., Ferrari, R., and Fox-Kemper, B.: The role of
mixed-layer instabilities in submesoscale turbulence, J. Fluid Mech., 788,
5–41, https://doi.org/10.1017/jfm.2015.700, 2016.
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S.: Ocean turbulence.
Part I: One-point closure model–momentum and heat vertical diffusivities,
J. Phys. Oceanogr., 31, 1413–1426,
https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2,
2001.
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S.: Ocean turbulence.
Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive
scalars, J. Phys. Oceanogr., 32, 240–264,
https://doi.org/10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2,
2002.
Carnes, M., Helber, R. W., Barron, C. N., and Dastugue, J. M.: Validation test report for GDEM4, Technical Report NRL, Stennis, MS, 66 pp., 2010.
Chassignet, E. P., Smith, L. T., Halliwell, G. R., and Bleck, R.: North
Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact
of the vertical coordinate choice, reference pressure, and thermobaricity,
J. Phys. Oceanogr., 33, 2504–2526,
https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2,
2003.
Chassignet, E. P. and Marshall, D. P.: Gulf Stream separation in numerical
ocean models, in: Geophysical Monograph Series, 177, 39–61, 2008.
Chassignet, E. P. and Xu, X.: Impact of horizontal resolution
(1/12∘ to 1/50∘) on Gulf Stream separation,
penetration, and variability, J. Phys. Oceanogr., 47, 1999–2021,
https://doi.org/10.1175/JPO-D-17-0031.1, 2017.
Chassignet, E. P., Yeager, S. G., Fox-Kemper, B., Bozec, A., Castruccio, F.,
Danabasoglu, G., Kim, W. M., Koldunov, N., Li, Y., Lin, P., Liu, H., Sein,
D., Sidorenko, D., Wang, Q., and Xu, X.: Impact of horizontal resolution on
the energetics of global ocean-sea-ice model simulations, CLIVAR
Variations/Exchanges, 18, 23–30, https://doi.org/10.5065/g8w0-fy32, 2020a.
Chassignet, E. P., Yeager, S. G., Fox-Kemper, B., Bozec, A., Castruccio,
F., Danabasoglu, G., Kim, W. M., Koldunov, N., Li, Y.,
Lin, P., Liu, H., Sein, D., Sidorenko, D., Wang, Q., and Xu, X.: Impact of horizontal resolution on global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2) (Version v2.0) [Data set], Geoscientific Model Development, Zenodo, https://doi.org/10.5281/zenodo.3934822, 2020b.
Chidichimo, M. P., Donohue, K. A., Watts, D. R., and Tracey, K. L.:
Baroclinic transport time series of the Antarctic Circumpolar Current
measured in Drake Passage, J. Phys. Oceanogr., 44, 1829–1853,
https://doi.org/10.1175/JPO-D-13-071.1, 2014.
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for
earth system modeling developed for CCSM4 and CESM1, Int. J. High Perform.
Comput. Appl., 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.
Cunningham, S. A.: Transport and variability of the Antarctic Circumpolar
Current in Drake Passage, J. Geophys. Res., 108, 8084,
https://doi.org/10.1029/2001JC001147, 2003.
Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M.,
Large, W. G., Peacock, S., and Yeager, S. G.: The CCSM4 Ocean Component, J. Climate, 25, 1361–1389, https://doi.org/10.1175/JCLI-D-11-00091.1, 2012.
Danabasoglu, G., Ferrari, R., and McWilliams, J. C.: Sensitivity of an ocean
general circulation model to a parameterization of near-surface eddy fluxes,
J. Climate, 21, 1192–1208, https://doi.org/10.1175/2007JCLI1508.1, 2008.
Danabasoglu, G., Large, W. G., and Briegleb, B. P.: Climate impacts of
parameterized Nordic Sea overflows, J. Geophys. Res., 115, C11005,
https://doi.org/10.1029/2010JC006243, 2010.
Danabasoglu, G. and Marshall, J.: Effects of vertical variations of
thickness diffusivity in an ocean general circulation model, Ocean Model.,
18, 122–141, https://doi.org/10.1016/j.ocemod.2007.03.006, 2007.
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi,
D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Cassou, C.,
Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H.,
Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies,
S. M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W.
G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S.,
Navarra, A., George Nurser, A. J., Pirani, A., y Mélia, D. S., Samuels,
B. L., Scheinert, M., Sidorenko, D., Treguier, A. M., Tsujino, H., Uotila,
P., Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic simulations in
Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean
states, Ocean Model., 73, 76–107, https://doi.org/10.1016/j.ocemod.2013.10.005, 2014.
Danabasoglu, G., Yeager, S. G., Kim, W. M., Behrens, E., Bentsen, M., Bi,
D., Biastoch, A., Bleck, R., Böning, C., Bozec, A., Canuto, V. M.,
Cassou, C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange,
H., Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y.,
Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Ilicak, M., Jung, T.,
Karspeck, A. R., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec,
G., Marsland, S. J., Masina, S., Navarra, A., Nurser, A. J. G., Pirani, A.,
Romanou, A., David, S. y. M., Samuels, B. L., Scheinert, M., Sidorenko, D.,
Sun, S., Treguier, A. M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A.,
Wang, Q., and Yashayaev, I.: North Atlantic simulations in Coordinated
Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to
decadal variability, Ocean Model., 97, 65–90,
https://doi.org/10.1016/j.ocemod.2015.11.007, 2016.
Danabasoglu, G., Lamarque, J. -F., Bachmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kember, B., Kay, J. E., Kinnison, D., Kushner, P. J., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model version 2 (CESM2), J. Adv. Model. Earth Sys., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
Danilov, S., Wang, Q., Timmermann, R., Iakovlev, N., Sidorenko, D., Kimmritz, M., Jung, T., and Schröter, J.: Finite-Element Sea Ice Model (FESIM), version 2, Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015, 2015.
Danilov, S., Kivman, G., and Schröter, J.: A finite-element ocean model:
Principles and evaluation, Ocean Model., 6, 125–150,
https://doi.org/10.1016/S1463-5003(02)00063-X, 2004.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., Van Den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013.
