Articles | Volume 12, issue 3
Geosci. Model Dev., 12, 909–931, 2019
https://doi.org/10.5194/gmd-12-909-2019
Geosci. Model Dev., 12, 909–931, 2019
https://doi.org/10.5194/gmd-12-909-2019

Model description paper 08 Mar 2019

Model description paper | 08 Mar 2019

The Open Global Glacier Model (OGGM) v1.1

Fabien Maussion et al.

Related authors

Vegetation indices as proxies for spatio-temporal variations in water availability in the Rio Santa valley (Peruvian Andes)
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-60,https://doi.org/10.5194/esd-2021-60, 2021
Preprint under review for ESD
Short summary
Lagrangian detection of precipitation moisture sources for an arid region in northeast Greenland: relations to the North Atlantic Oscillation, sea ice cover, and temporal trends from 1979 to 2017
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021,https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Initialization of a global glacier model based on present-day glacier geometry and past climate information: an ensemble approach
Julia Eis, Fabien Maussion, and Ben Marzeion
The Cryosphere, 13, 3317–3335, https://doi.org/10.5194/tc-13-3317-2019,https://doi.org/10.5194/tc-13-3317-2019, 2019
Short summary
Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska
Beatriz Recinos, Fabien Maussion, Timo Rothenpieler, and Ben Marzeion
The Cryosphere, 13, 2657–2672, https://doi.org/10.5194/tc-13-2657-2019,https://doi.org/10.5194/tc-13-2657-2019, 2019
Short summary
Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography
Johannes Horak, Marlis Hofer, Fabien Maussion, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Hydrol. Earth Syst. Sci., 23, 2715–2734, https://doi.org/10.5194/hess-23-2715-2019,https://doi.org/10.5194/hess-23-2715-2019, 2019
Short summary

Related subject area

Cryosphere
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021,https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021,https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
SITool (v1.0) – a new evaluation tool for large-scale sea ice simulations: application to CMIP6 OMIP
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
Geosci. Model Dev., 14, 6331–6354, https://doi.org/10.5194/gmd-14-6331-2021,https://doi.org/10.5194/gmd-14-6331-2021, 2021
Short summary
fenics_ice 1.0: a framework for quantifying initialization uncertainty for time-dependent ice sheet models
Conrad P. Koziol, Joe A. Todd, Daniel N. Goldberg, and James R. Maddison
Geosci. Model Dev., 14, 5843–5861, https://doi.org/10.5194/gmd-14-5843-2021,https://doi.org/10.5194/gmd-14-5843-2021, 2021
Short summary
SNICAR-AD v3: A Community Tool for Modeling Spectral Snow Albedo
Mark G. Flanner, Julian Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-182,https://doi.org/10.5194/gmd-2021-182, 2021
Revised manuscript accepted for GMD
Short summary

Cited articles

Adhikari, S. and Marshall, S. J.: Glacier volume-area relation for high-order mechanics and transient glacier states, Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012GL052712, 2012a. a
Adhikari, S. and Marshall, S. J.: Parameterization of lateral drag in flowline models of glacier dynamics, J. Glaciol., 58, 1119–1132, https://doi.org/10.3189/2012JoG12J018, 2012b. a
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res.-Sol. Ea., 102, 20355–20362, https://doi.org/10.1029/97JB01696, 1997. a, b, c, d
Bahr, D. B., Dyurgerov, M., and Meier, M. F.: Sea-level rise from glaciers and ice caps: A lower bound, Geophys. Res. Lett., 36, 2–5, https://doi.org/10.1029/2008GL036309, 2009. a
Bahr, D. B., Pfeffer, W. T., and Kaser, G.: Glacier volume estimation as an ill-posed inversion, J. Glaciol., 60, 922–934, https://doi.org/10.3189/2014JoG14J062, 2014. a
Download
Short summary
Mountain glaciers are one of the few remaining subsystems of the global climate system for which no globally applicable community-driven model exists. Here we present the Open Global Glacier Model (OGGM; www.oggm.org), developed to provide a modular and open-source numerical model framework for simulating past and future change of any glacier in the world.