Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.5194/gmd-12-909-2019
Model description paper
 | Highlight paper
 | 
08 Mar 2019
Model description paper | Highlight paper |  | 08 Mar 2019

The Open Global Glacier Model (OGGM) v1.1

Fabien Maussion, Anton Butenko, Nicolas Champollion, Matthias Dusch, Julia Eis, Kévin Fourteau, Philipp Gregor, Alexander H. Jarosch, Johannes Landmann, Felix Oesterle, Beatriz Recinos, Timo Rothenpieler, Anouk Vlug, Christian T. Wild, and Ben Marzeion

Related authors

A novel framework for analyzing rainy season dynamics in semi-arid environments: a case study in the Peruvian Rio Santa basin
Lorenz Hänchen, Emily Potter, Cornelia Klein, Pierluigi Calanca, Fabien Maussion, Wolfgang Gurgiser, and Georg Wohlfahrt
Hydrol. Earth Syst. Sci., 29, 2727–2747, https://doi.org/10.5194/hess-29-2727-2025,https://doi.org/10.5194/hess-29-2727-2025, 2025
Short summary
Inter-model differences in 21st century glacier runoff for the world's major river basins
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
The Cryosphere, 19, 1491–1511, https://doi.org/10.5194/tc-19-1491-2025,https://doi.org/10.5194/tc-19-1491-2025, 2025
Short summary
Recent observations and glacier modeling point towards near-complete glacier loss in western Austria (Ötztal and Stubai mountain range) if 1.5 °C is not met
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
The Cryosphere, 19, 1431–1452, https://doi.org/10.5194/tc-19-1431-2025,https://doi.org/10.5194/tc-19-1431-2025, 2025
Short summary
Machine learning improves seasonal mass balance prediction for unmonitored glaciers
Kamilla Hauknes Sjursen, Jordi Bolibar, Marijn van der Meer, Liss Marie Andreassen, Julian Peter Biesheuvel, Thorben Dunse, Matthias Huss, Fabien Maussion, David R. Rounce, and Brandon Tober
EGUsphere, https://doi.org/10.5194/egusphere-2025-1206,https://doi.org/10.5194/egusphere-2025-1206, 2025
Short summary
Unravelling the sources of uncertainty in glacier runoff projections in the Patagonian Andes (40–56° S)
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024,https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary

Related subject area

Cryosphere
Computationally efficient subglacial drainage modelling using Gaussian process emulators: GlaDS-GP v1.0
Tim Hill, Derek Bingham, Gwenn E. Flowers, and Matthew J. Hoffman
Geosci. Model Dev., 18, 4045–4074, https://doi.org/10.5194/gmd-18-4045-2025,https://doi.org/10.5194/gmd-18-4045-2025, 2025
Short summary
Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025,https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Description and validation of the ice-sheet model Nix v1.0
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
Geosci. Model Dev., 18, 3895–3919, https://doi.org/10.5194/gmd-18-3895-2025,https://doi.org/10.5194/gmd-18-3895-2025, 2025
Short summary
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM) version 2.0 – Part 1: Description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge A. Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 3635–3659, https://doi.org/10.5194/gmd-18-3635-2025,https://doi.org/10.5194/gmd-18-3635-2025, 2025
Short summary
A Flexible Snow Model (FSM 2.1.1) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
Geosci. Model Dev., 18, 3583–3605, https://doi.org/10.5194/gmd-18-3583-2025,https://doi.org/10.5194/gmd-18-3583-2025, 2025
Short summary

Cited articles

Adhikari, S. and Marshall, S. J.: Glacier volume-area relation for high-order mechanics and transient glacier states, Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012GL052712, 2012a. a
Adhikari, S. and Marshall, S. J.: Parameterization of lateral drag in flowline models of glacier dynamics, J. Glaciol., 58, 1119–1132, https://doi.org/10.3189/2012JoG12J018, 2012b. a
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res.-Sol. Ea., 102, 20355–20362, https://doi.org/10.1029/97JB01696, 1997. a, b, c, d
Bahr, D. B., Dyurgerov, M., and Meier, M. F.: Sea-level rise from glaciers and ice caps: A lower bound, Geophys. Res. Lett., 36, 2–5, https://doi.org/10.1029/2008GL036309, 2009. a
Bahr, D. B., Pfeffer, W. T., and Kaser, G.: Glacier volume estimation as an ill-posed inversion, J. Glaciol., 60, 922–934, https://doi.org/10.3189/2014JoG14J062, 2014. a
Download
Short summary
Mountain glaciers are one of the few remaining subsystems of the global climate system for which no globally applicable community-driven model exists. Here we present the Open Global Glacier Model (OGGM; www.oggm.org), developed to provide a modular and open-source numerical model framework for simulating past and future change of any glacier in the world.
Share