Dong, S., Baringer, M. O., Goni, G. J., Meinen, C. S., and Garzoli, S. L.:
Seasonal variations in the South Atlantic Meridional Overturning Circulation
from observations and numerical models, Geophys. Res. Lett., 41,
4611–4618, https://doi.org/10.1002/2014GL060428, 2014.
Dong, S., Garzoli, S., Baringer, M., Meinen, C., and Goni, G.: Interannual
variations in the Atlantic meridional overturning circulation and its
relationship with the net northward heat transport in the South Atlantic,
Geophys. Res. Lett., 36, L20606, https://doi.org/10.1029/2009GL039356, 2009.
Dong, S., Goni, G., and Bringas, F.: Temporal variability of the South
Atlantic Meridional Overturning Circulation between 20∘ S and
35∘ S, Geophys. Res. Lett., 42, 7655–7662,
https://doi.org/10.1002/2015GL065603, 2015.
Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., and
Chereskin, T. K.: Mean Antarctic Circumpolar Current transport measured in
Drake Passage, Geophys. Res. Lett., 43, 11760–11767,
https://doi.org/10.1002/2016GL070319, 2016.
Downes, S. M., Farneti, R., Uotila, P., Griffies, S. M., Marsland, S. J.,
Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C.,
Bozec, A., Canuto, V. M., Chassignet, E., Danabasoglu, G., Danilov, S.,
Diansky, N., Drange, H., Fogli, P. G., Gusev, A., Howard, A., Ilicak, M.,
Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Long, M., Lu, J.,
Masina, S., Mishra, A., Navarra, A., George Nurser, A. J., Patara, L.,
Samuels, B. L., Sidorenko, D., Spence, P., Tsujino, H., Wang, Q., and Yeager,
S. G.: An assessment of Southern Ocean water masses and sea ice during
1988-2007 in a suite of interannual CORE-II simulations, Ocean Model., 94,
67–94, https://doi.org/10.1016/j.ocemod.2015.07.022, 2015.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Farneti, R., Downes, S. M., Griffies, S. M., Marsland, S. J., Behrens, E.,
Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M.,
Chassignet, E., Danabasoglu, G., Danilov, S., Diansky, N., Drange, H.,
Fogli, P. G., Gusev, A., Hallberg, R. W., Howard, A., Ilicak, M., Jung, T.,
Kelley, M., Large, W. G., Leboissetier, A., Long, M., Lu, J., Masina, S.,
Mishra, A., Navarra, A., George Nurser, A. J., Patara, L., Samuels, B. L.,
Sidorenko, D., Tsujino, H., Uotila, P., Wang, Q., and Yeager, S. G.: An
assessment of Antarctic Circumpolar Current and Southern Ocean meridional
overturning circulation during 1958–2007 in a suite of interannual CORE-II
simulations, Ocean Model., 93, 84–120, https://doi.org/10.1016/j.ocemod.2015.07.009,
2015.
Ferrari, R., McWilliams, J. C., Canuto, V. M., and Dubovikov, M.:
Parameterization of eddy fluxes near oceanic boundaries, J. Climate, 21,
2770–2789, https://doi.org/10.1175/2007JCLI1510.1, 2008.
Ferreira, D., Marshall, J., and Heimbach, P.: Estimating eddy
stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint, J. Phys. Oceanogr., 35, 1891–1910,
https://doi.org/10.1175/JPO2785.1, 2005.
Fetterer, F., Knowles, K., Meier, W., Savoie, M., and Windnagel, A. K.: Sea
Ice Index, Version 3, Boulder, CO, USA, 2017.
Firing, Y. L., Chereskin,
T. K., and Mazloff, M. R.: Vertical structure and transport of the Antarctic
Circumpolar Current in Drake Passage from direct velocity observations, J.
Geophys. Res., 116, C08015, https://doi.org/10.1029/2011JC006999, 2011.
Fox-Kemper, B., Danabasoglu, G., Ferrari, R., Griffies, S. M., Hallberg, R.
W., Holland, M. M., Maltrud, M. E., Peacock, S., and Samuels, B. L.:
Parameterization of mixed layer eddies. III: Implementation and impact in
global ocean climate simulations, Ocean Model., 39, 61–78,
https://doi.org/10.1016/j.ocemod.2010.09.002, 2011.
Fox-Kemper, B., Adcroft, A., Böning, C. W., Chassignet, E. P.,
Curchitser, E., Danabasoglu, G., Eden, C., England, M. H., Gerdes, R.,
Greatbatch, R. J., Griffies, S. M., Hallberg, R. W., Hanert, E., Heimbach,
P., Hewitt, H. T., Hill, C. N., Komuro, Y., Legg, S., Sommer, J. Le, Masina,
S., Marsland, S. J., Penny, S. G., Qiao, F., Ringler, T. D., Treguier, A.
M., Tsujino, H., Uotila, P., and Yeager, S. G.: Challenges and prospects in
ocean circulation models, Front. Mar. Sci., 6, 65,
https://doi.org/10.3389/fmars.2019.00065, 2019.
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of mixed
layer eddies. Part I: Theory and diagnosis, J. Phys. Oceanogr., 38,
1145–1165, https://doi.org/10.1175/2007JPO3792.1, 2008.
Garzoli, S. L., Baringer, M. O., Dong, S., Perez, R. C., and Yao, Q.: South Atlantic meridional fluxes, Deep-Sea Res. Pt. I, 71, 21–32, https://doi.org/10.1016/j.dsr.2012.09.003, 2013.
Gent, P. R. and Danabasoglu, G.: Response to increasing southern hemisphere
winds in CCSM4, J. Climate, 24, 4992–4998, https://doi.org/10.1175/JCLI-D-10-05011.1,
2011.
Gent, P. R. and Mcwilliams, J. C.: Isopycnal mixing in ocean
circulation models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:imiocm>2.0.co;2,
1990.
Godfrey, J. S.: A Sverdrup model of the depth-integrated flow for the world
ocean allowing for island circulations, Geophys. Astrophys. Fluid Dyn.,
45, 89–112, https://doi.org/10.1080/03091928908208894, 1989.
Goes, M., Goni, G., and Dong, S.: An optimal XBT-based monitoring system for
the South Atlantic meridional overturning circulation at 34∘ S, J.
Geophys. Res.-Oceans, 120, 161–181, https://doi.org/10.1002/2014JC010202, 2015.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013.
Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, R. D., Wijffels, S.,
Molcard, R., Ffield, A., Pranowo, W., and Wirasantosa, S.: The Indonesian
throughflow during 2004–2006 as observed by the INSTANT program, Dyn. Atmos.
Ocean., 50, 115–128, https://doi.org/10.1016/j.dynatmoce.2009.12.002, 2010.
Gordon, A. L.: Oceanography of the Indonesian seas and their throughflow,
Oceanography, 18, 15–27, https://doi.org/10.5670/oceanog.2005.01,
2005.
Gordon, A. L.: Interocean exchange of thermocline water, J. Geophys.
Res., 91, 5037, https://doi.org/10.1029/jc091ic04p05037, 1986.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. Le, Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and terminology for sea level:
Mean, variability and change, both local and global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z,
2019.
Griffies, S. M.: The Gent–McWilliams Skew Flux, J. Phys. Oceanogr., 28,
831–841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2, 1998.
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G.,
Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W.,
Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels,
B. L., Scheinert, M., Gupta, A. Sen, Severijns, C. A., Simmons, H. L.,
Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice
Reference Experiments (COREs), Ocean Model., 26, 1–46,
https://doi.org/10.1016/j.ocemod.2008.08.007, 2009.
Griffies, S. M., Yin, J., Durack, P. J., Goddard, P., Bates, S. C., Behrens,
E., Bentsen, M., Bi, D., Biastoch, A., Böning, C. W., Bozec, A.,
Chassignet, E., Danabasoglu, G., Danilov, S., Domingues, C. M., Drange, H.,
Farneti, R., Fernandez, E., Greatbatch, R. J., Holland, D. M., Ilicak, M.,
Large, W. G., Lorbacher, K., Lu, J., Marsland, S. J., Mishra, A., George
Nurser, A. J., Salas y Mélia, D., Palter, J. B., Samuels, B. L.,
Schröter, J., Schwarzkopf, F. U., Sidorenko, D., Treguier, A. M., Tseng,
Y. heng, Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., Wang, Q.,
Winton, M., and Zhang, X.: An assessment of global and regional sea level for
years 1993–2007 in a suite of interannual CORE-II simulations, Ocean Model.,
78, 35–89, https://doi.org/10.1016/j.ocemod.2014.03.004, 2014.
Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L.,
Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A.,
Wittenberg, A. T., Yin, J. J., and Zhang, R.: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models, J. Climate, 28,
952–977, 2015.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Häkkinen, S. and Rhines, P. B.: Decline of Subpolar North Atlantic
Circulation during the 1990s, Science, 304, 555–559,
https://doi.org/10.1126/science.1094917, 2004.
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103,
https://doi.org/10.1016/j.ocemod.2013.08.007, 2013.
Hallberg, R. and Gnanadesikan, A.: The role of Eddies in determining the
structure and response of the wind-driven Southern hemisphere overturning:
Results from the Modeling Eddies in the Southern Ocean (MESO) project, J.
Phys. Oceanogr., 36, 2232–2252, https://doi.org/10.1175/JPO2980.1, 2006.
Halliwell, G. R.: Evaluation of vertical coordinate and vertical mixing
algorithms in the HYbrid-Coordinate Ocean Model (HYCOM), Ocean Model.,
7, 285–322, https://doi.org/10.1016/j.ocemod.2003.10.002, 2004.
Hirschi, J. J.-M., Barnier, B., Böning, C., Biastoch, A., Blaker, A. T.,
Coward, A., Danilov, S., Drijfhout, S., Getzlaff, K., Griffies, S. M.,
Hasumi, H., Hewitt, H., Iovino, D., Kawasaki, T., Kiss, A. E., Koldunov, N.,
Marzocchi, A., Moat, B., Molines, J.-M., Myers, P. G., Penduff, T., Roberts,
M., Treguier, A.-M., Sein, D. V., Sidorenko, D., Small1, J., Spence, P.,
Thompson, L., Weijer, W., and Xu, X.: The Atlantic meridional overturning
circulation in high resolution models, J. Geophys. Res.-Oceans, 125, e2019JC015522, https://doi.org/10.1029/2019JC015522, 2020.
Horvat, C. and Tziperman, E.: A prognostic model of the sea-ice floe size and thickness distribution, The Cryosphere, 9, 2119–2134, https://doi.org/10.5194/tc-9-2119-2015, 2015.
Horvat, C., Blanchard-Wrigglesworth, E., and Petty, A.: Observing waves in
sea ice with ICESat-2, Geophys, Res. Lett., 47, e2020GL087629, https://doi.org/10.1029/2020GL087629, 2020.
Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model for sea
ice dynamics, J. Phys. Oceanogr., 27, 1849–1867,
https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2,
1997.
Hunke, E. C. and Lipscomb, W. H.: CICE: the Los Alamos sea ice model, documentation and software user's manual, Version 4.1. Los Alamos, NM, Los Alamos National Laboratory, Tech. Rep. LA-CC-06-012, 2010.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual
Version 4.1 LA-CC-06-012, 2010.
Hunke, E. C., Hebert, D. A., and Lecomte, O.: Level-ice melt ponds in the Los
Alamos sea ice model, CICE, Ocean Model., 71, 26–42,
https://doi.org/10.1016/j.ocemod.2012.11.008, 2013.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos Sea Ice Model documentation and software user's manual,
Version 5.1, LA-CC-06-012, T-3 Fluid Dyn. Group, Los Alamos Natl. Lab., 116,
2015.
Ilicak, M., Drange, H., Wang, Q., Gerdes, R., Aksenov, Y., Bailey, D.,
Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C.,
Chassignet, E., Coward, A. C., Curry, B., Danabasoglu, G., Danilov, S.,
Fernandez, E., Fogli, P. G., Fujii, Y., Griffies, S. M., Iovino, D., Jahn,
A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., George
Nurser, A. J., Roth, C., Salas y Mélia, D., Samuels, B. L., Spence, P.,
Tsujino, H., Valcke, S., Voldoire, A., Wang, X., and Yeager, S. G.: An
assessment of the Arctic Ocean in a suite of interannual CORE-II
simulations. Part III: Hydrography and fluxes, Ocean Model., 100, 141–161,
https://doi.org/10.1016/j.ocemod.2016.02.004, 2016.
Jayne, S. R.: The Impact of Abyssal Mixing Parameterizations in an Ocean
General Circulation Model, J. Phys. Oceanogr., 39, 1756–1775,
https://doi.org/10.1175/2009JPO4085.1, 2009.
Jochum, M., Fox-Kemper, B., Molnar, P. H., and Shields, C.: Differences in
the Indonesian seaway in a coupled climate model and their relevance to
Pliocene climate and El Niño, Paleoceanography, 24, PA1212,
https://doi.org/10.1029/2008PA001678, 2009.
Johns, W. E., Baringer, M. O., Beal, L. M., Cunningham, S. A., Kanzow, T.,
Bryden, H. L., Hirschi, J. J. M., Marotzke, J., Meinen, C. S., Shaw, B., and
Curry, R.: Continuous, Array-Based Estimates of Atlantic Ocean Heat
Transport at 26.5∘ N, J. Climate, 24, 2429–2449,
https://doi.org/10.1175/2010JCLI3997.1, 2011.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Kiyotoshi, T.:
The JRA-55 reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Koenig, Z., Provost, C., Ferrari, R., Sennéchael, N., and Rio, M.-H.:
Volume transport of the Antarctic Circumpolar Current: Production and
validation of a 20 year long time series obtained from in situ and satellite
observations, J. Geophys. Res.-Oceans, 119, 5407–5433,
https://doi.org/10.1002/2014jc009966, 2014.
Kohout, A., Williams, M., Dean, S., and Meylan, M. H.: Storm-induced sea-ice
breakup and the implications for ice extent, Nature, 509, 604–607,
https://doi.org/10.1038/nature13262, 2014.
Kurian, J., P., Li, P., Chang, P., Patricola, C. M., and Small, J.: Impact of
the Benguela coastal low-level jet on the Southeast Tropical Atlantic SST
bias in a regional ocean model, Clim. Dynam., in review, 2020.
Kurtz, N. T. and Markus, T.: Satellite observations of Antarctic sea ice thickness and volume, J. Geophys. Res., 117, C08025, https://doi.org/10.1029/2012JC008141, 2012.
Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing for ocean
and sea–ice models: The data sets and flux climatologies, NCAR Tech. Note,
TN–460+ST(May), 105 pp., https://doi.org/10.5065/D6KK98Q6, 2004.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air – Sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Large, W. G., Danabasoglu, G., Doney, S. C., and McWilliams, J. C.:
Sensitivity to surface forcing and boundary layer mixing
in a global ocean model: Annual-mean climatology, J. Phys. Oceanogr., 27, 2418–2447,
https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2,
1997.
Laurindo, L. C., Siqueira, L., Mariano, A. J., and Kirtman, B. P.:
Cross-spectral analysis of the SST/10-m wind speed coupling resolved by
satellite products and climate model simulations, Clim. Dynam., 52,
5071–5098, https://doi.org/10.1007/s00382-018-4434-6, 2019.
Li, L., Lin, P., Yu, Y., Wang, B., Zhou, T., Liu, L., Liu, J., Bao, Q., Xu,
S., Huang, W., Xia, K., Pu, Y., Dong, L., Shen, S., Liu, Y., Hu, N., Liu,
M., Sun, W., Shi, X., Zheng, W., Wu, B., Song, M., Liu, H., Zhang, X., Wu,
G., Xue, W., Huang, X., Yang, G., Song, Z., and Qiao, F.: The flexible global
ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2, Adv.
Atmos. Sci., 30, 543–560, https://doi.org/10.1007/s00376-012-2140-6, 2013.
Li, Q., Webb, A., Fox-Kemper, B., Craig, A., Danabasoglu, G., Large, W. G.,
and Vertenstein, M.: Langmuir mixing effects on global climate: WAVEWATCH
III in CESM, Ocean Model., 103, 145–160, https://doi.org/10.1016/j.ocemod.2015.07.020,
2016.
Li, Y, Liu, H., Ding, M., Lin, P., Yu, Z., Yu, Y., Meng, Y., Li, Y., Jian,
X., Jiang, J., Chen, K., Yang, Q., Wang, Y., Zhao, B., Wei, J., Ma, J.,
Zheng, W., and Wang, P.: Eddy-resolving simulation of CAS-LICOM3 for the
Ocean Model Intercomparison Project phase 2 (OMIP-2), Adv. Atmos. Sci., 37, 1067–1080,
https://doi.org/10.1007/s00376-020-0057-z, 2020.
Lin, P., Liu, H., Xue, W., Li, H., Jiang, J., Song, M., Song, Y., Wang,
F., and Zhang, M.: A coupled experiment with LICOM2 as the ocean component of
CESM1, J. Meteorol. Res., 30, 76–92, https://doi.org/10.1007/s13351-015-5045-3,
2016.
Lin, P. F., Yu, Z., Liu, H., Yu, Y., Li, Y,Jiang, J., Xue, W., Chen, K., Yang, Q., Zhao, B., Wei, J., Ding, M., Sun, Z., Wang, Y., Meng, Y., Zheng, W., and Ma, J: LICOM model datasets for the CMIP6 Ocean model intercomparison project, Adv. Atmos. Sci., 37, 239-−249, https://doi.org/10.1007/s00376-019-9208-5, 2020.
Liu, H. L., Zhang, X. H., Li, W., Yu, Y. Q., and Yu, R. C.: An eddy-permitting
oceanic general circulation model and its preliminary evaluation, Adv.
Atmos. Sci., 21, 675–690, https://doi.org/10.1007/bf02916365, 2004.
Liu, H., Lin, P., Yu, Y., and Zhang, X.: The baseline evaluation of LASG/IAP
Climate system Ocean Model (LICOM) version 2, Acta Meteorol. Sin., 26,
318–329, https://doi.org/10.1007/s13351-012-0305-y, 2012.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., Seidov, D., and Levitus, S.: World Ocean Atlas 2013, Volume
1, Temperature, https://doi.org/10.7289/V55X26VD, 2013.
Lumpkin, R. and Speer, K.: Global Ocean Meridional Overturning, J. Phys.
Oceanogr., 37, 2550–2562, https://doi.org/10.1175/JPO3130.1, 2007.
Ma, X., Chang,
P., Saravanan, R., Montuoro, R., Nakamura, H., Wu, D., Lin, X., and Wu, L.:
Importance of resolving Kuroshio
front and eddy influence in simulating the North Pacific storm
track, J. Climate, 30, 1861–1880,
https://doi.org/10.1175/JCLI-D-16-0154.1, 2017.
Ma, X., Jing, Z., Chang, P., Liu, X., Montuoro, R., Small, R. J., Bryan, F.
O., Greatbatch, R. J., Brandt, P., Wu, D., Lin, X., and Wu, L.: Western
boundary currents regulated by interaction between ocean eddies and the
atmosphere, Nature, 535, 533–537, https://doi.org/10.1038/nature18640, 2016.
Maltrud, M. E. and McClean, J. L.: An eddy resolving global 1/10∘
ocean simulation, Ocean Model., 8, 31–54,
https://doi.org/10.1016/j.ocemod.2003.12.001, 2005.
McClean, J. L., Bader, D. C., Bryan, F. O., Maltrud, M. E., Dennis, J. M.,
Mirin, A. A., Jones, P. W., Kim, Y. Y., Ivanova, D. P., Vertenstein, M.,
Boyle, J. S., Jacob, R. L., Norton, N., Craig, A., and Worley, P. H.: A
prototype two-decade fully-coupled fine-resolution CCSM simulation, Ocean
Model., 39, 10–30, https://doi.org/10.1016/j.ocemod.2011.02.011, 2011.
Meinen, C. S., Speich, S., Perez, R. C., Dong, S., Piola, A. R., Garzoli, S.
L., Baringer, M. O., Gladyshev, S., and Campos, E. J. D.: Temporal
variability of the meridional overturning circulation at 34.5∘ S:
Results from two pilot boundary arrays in the South Atlantic, J. Geophys.
Res.-Oceans, 118, 6461–6478, https://doi.org/10.1002/2013JC009228, 2013.
Meinen, C. S., Speich, S., Piola, A. R., Ansorge, I., Campos, E.,
Kersalé, M., Terre, T., Chidichimo, M. P., Lamont, T., Sato, O. T.,
Perez, R. C., Valla, D., van den Berg, M., Le Hénaff, M., Dong, S., and
Garzoli, S. L.: Meridional overturning circulation transport variability at 34.5∘S during 2009–2017: Baroclinic and barotropic flows and the dueling influence of the boundaries, Geophys. Res. Lett., 45, 4180–4188,
https://doi.org/10.1029/2018GL077408, 2018.
Mesinger, F. and Janjic, Z. I.: Problems and numerical methods of the
incorporation of mountains in atmospheric models, Lect. Appl. Math., 22,
81–120, 1985.
Meyers, G.: Variation of Indonesian throughflow and the El Niño-Southern
Oscillation, J. Geophys. Res.-Oceans, 101,, 12255–12263,
https://doi.org/10.1029/95JC03729@10.1002/(ISSN)2169-9291.PACLLWBC1, 1996.
Morrison, A. K. and Hogg, A. McC.:On the relationship between Southern Ocean overturning and ACC transport, J. Phys. Oceanogr., 43, 140–148,
https://doi.org/10.1175/JPO-D-12-057.1, 2013.
Msadek, R., Johns, W. E., Yeager, S. G., Danabasoglu, G., Delworth, T. L.,
and Rosati, A.: The Atlantic Meridional Heat Transport at 26.5∘ N
and Its Relationship with the MOC in the RAPID Array and the GFDL and NCAR
Coupled Models, J. Climate, 26, 4335–4356, https://doi.org/10.1175/JCLI-D-12-00081.1,
2013.
Munday, D. R., Johnson, H. L., and Marshall, D. P.:Eddy saturation of equilibrated circumpolar currents, J. Phys. Oceanogr., 43, 507–532,
https://doi.org/10.1175/JPO-D-12-095.1, 2013.
Murray, R. J.: Explicit generation of
orthogonal grids for ocean models, J. Comput. Phys., 126, 251–273,
https://doi.org/10.1006/jcph.1996.0136, 1996.
Notz, D., Dörr, J., Bailey, D. A., Blockley, E., Bushuk, M., Debernard,
J. B., Dekker, E., DeRepentigny, P., Docquier, D., Fuckar, N. S., Fyfe, J.
C., Jahn, A., Holland, M., Hunke, E., Iovino, D., Khosravi, N., Massonnet,
F., Madec, G., O'Farrell, S., Petty, A., Rana, A., Roach, L., Rosenblum, E.,
Rousset, C., Semmler, T., Stroeve, J., Tremblay, B., Toyoda, T., Tsujino, H.
and Vancoppenolle, M.: Arctic sea ice in CMIP6, Geophys. Res. Lett., 47,
e2019GL086749, https://doi.org/10.1029/2019GL086749, 2020.
Ollitrault, M. and Colin de Verdière, A.: The ocean general circulation
near 1000 m depth, J. Phys. Oceanogr., 44, 384–408,
https://doi.org/10.1175/JPO-D-13-030.1, 2014.
Olonscheck, D., Mauritsen, T., and Notz, D.: Arctic sea-ice variability is
primarily driven by atmospheric temperature fluctuations, Nat. Geosci.,
12, 430–434, https://doi.org/10.1038/s41561-019-0363-1, 2019.
Parkinson, C. L. and Washington, W. M.: Large-scale numerical model of sea
ice, J Geophys Res, 84, 311–337, https://doi.org/10.1029/jc084ic01p00311, 1979.
Pearson, B., Fox-Kemper, B., Bachman, S., and Bryan, F.: Evaluation of
scale-aware subgrid mesoscale eddy models in a global eddy-rich model, Ocean
Model., 115, 42–58, https://doi.org/10.1016/j.ocemod.2017.05.007, 2017.
Rackow, T., Goessling, H. F., Jung, T., Sidorenko, D., Semmler, T., Barbi,
D., and Handorf, D.: Towards multi-resolution global climate modeling with
ECHAM6-FESOM. Part II: climate variability, Clim. Dyn., 50,
2369–2394, https://doi.org/10.1007/s00382-016-3192-6, 2018.
Rackow, T., Sein, D. V., Semmler, T., Danilov, S., Koldunov, N. V., Sidorenko, D., Wang, Q., and Jung, T.: Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0, Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, 2019.
Rahaman, H., Srinivasu, U., Panickal, S., Durgadoo, J. V., Griffies, S. M.,
Ravichandran, M., Bozec, A., Cherchi, A., Voldoire, A., Sidorenko, D.,
Chassignet, E. P., Danabasoglu, G., Tsujino, H., Getzlaff, K., Ilicak, M.,
Bentsen, M., Long, M. C., Fogli, P. G., Farneti, R., Danilov, S., Marsland,
S. J., Valcke, S., Yeager, S. G., and Wang, Q.: An assessment of the Indian
Ocean mean state and seasonal cycle in a suite of interannual CORE-II
simulations, Ocean Model., 145, 101503, https://doi.org/10.1016/j.ocemod.2019.101503, 2020.
Redi, M. H.: Oceanic isopycnal mixing by coordinate rotation, J. Phys.
Oceanogr., 12, 1154–1158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2, 1982.
Renault, L., Masson, S., Arsouze, T., Madec, G., and McWilliams, J. C.:
Recipes for how to force oceanic model dynamics, J. Adv. Model. Earth Sy.,
2019MS001715, https://doi.org/10.1029/2019MS001715, 2020.
Renault, L., McWilliams, J. C., and Penven, P.: Modulation of the Agulhas
Current retroflection and leakage by oceanic current interaction with the
atmosphere in coupled simulations, J. Phys. Oceanogr., 47, 2077–2100,
https://doi.org/10.1175/JPO-D-16-0168.1, 2017.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily high-resolution-blended analyses for sea surface
temperature, J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.
Richardson, P. L.: A census of eddies observed in North Atlantic SOFAR float
data, Prog. Oceanogr., 31, 1–50, https://doi.org/10.1016/0079-6611(93)90022-6, 1993.
Roach, L. A., Horvat, C., Dean, S. M., and Bitz, C. M.: An emergent sea ice
floe size distribution in a global coupled ocean-sea ice model, J.
Geophys. Res.-Oceans, 123, 4322–4337, https://doi.org/10.1029/2017JC013692,
2018.
Roach, L. A., Dörr, J., Holmes, C. R., Massonnet, F., Blockley, E. W.,
Notz, D., Rackow, T., Raphael, M. N., O'Farrell, S. P., Bailey, D. A., and
Bitz, C. M.: Antarctic sea ice area in CMIP6, Geophys. Res. Lett., 47,
e2019GL086729, https://doi.org/10.1029/2019GL086729, 2020.
Rossby, T.: The North Atlantic Current and surrounding waters: At the
crossroads, Rev. Geophys., 34, 463–481, https://doi.org/10.1029/96RG02214,
1996.
Schmitz Jr., W. J.: On the World Ocean Circulation, vol. 1, Some Global
Features/North Atlantic Circulation, 1996.
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res., 116, C00D06,
https://doi.org/10.1029/2011JC007084, 2011.
Scott, R. B., Arbic, B. K., Chassignet, E. P., Coward, A. C., Maltrud, M.,
Merryfield, W. J., Srinivasan, A., and Varghese, A.: Total kinetic energy in
four global eddying ocean circulation models and over 5000 current meter
records, Ocean Model., 32, 157–169, https://doi.org/10.1016/j.ocemod.2010.01.005,
2010.
Sein, D. V., Danilov, S., Biastoch, A., Durgadoo, J. V., Sidorenko, D.,
Harig, S., and Wang, Q.: Designing variable ocean model resolution based on
the observed ocean variability, J. Adv. Model. Earth Sy., 8, 904–916,
https://doi.org/10.1002/2016MS000650, 2016.
Sein, D. V., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C.,
Cabos, W., Rackow, T., Scholz, P., Semmler, T., Wang, Q., and Jung, T.: The relative influence of atmospheric and oceanic
model resolution on the circulation of the North Atlantic Ocean
in a coupled climate model, J. Adv.
Model. Earth Syst., 10, 2026–2041, https://doi.org/10.1029/2018MS001327, 2018.
Semtner, A. J.: A model for the thermodynamic growth of sea ice in numerical
investigations of climate, J. Phys. Oceanogr., 6, 379–389,
https://doi.org/10.1175/1520-0485(1976)006<0379:amfttg>2.0.co;2,
1976.
Shu, Q., Wang, Q., Song, Z., Qiao, F., Zhao, J., Chu, M., and Li, X.:
Assessment of sea ice extent in CMIP6 with comparison to observations and
CMIP5, Geophys. Res. Lett., 47, e2020GL087965, https://doi.org/10.1029/2020GL087965,
2020.
Sidorenko, D., Koldunov, N. V., Wang, Q., Danilov, S., Goessling, H. F.,
Gurses, O., Scholz, P., Sein, D. V., Volodin, E., Wekerle, C., and Jung, T.:
Influence of a salt plume parameterization in a coupled climate model, J.
Adv. Model. Earth Sy., 10, 2357–2373, https://doi.org/10.1029/2018MS001291, 2018.
Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S.,
Dethloff, K., Dorn, W., Fieg, K., Goessling, H. F., Handorf, D., Harig, S.,
Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D. V., and Wang,
Q.: Towards multi-resolution global climate modeling with ECHAM6–FESOM.
Part I: model formulation and mean climate, Clim. Dynam., 44, 757–780,
https://doi.org/10.1007/s00382-014-2290-6, 2015.
Smagorinsky, J.: General circulation experiments with the primitive
equations, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2,
1963.
Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan,
F., Caron, J., Dennis, J., Gent, P., Hsu, H., Jochum, M., Lawrence, D.,
Muñoz, E., DiNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.,
and Vertenstein, M.: A new synoptic scale resolving global climate
simulation using the Community Earth System Model, J. Adv. Model. Earth
Sy., 6, 1065–1094, https://doi.org/10.1002/2014MS000363, 2014.
Small, R. J., Curchitser, E., Hedstrom, K., Kauffman, B., and Large, W. G.:
The Benguela upwelling system: Quantifying the sensitivity to resolution and
coastal wind representation in a global climate model, J. Climate, 28,
9409–9432, https://doi.org/10.1175/JCLI-D-15-0192.1, 2015.
Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I.,
Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H.
L., and McCarthy, G. D.: The North Atlantic Ocean is in a state of reduced
overturning, Geophys. Res. Lett., 45, 1527–1533,
https://doi.org/10.1002/2017GL076350, 2018.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, K. L. M., Large, W., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The parallel
ocean program (POP) reference manual: ocean component of the community
climate system model (CCSM) and community earth system model (CESM), Rep.
LAUR-01853, 141, 1–140, 2010.
Sprintall, J., Wijffels, S. E., Molcard, R., and Jaya, I.: Direct estimates
of the Indonesian Throughflow entering the Indian Ocean: 2004–2006, J.
Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257, 2009.
St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating tidally
driven mixing in the deep ocean, Geophys. Res. Lett., 29, 2106,
https://doi.org/10.1029/2002gl015633, 2002.
Steele, M., Morley, R., and Ermold, W.: PHC: A Global Ocean Hydrography with
a High-Quality Arctic Ocean, J. Climate, 14, 2079–2087,
https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2,
2001.
Stewart, K. D., Hogg, A. McC., Griffies, S. M., Heerdegen, A. P., Ward, M.
L., Spence, P., and England, M. H.: Vertical resolution of baroclinic modes
in global ocean models, Ocean Model., 113, 50–65,
https://doi.org/10.1016/j.ocemod.2017.03.012, 2017
Stroeve, J. and Meier, W. N.: Sea ice trends and climatologies from SMMR and SSM/I-SSMIS, Version 2, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/EYICLBOAAJOU, 2017.
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland,
M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and
observations, Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676,
2012.
Sun, Q., Whitney, M. M., Bryan, F. O., and Tseng, Y.: Assessing the skill of
the improved treatment of riverine freshwater in the Community Earth System
Model (CESM) relative to a new salinity climatology, J. Adv. Model. Earth
Sy., 11, 1189–1206, https://doi.org/10.1029/2018MS001349, 2019.
Suzuki, T., Yamazaki, D., Tsujino, H., Komuro, Y., Nakano, H., and Urakawa,
S.: A dataset of continental river discharge based on JRA-55 for use in a
global ocean circulation model, J. Oceanogr., 74, 421–429,
https://doi.org/10.1007/s10872-017-0458-5, 2018.
Talley, L.: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans:
Schematics and transports, 26, 80–97, https://doi.org/10.5670/oceanog.2013.07, 2013.
Teague, W. J., Carron, M. J., and Hogan, P. J.: A comparison between the
Generalized Digital Environmental Model and Levitus climatologies, J.
Geophys. Res., 95, 7167–7183, https://doi.org/10.1029/jc095ic05p07167, 1990.
Thoppil, P. G., Richman, J. G., and Hogan, P. J.: Energetics of a global
ocean circulation model compared to observations, Geophys. Res. Lett.,
38, L15607, https://doi.org/10.1029/2011GL048347, 2011.
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L.: Observation-based
estimates of global and basin ocean meridional heat transport time series,
J. Climate, 32, 4567–4583, https://doi.org/10.1175/JCLI-D-18-0872.1, 2019.
Tseng, Y., Lin, H., Chen, H. ching, Thompson, K., Bentsen, M., Böning,
C. W., Bozec, A., Cassou, C., Chassignet, E., Chow, C. H., Danabasoglu, G.,
Danilov, S., Farneti, R., Fogli, P. G., Fujii, Y., Griffies, S. M., Ilicak,
M., Jung, T., Masina, S., Navarra, A., Patara, L., Samuels, B. L.,
Scheinert, M., Sidorenko, D., Sui, C. H., Tsujino, H., Valcke, S., Voldoire,
A., Wang, Q., and Yeager, S. G.: North and equatorial Pacific Ocean
circulation in the CORE-II hindcast simulations, Ocean Model., 104,
143–170, https://doi.org/10.1016/j.ocemod.2016.06.003, 2016.
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S.
G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C.
W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack,
P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C.,
Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J.,
Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do),
Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Turner, A. K. and Hunke, E. C.: Impacts of a mushy-layer thermodynamic
approach in global sea-ice simulations using the CICE sea-ice model, J.
Geophys. Res.-Oceans, 120, 1253–1275, https://doi.org/10.1002/2014JC010358, 2015.
von Storch, J.-S., Haak, H., Hertwig, E., and Fast, I.: Vertical heat and
salt fluxes due to resolved and parameterised meso-scale eddies, Ocean
Model., 108, 1–19, https://doi.org/10.1016/j.ocemod.2016.10.001, 2016.
Wang, Q., Danilov, S., and Schröter, J.: Finite element ocean circulation
model based on triangular prismatic elements, with application in studying
the effect of topography representation, J. Geophys. Res., 113, C05015,
https://doi.org/10.1029/2007JC004482, 2008.
Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, 2014.
Wang, Q., Ilicak, M., Gerdes, R., Drange, H., Aksenov, Y., Bailey, D. A.,
Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C.,
Chassignet, E., Coward, A. C., Curry, B., Danabasoglu, G., Danilov, S.,
Fernandez, E., Fogli, P. G., Fujii, Y., Griffies, S. M., Iovino, D., Jahn,
A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., Nurser,
A. J. G., Rabe, B., Roth, C., Salas y Mélia, D., Samuels, B. L., Spence,
P., Tsujino, H., Valcke, S., Voldoire, A., Wang, X., and Yeager, S. G.: An
assessment of the Arctic Ocean in a suite of interannual CORE-II
simulations. Part I: Sea ice and solid freshwater, Ocean Model., 99,
110–132, https://doi.org/10.1016/j.ocemod.2015.12.008, 2016a.
Wang, Q., Ilicak, M., Gerdes, R., Drange, H., Aksenov, Y., Bailey, D. A.,
Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C.,
Chassignet, E., Coward, A. C., Curry, B., Danabasoglu, G., Danilov, S.,
Fernandez, E., Fogli, P. G., Fujii, Y., Griffies, S. M., Iovino, D., Jahn,
A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., Nurser,
A. J. G., Rabe, B., Roth, C., Salas y Mélia, D., Samuels, B. L., Spence,
P., Tsujino, H., Valcke, S., Voldoire, A., Wang, X., and Yeager, S. G.: An
assessment of the Arctic Ocean in a suite of interannual CORE-II
simulations. Part II: Liquid freshwater, Ocean Model., 99, 86–109,
https://doi.org/10.1016/j.ocemod.2015.12.009, 2016b.
Wang, Q., Danilov, S., Jung, T., Kaleschke, L., and Wernecke, A.: Sea ice
leads in the Arctic Ocean: Model assessment, interannual variability and
trends, Geophys. Res. Lett., 43, 7019–7027, https://doi.org/10.1002/2016GL068696,
2016c.
Whitworth, T.: Monitoring the transport of the Antarctic Circumpolar Current
at Drake Passage, J. Phys. Oceanogr., 13, 2045–2057,
https://doi.org/10.1175/1520-0485(1983)013<2045:mttota>2.0.co;2,
1983.
Whitworth, T. and Peterson, R. G.: Volume transport of the Antarctic
Circumpolar Current from Bottom pressure measurements, J. Phys. Oceanogr.,
15, 810–816, https://doi.org/10.1175/1520-0485(1985)015<0810:vtotac>2.0.co;2, 1985.
Xu, X., Rhines, P. B., and Chassignet, E. P.: Temperature-salinity structure of the North Atlantic circulation and associated heat and freshwater transports, J. Climate, 29, 7723–7741, https://doi.org/10.1175/JCLI-D-15-0798.1, 2016.
Xu, X., Chassignet, E. P., Dong, S., and Baringer, M. O.: Transport structure
of the South Atlantic Ocean derived from a high-resolution numerical model
and observations, J. Geophys. Res., in review, 2020a.
Xu, X., Chassignet, E. P., Firing, Y. L., and Donohue, K.: Antarctic
Circumpolar Current transport through Drake Passage: What can we learn from
comparing high-resolution model results to observations?, J. Geophys. Res.-Oceans, 125, e2020JC016365, https://doi.org/10.1029/2020JC016365, 2020b.
Xu, X., Hurlburt, H. E., Schmitz, W. J., Zantopp, R., Fischer, J., and Hogan,
P. J.: On the currents and transports connected with the atlantic meridional
overturning circulation in the subpolar North Atlantic, J. Geophys. Res.-Oceans, 118, 502–516, https://doi.org/10.1002/jgrc.20065, 2013.
Xu, X., Chassignet, E. P., Johns, W. E., Schmitz, W. J., and Metzger, E. J.:
Intraseasonal to interannual variability of the Atlantic meridional
overturning circulation from eddy-resolving simulations and observations, J.
Geophys. Res.-Oceans, 119, 5140–5159, https://doi.org/10.1002/2014jc009994, 2014.
Xu, X., Chassignet, E. P., and Wang, F.: On the variability of the Atlantic
meridional overturning circulation transports in coupled CMIP5 simulations,
Clim. Dynam., 52, 6511–6531, https://doi.org/10.1007/s00382-018-4529-0, 2019.
Yashayaev, I.: Hydrographic changes in the Labrador Sea, 1960–2005, Prog.
Oceanogr., 73, 242–276, https://doi.org/10.1016/j.pocean.2007.04.015, 2007.
Yeager, S. G. and Large, W. G.: Late-winter generation of spiciness on subducted isopycnals, J. Phys. Oceanogr., 34, 1528–1547,
https://doi.org/10.1175/1520-0485(2004)034<1528:LGOSOS>2.0.CO;2,
2004.
Yi, D. and Zwally, H. J.: Arctic Sea Ice Freeboard and Thickness, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/SXJVJ3A2XIZT, last update: 15 April 2014, 2020.
Yu, R. C.: A two-step shape-preserving advection scheme,
Adv. Atmos. Sci., 11, 479-−490, https://doi.org/10.1007/BF02658169, 1994.
Yu, Y. Q., Tang, S. L. , Liu, H. L., Lin, P. F., and Li, X. L.: Development and evaluation of the dynamic framework of
an ocean general circulation model with arbitrary orthogonal curvilinear coordinate, Chinese J. Atmos. Sci., 42, 877−-889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284, 2018 (in Chinese with English abstract).
Yu, Z. P., Liu, H. L., and Lin, P. F.: A numerical study of the influence of
tidal mixing on Atlantic meridional overturning circulation (AMOC)
Simulation, Chinese J. Atmos. Sci., 41, 1087–1100,
https://doi.org/10.3878/j.issn.1006-9895.1702.16263, 2017 (in Chinese).
Zhang, X. H. and Liang, X. Z.: A numerical world ocean general circulation model, Adv. Atmos. Sci., 6, 44−-61,
https://doi.org/10.1007/BF02656917, 1989.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M.: World Ocean Atlas 2013, vol. 2, Salinity, edited by: Levitus, and Mishonov, A., NOAA Atlas NESDIS 74, 39 pp., 2013.
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
This paper presents global comparisons of fundamental global climate variables from a suite of...
Special issue